Predicting remission following CBT for childhood anxiety disorders: a machine learning approach
The identification of predictors of treatment response is crucial for improving treatment outcome for children with anxiety disorders. Machine learning methods provide opportunities to identify combinations of factors that contribute to risk prediction models. A machine learning approach was applied...
Gespeichert in:
Veröffentlicht in: | Psychological medicine 2024-12, Vol.54 (16), p.4612-4622 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4622 |
---|---|
container_issue | 16 |
container_start_page | 4612 |
container_title | Psychological medicine |
container_volume | 54 |
creator | Bertie, Lizel-Antoinette Quiroz, Juan C. Berkovsky, Shlomo Arendt, Kristian Bögels, Susan Coleman, Jonathan R. I. Cooper, Peter Creswell, Cathy Eley, Thalia C. Hartman, Catharina Fjermestadt, Krister In-Albon, Tina Lavallee, Kristen Lester, Kathryn J. Lyneham, Heidi J. Marin, Carla E. McKinnon, Anna McLellan, Lauren F. Meiser-Stedman, Richard Nauta, Maaike Rapee, Ronald M. Schneider, Silvia Schniering, Carolyn Silverman, Wendy K. Thastum, Mikael Thirlwall, Kerstin Waite, Polly Wergeland, Gro Janne Wuthrich, Viviana Hudson, Jennifer L. |
description | The identification of predictors of treatment response is crucial for improving treatment outcome for children with anxiety disorders. Machine learning methods provide opportunities to identify combinations of factors that contribute to risk prediction models.
A machine learning approach was applied to predict anxiety disorder remission in a large sample of 2114 anxious youth (5-18 years). Potential predictors included demographic, clinical, parental, and treatment variables with data obtained pre-treatment, post-treatment, and at least one follow-up.
All machine learning models performed similarly for remission outcomes, with AUC between 0.67 and 0.69. There was significant alignment between the factors that contributed to the models predicting two target outcomes: remission of all anxiety disorders and the primary anxiety disorder. Children who were older, had multiple anxiety disorders, comorbid depression, comorbid externalising disorders, received group treatment and therapy delivered by a more experienced therapist, and who had a parent with higher anxiety and depression symptoms, were more likely than other children to still meet criteria for anxiety disorders at the completion of therapy. In both models, the absence of a social anxiety disorder and being treated by a therapist with less experience contributed to the model predicting a higher likelihood of remission.
These findings underscore the utility of prediction models that may indicate which children are more likely to remit or are more at risk of non-remission following CBT for childhood anxiety. |
