Thermal Softening Measurements of Refractory High-Entropy Alloys

Home-built equipment will be presented able to measure the thermal expansion (with a flat indenter) and indentation depth (with a pointed indenter) up to 1100 °C. In dilatometer mode, the allotropic phase transformations can be studied. For hardness, a Rockwell-type measurement is adopted. First, we...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials 2024-11, Vol.17 (23), p.5718
Hauptverfasser: Temesi, Ottó K, Karacs, Albert, Chinh, Nguyen Q, Varga, Lajos K
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Home-built equipment will be presented able to measure the thermal expansion (with a flat indenter) and indentation depth (with a pointed indenter) up to 1100 °C. In dilatometer mode, the allotropic phase transformations can be studied. For hardness, a Rockwell-type measurement is adopted. First, we apply a small load and measure the displacement consisting of a dominant positive thermal expansion and a small negative indentation depth contribution. Then, we repeat the thermal cycle with such a high load that the compensation appears at around 250-300 °C. With increasing temperature, the indentation depth starts to dominate and we can notice a contraction. The indentation depth as a function of temperature, ID(T), will be obtained by subtracting the high load curve from the low load curve. A new rational fraction expression will be tested to describe the thermal softening of pure metals and refractory HEAs. Still, we are working on improving the equipment to extend the working temperature up to 1200 °C.
ISSN:1996-1944
1996-1944
DOI:10.3390/ma17235718