doi_str_mv | 10.1017/S0033291724002654 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3146917691</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0033291724002654</cupid><sourcerecordid>3159194367</sourcerecordid><originalsourceid>FETCH-LOGICAL-c255t-597fa97788c7824e4483261ec88049844084f828a229e33f6ed3c77c54b5435a3</originalsourceid><addsrcrecordid>eNp1kEtLAzEUhYMotj5-gBsZcONmNK-ZJO60-IKCgnU9pJk7bcrMpCZTtP_eDK0KiosQcu93zr05CJ0QfEEwEZcvGDNGFRGUY0zzjO-gIeG5SqUSchcN-3ba9wfoIIQFxoQRTvfRgKlc5lKyISqePZTWdLadJR4aG4J1bVK5unbvfW10M4kvn5i5rcu5c2Wi2w8L3TopbXC-BB-uEp00OgItJDVo3_Y6vVx6F4tHaK_SdYDj7X2IXu9uJ6OHdPx0_zi6HqeGZlmXZkpUWgkhpRGScuBcMpoTMFJiriTnWPJKUqkpVcBYlUPJjBAm49OMs0yzQ3S-8Y1j31YQuiL-xUBd6xbcKhSsz4WIeCJ69gtduJVv43aRyhRRnOUiUmRDGe9C8FAVS28b7dcFwUWffvEn_ag53Tqvpg2U34qvuCPAtqa6mXpbzuBn9v-2n8KijSA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3159194367</pqid></control><display><type>article</type><title>Predicting remission following CBT for childhood anxiety disorders: a machine learning approach</title><source>Applied Social Sciences Index & Abstracts (ASSIA)</source><source>Cambridge University Press Journals Complete</source><creator>Bertie, Lizel-Antoinette ; Quiroz, Juan C. ; Berkovsky, Shlomo ; Arendt, Kristian ; Bögels, Susan ; Coleman, Jonathan R. I. ; Cooper, Peter ; Creswell, Cathy ; Eley, Thalia C. ; Hartman, Catharina ; Fjermestadt, Krister ; In-Albon, Tina ; Lavallee, Kristen ; Lester, Kathryn J. ; Lyneham, Heidi J. ; Marin, Carla E. ; McKinnon, Anna ; McLellan, Lauren F. ; Meiser-Stedman, Richard ; Nauta, Maaike ; Rapee, Ronald M. ; Schneider, Silvia ; Schniering, Carolyn ; Silverman, Wendy K. ; Thastum, Mikael ; Thirlwall, Kerstin ; Waite, Polly ; Wergeland, Gro Janne ; Wuthrich, Viviana ; Hudson, Jennifer L.</creator><creatorcontrib>Bertie, Lizel-Antoinette ; Quiroz, Juan C. ; Berkovsky, Shlomo ; Arendt, Kristian ; Bögels, Susan ; Coleman, Jonathan R. I. ; Cooper, Peter ; Creswell, Cathy ; Eley, Thalia C. ; Hartman, Catharina ; Fjermestadt, Krister ; In-Albon, Tina ; Lavallee, Kristen ; Lester, Kathryn J. ; Lyneham, Heidi J. ; Marin, Carla E. ; McKinnon, Anna ; McLellan, Lauren F. ; Meiser-Stedman, Richard ; Nauta, Maaike ; Rapee, Ronald M. ; Schneider, Silvia ; Schniering, Carolyn ; Silverman, Wendy K. ; Thastum, Mikael ; Thirlwall, Kerstin ; Waite, Polly ; Wergeland, Gro Janne ; Wuthrich, Viviana ; Hudson, Jennifer L.</creatorcontrib><description>The identification of predictors of treatment response is crucial for improving treatment outcome for children with anxiety disorders. Machine learning methods provide opportunities to identify combinations of factors that contribute to risk prediction models.
A machine learning approach was applied to predict anxiety disorder remission in a large sample of 2114 anxious youth (5-18 years). Potential predictors included demographic, clinical, parental, and treatment variables with data obtained pre-treatment, post-treatment, and at least one follow-up.
All machine learning models performed similarly for remission outcomes, with AUC between 0.67 and 0.69. There was significant alignment between the factors that contributed to the models predicting two target outcomes: remission of all anxiety disorders and the primary anxiety disorder. Children who were older, had multiple anxiety disorders, comorbid depression, comorbid externalising disorders, received group treatment and therapy delivered by a more experienced therapist, and who had a parent with higher anxiety and depression symptoms, were more likely than other children to still meet criteria for anxiety disorders at the completion of therapy. In both models, the absence of a social anxiety disorder and being treated by a therapist with less experience contributed to the model predicting a higher likelihood of remission.
These findings underscore the utility of prediction models that may indicate which children are more likely to remit or are more at risk of non-remission following CBT for childhood anxiety.</description><identifier>ISSN: 0033-2917</identifier><identifier>ISSN: 1469-8978</identifier><identifier>EISSN: 1469-8978</identifier><identifier>DOI: 10.1017/S0033291724002654</identifier><identifier>PMID: 39686883</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Anxiety disorders ; Childhood ; Children ; Children & youth ; Clinical outcomes ; Cognitive behavioral therapy ; Comorbidity ; Families & family life ; Gender ; Group therapy ; Learning algorithms ; Machine learning ; Mental depression ; Mental disorders ; Mental health ; Older children ; Original Article ; Parent participation ; Prediction models ; Questionnaires ; Remission ; Remission (Medicine) ; Risk factors ; Social anxiety ; Therapists ; Variables</subject><ispartof>Psychological medicine, 2024-12, Vol.54 (16), p.4612-4622</ispartof><rights>Copyright © The Author(s), 2024. Published by Cambridge University Press</rights><rights>Copyright © The Author(s), 2024. Published by Cambridge University Press. This work is licensed under the Creative Commons Attribution License This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution and reproduction, provided the original article is properly cited. (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c255t-597fa97788c7824e4483261ec88049844084f828a229e33f6ed3c77c54b5435a3</cites><orcidid>0000-0001-7694-1382 ; 0000-0001-6458-0700 ; 0000-0003-0194-0515 ; 0000-0002-4501-6028 ; 0000-0003-0055-4620 ; 0000-0003-0913-5473 ; 0000-0001-5778-2670 ; 0000-0003-4059-6577 ; 0000-0002-1724-1076 ; 0000-0003-4415-4098 ; 0000-0002-0853-2664 ; 0000-0003-1889-0956 ; 0000-0002-6287-0111 ; 0000-0003-0241-5376 ; 0000-0002-6759-0944 ; 0000-0001-8582-5682 ; 0000-0002-1967-8028 ; 0000-0002-8327-9515 ; 0000-0003-0698-8411 ; 0000-0001-7227-229X ; 0000-0003-2638-4121 ; 0000-0002-2070-8458 ; 0000-0002-0262-623X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0033291724002654/type/journal_article$$EHTML$$P50$$Gcambridge$$Hfree_for_read</linktohtml><link.rule.ids>164,314,776,780,12825,27901,27902,30976,55603</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39686883$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bertie, Lizel-Antoinette</creatorcontrib><creatorcontrib>Quiroz, Juan C.</creatorcontrib><creatorcontrib>Berkovsky, Shlomo</creatorcontrib><creatorcontrib>Arendt, Kristian</creatorcontrib><creatorcontrib>Bögels, Susan</creatorcontrib><creatorcontrib>Coleman, Jonathan R. I.</creatorcontrib><creatorcontrib>Cooper, Peter</creatorcontrib><creatorcontrib>Creswell, Cathy</creatorcontrib><creatorcontrib>Eley, Thalia C.</creatorcontrib><creatorcontrib>Hartman, Catharina</creatorcontrib><creatorcontrib>Fjermestadt, Krister</creatorcontrib><creatorcontrib>In-Albon, Tina</creatorcontrib><creatorcontrib>Lavallee, Kristen</creatorcontrib><creatorcontrib>Lester, Kathryn J.</creatorcontrib><creatorcontrib>Lyneham, Heidi J.</creatorcontrib><creatorcontrib>Marin, Carla E.</creatorcontrib><creatorcontrib>McKinnon, Anna</creatorcontrib><creatorcontrib>McLellan, Lauren F.</creatorcontrib><creatorcontrib>Meiser-Stedman, Richard</creatorcontrib><creatorcontrib>Nauta, Maaike</creatorcontrib><creatorcontrib>Rapee, Ronald M.</creatorcontrib><creatorcontrib>Schneider, Silvia</creatorcontrib><creatorcontrib>Schniering, Carolyn</creatorcontrib><creatorcontrib>Silverman, Wendy K.</creatorcontrib><creatorcontrib>Thastum, Mikael</creatorcontrib><creatorcontrib>Thirlwall, Kerstin</creatorcontrib><creatorcontrib>Waite, Polly</creatorcontrib><creatorcontrib>Wergeland, Gro Janne</creatorcontrib><creatorcontrib>Wuthrich, Viviana</creatorcontrib><creatorcontrib>Hudson, Jennifer L.</creatorcontrib><title>Predicting remission following CBT for childhood anxiety disorders: a machine learning approach</title><title>Psychological medicine</title><addtitle>Psychol. Med</addtitle><description>The identification of predictors of treatment response is crucial for improving treatment outcome for children with anxiety disorders. Machine learning methods provide opportunities to identify combinations of factors that contribute to risk prediction models.
A machine learning approach was applied to predict anxiety disorder remission in a large sample of 2114 anxious youth (5-18 years). Potential predictors included demographic, clinical, parental, and treatment variables with data obtained pre-treatment, post-treatment, and at least one follow-up.
All machine learning models performed similarly for remission outcomes, with AUC between 0.67 and 0.69. There was significant alignment between the factors that contributed to the models predicting two target outcomes: remission of all anxiety disorders and the primary anxiety disorder. Children who were older, had multiple anxiety disorders, comorbid depression, comorbid externalising disorders, received group treatment and therapy delivered by a more experienced therapist, and who had a parent with higher anxiety and depression symptoms, were more likely than other children to still meet criteria for anxiety disorders at the completion of therapy. In both models, the absence of a social anxiety disorder and being treated by a therapist with less experience contributed to the model predicting a higher likelihood of remission.
These findings underscore the utility of prediction models that may indicate which children are more likely to remit or are more at risk of non-remission following CBT for childhood anxiety.</description><subject>Anxiety disorders</subject><subject>Childhood</subject><subject>Children</subject><subject>Children & youth</subject><subject>Clinical outcomes</subject><subject>Cognitive behavioral therapy</subject><subject>Comorbidity</subject><subject>Families & family life</subject><subject>Gender</subject><subject>Group therapy</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Mental depression</subject><subject>Mental disorders</subject><subject>Mental health</subject><subject>Older children</subject><subject>Original Article</subject><subject>Parent participation</subject><subject>Prediction models</subject><subject>Questionnaires</subject><subject>Remission</subject><subject>Remission (Medicine)</subject><subject>Risk factors</subject><subject>Social anxiety</subject><subject>Therapists</subject><subject>Variables</subject><issn>0033-2917</issn><issn>1469-8978</issn><issn>1469-8978</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>IKXGN</sourceid><sourceid>7QJ</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kEtLAzEUhYMotj5-gBsZcONmNK-ZJO60-IKCgnU9pJk7bcrMpCZTtP_eDK0KiosQcu93zr05CJ0QfEEwEZcvGDNGFRGUY0zzjO-gIeG5SqUSchcN-3ba9wfoIIQFxoQRTvfRgKlc5lKyISqePZTWdLadJR4aG4J1bVK5unbvfW10M4kvn5i5rcu5c2Wi2w8L3TopbXC-BB-uEp00OgItJDVo3_Y6vVx6F4tHaK_SdYDj7X2IXu9uJ6OHdPx0_zi6HqeGZlmXZkpUWgkhpRGScuBcMpoTMFJiriTnWPJKUqkpVcBYlUPJjBAm49OMs0yzQ3S-8Y1j31YQuiL-xUBd6xbcKhSsz4WIeCJ69gtduJVv43aRyhRRnOUiUmRDGe9C8FAVS28b7dcFwUWffvEn_ag53Tqvpg2U34qvuCPAtqa6mXpbzuBn9v-2n8KijSA</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Bertie, Lizel-Antoinette</creator><creator>Quiroz, Juan C.</creator><creator>Berkovsky, Shlomo</creator><creator>Arendt, Kristian</creator><creator>Bögels, Susan</creator><creator>Coleman, Jonathan R. I.</creator><creator>Cooper, Peter</creator><creator>Creswell, Cathy</creator><creator>Eley, Thalia C.</creator><creator>Hartman, Catharina</creator><creator>Fjermestadt, Krister</creator><creator>In-Albon, Tina</creator><creator>Lavallee, Kristen</creator><creator>Lester, Kathryn J.</creator><creator>Lyneham, Heidi J.</creator><creator>Marin, Carla E.</creator><creator>McKinnon, Anna</creator><creator>McLellan, Lauren F.</creator><creator>Meiser-Stedman, Richard</creator><creator>Nauta, Maaike</creator><creator>Rapee, Ronald M.</creator><creator>Schneider, Silvia</creator><creator>Schniering, Carolyn</creator><creator>Silverman, Wendy K.</creator><creator>Thastum, Mikael</creator><creator>Thirlwall, Kerstin</creator><creator>Waite, Polly</creator><creator>Wergeland, Gro Janne</creator><creator>Wuthrich, Viviana</creator><creator>Hudson, Jennifer L.</creator><general>Cambridge University Press</general><scope>IKXGN</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>0-V</scope><scope>3V.</scope><scope>7QJ</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8FD</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HEHIP</scope><scope>K9.</scope><scope>KB0</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7694-1382</orcidid><orcidid>https://orcid.org/0000-0001-6458-0700</orcidid><orcidid>https://orcid.org/0000-0003-0194-0515</orcidid><orcidid>https://orcid.org/0000-0002-4501-6028</orcidid><orcidid>https://orcid.org/0000-0003-0055-4620</orcidid><orcidid>https://orcid.org/0000-0003-0913-5473</orcidid><orcidid>https://orcid.org/0000-0001-5778-2670</orcidid><orcidid>https://orcid.org/0000-0003-4059-6577</orcidid><orcidid>https://orcid.org/0000-0002-1724-1076</orcidid><orcidid>https://orcid.org/0000-0003-4415-4098</orcidid><orcidid>https://orcid.org/0000-0002-0853-2664</orcidid><orcidid>https://orcid.org/0000-0003-1889-0956</orcidid><orcidid>https://orcid.org/0000-0002-6287-0111</orcidid><orcidid>https://orcid.org/0000-0003-0241-5376</orcidid><orcidid>https://orcid.org/0000-0002-6759-0944</orcidid><orcidid>https://orcid.org/0000-0001-8582-5682</orcidid><orcidid>https://orcid.org/0000-0002-1967-8028</orcidid><orcidid>https://orcid.org/0000-0002-8327-9515</orcidid><orcidid>https://orcid.org/0000-0003-0698-8411</orcidid><orcidid>https://orcid.org/0000-0001-7227-229X</orcidid><orcidid>https://orcid.org/0000-0003-2638-4121</orcidid><orcidid>https://orcid.org/0000-0002-2070-8458</orcidid><orcidid>https://orcid.org/0000-0002-0262-623X</orcidid></search><sort><creationdate>20241201</creationdate><title>Predicting remission following CBT for childhood anxiety disorders: a machine learning approach</title><author>Bertie, Lizel-Antoinette ; Quiroz, Juan C. ; Berkovsky, Shlomo ; Arendt, Kristian ; Bögels, Susan ; Coleman, Jonathan R. I. ; Cooper, Peter ; Creswell, Cathy ; Eley, Thalia C. ; Hartman, Catharina ; Fjermestadt, Krister ; In-Albon, Tina ; Lavallee, Kristen ; Lester, Kathryn J. ; Lyneham, Heidi J. ; Marin, Carla E. ; McKinnon, Anna ; McLellan, Lauren F. ; Meiser-Stedman, Richard ; Nauta, Maaike ; Rapee, Ronald M. ; Schneider, Silvia ; Schniering, Carolyn ; Silverman, Wendy K. ; Thastum, Mikael ; Thirlwall, Kerstin ; Waite, Polly ; Wergeland, Gro Janne ; Wuthrich, Viviana ; Hudson, Jennifer L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c255t-597fa97788c7824e4483261ec88049844084f828a229e33f6ed3c77c54b5435a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Anxiety disorders</topic><topic>Childhood</topic><topic>Children</topic><topic>Children & youth</topic><topic>Clinical outcomes</topic><topic>Cognitive behavioral therapy</topic><topic>Comorbidity</topic><topic>Families & family life</topic><topic>Gender</topic><topic>Group therapy</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Mental depression</topic><topic>Mental disorders</topic><topic>Mental health</topic><topic>Older children</topic><topic>Original Article</topic><topic>Parent participation</topic><topic>Prediction models</topic><topic>Questionnaires</topic><topic>Remission</topic><topic>Remission (Medicine)</topic><topic>Risk factors</topic><topic>Social anxiety</topic><topic>Therapists</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bertie, Lizel-Antoinette</creatorcontrib><creatorcontrib>Quiroz, Juan C.</creatorcontrib><creatorcontrib>Berkovsky, Shlomo</creatorcontrib><creatorcontrib>Arendt, Kristian</creatorcontrib><creatorcontrib>Bögels, Susan</creatorcontrib><creatorcontrib>Coleman, Jonathan R. I.</creatorcontrib><creatorcontrib>Cooper, Peter</creatorcontrib><creatorcontrib>Creswell, Cathy</creatorcontrib><creatorcontrib>Eley, Thalia C.</creatorcontrib><creatorcontrib>Hartman, Catharina</creatorcontrib><creatorcontrib>Fjermestadt, Krister</creatorcontrib><creatorcontrib>In-Albon, Tina</creatorcontrib><creatorcontrib>Lavallee, Kristen</creatorcontrib><creatorcontrib>Lester, Kathryn J.</creatorcontrib><creatorcontrib>Lyneham, Heidi J.</creatorcontrib><creatorcontrib>Marin, Carla E.</creatorcontrib><creatorcontrib>McKinnon, Anna</creatorcontrib><creatorcontrib>McLellan, Lauren F.</creatorcontrib><creatorcontrib>Meiser-Stedman, Richard</creatorcontrib><creatorcontrib>Nauta, Maaike</creatorcontrib><creatorcontrib>Rapee, Ronald M.</creatorcontrib><creatorcontrib>Schneider, Silvia</creatorcontrib><creatorcontrib>Schniering, Carolyn</creatorcontrib><creatorcontrib>Silverman, Wendy K.</creatorcontrib><creatorcontrib>Thastum, Mikael</creatorcontrib><creatorcontrib>Thirlwall, Kerstin</creatorcontrib><creatorcontrib>Waite, Polly</creatorcontrib><creatorcontrib>Wergeland, Gro Janne</creatorcontrib><creatorcontrib>Wuthrich, Viviana</creatorcontrib><creatorcontrib>Hudson, Jennifer L.</creatorcontrib><collection>Cambridge Journals Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Social Sciences Premium Collection</collection><collection>ProQuest Central (Corporate)</collection><collection>Applied Social Sciences Index & Abstracts (ASSIA)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Technology Research Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Social Science Premium Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Sociology Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Research Library</collection><collection>Sociology Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Psychological medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bertie, Lizel-Antoinette</au><au>Quiroz, Juan C.</au><au>Berkovsky, Shlomo</au><au>Arendt, Kristian</au><au>Bögels, Susan</au><au>Coleman, Jonathan R. I.</au><au>Cooper, Peter</au><au>Creswell, Cathy</au><au>Eley, Thalia C.</au><au>Hartman, Catharina</au><au>Fjermestadt, Krister</au><au>In-Albon, Tina</au><au>Lavallee, Kristen</au><au>Lester, Kathryn J.</au><au>Lyneham, Heidi J.</au><au>Marin, Carla E.</au><au>McKinnon, Anna</au><au>McLellan, Lauren F.</au><au>Meiser-Stedman, Richard</au><au>Nauta, Maaike</au><au>Rapee, Ronald M.</au><au>Schneider, Silvia</au><au>Schniering, Carolyn</au><au>Silverman, Wendy K.</au><au>Thastum, Mikael</au><au>Thirlwall, Kerstin</au><au>Waite, Polly</au><au>Wergeland, Gro Janne</au><au>Wuthrich, Viviana</au><au>Hudson, Jennifer L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting remission following CBT for childhood anxiety disorders: a machine learning approach</atitle><jtitle>Psychological medicine</jtitle><addtitle>Psychol. Med</addtitle><date>2024-12-01</date><risdate>2024</risdate><volume>54</volume><issue>16</issue><spage>4612</spage><epage>4622</epage><pages>4612-4622</pages><issn>0033-2917</issn><issn>1469-8978</issn><eissn>1469-8978</eissn><abstract>The identification of predictors of treatment response is crucial for improving treatment outcome for children with anxiety disorders. Machine learning methods provide opportunities to identify combinations of factors that contribute to risk prediction models.
A machine learning approach was applied to predict anxiety disorder remission in a large sample of 2114 anxious youth (5-18 years). Potential predictors included demographic, clinical, parental, and treatment variables with data obtained pre-treatment, post-treatment, and at least one follow-up.
All machine learning models performed similarly for remission outcomes, with AUC between 0.67 and 0.69. There was significant alignment between the factors that contributed to the models predicting two target outcomes: remission of all anxiety disorders and the primary anxiety disorder. Children who were older, had multiple anxiety disorders, comorbid depression, comorbid externalising disorders, received group treatment and therapy delivered by a more experienced therapist, and who had a parent with higher anxiety and depression symptoms, were more likely than other children to still meet criteria for anxiety disorders at the completion of therapy. In both models, the absence of a social anxiety disorder and being treated by a therapist with less experience contributed to the model predicting a higher likelihood of remission.
These findings underscore the utility of prediction models that may indicate which children are more likely to remit or are more at risk of non-remission following CBT for childhood anxiety.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><pmid>39686883</pmid><doi>10.1017/S0033291724002654</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-7694-1382</orcidid><orcidid>https://orcid.org/0000-0001-6458-0700</orcidid><orcidid>https://orcid.org/0000-0003-0194-0515</orcidid><orcidid>https://orcid.org/0000-0002-4501-6028</orcidid><orcidid>https://orcid.org/0000-0003-0055-4620</orcidid><orcidid>https://orcid.org/0000-0003-0913-5473</orcidid><orcidid>https://orcid.org/0000-0001-5778-2670</orcidid><orcidid>https://orcid.org/0000-0003-4059-6577</orcidid><orcidid>https://orcid.org/0000-0002-1724-1076</orcidid><orcidid>https://orcid.org/0000-0003-4415-4098</orcidid><orcidid>https://orcid.org/0000-0002-0853-2664</orcidid><orcidid>https://orcid.org/0000-0003-1889-0956</orcidid><orcidid>https://orcid.org/0000-0002-6287-0111</orcidid><orcidid>https://orcid.org/0000-0003-0241-5376</orcidid><orcidid>https://orcid.org/0000-0002-6759-0944</orcidid><orcidid>https://orcid.org/0000-0001-8582-5682</orcidid><orcidid>https://orcid.org/0000-0002-1967-8028</orcidid><orcidid>https://orcid.org/0000-0002-8327-9515</orcidid><orcidid>https://orcid.org/0000-0003-0698-8411</orcidid><orcidid>https://orcid.org/0000-0001-7227-229X</orcidid><orcidid>https://orcid.org/0000-0003-2638-4121</orcidid><orcidid>https://orcid.org/0000-0002-2070-8458</orcidid><orcidid>https://orcid.org/0000-0002-0262-623X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0033-2917 |
ispartof | Psychological medicine, 2024-12, Vol.54 (16), p.4612-4622 |
issn | 0033-2917 1469-8978 1469-8978 |
language | eng |
recordid | cdi_proquest_miscellaneous_3146917691 |
source | Applied Social Sciences Index & Abstracts (ASSIA); Cambridge University Press Journals Complete |
subjects | Anxiety disorders Childhood Children Children & youth Clinical outcomes Cognitive behavioral therapy Comorbidity Families & family life Gender Group therapy Learning algorithms Machine learning Mental depression Mental disorders Mental health Older children Original Article Parent participation Prediction models Questionnaires Remission Remission (Medicine) Risk factors Social anxiety Therapists Variables |
title | Predicting remission following CBT for childhood anxiety disorders: a machine learning approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T23%3A52%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20remission%20following%20CBT%20for%20childhood%20anxiety%20disorders:%20a%20machine%20learning%20approach&rft.jtitle=Psychological%20medicine&rft.au=Bertie,%20Lizel-Antoinette&rft.date=2024-12-01&rft.volume=54&rft.issue=16&rft.spage=4612&rft.epage=4622&rft.pages=4612-4622&rft.issn=0033-2917&rft.eissn=1469-8978&rft_id=info:doi/10.1017/S0033291724002654&rft_dat=%3Cproquest_cross%3E3159194367%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3159194367&rft_id=info:pmid/39686883&rft_cupid=10_1017_S0033291724002654&rfr_iscdi=true |