Third-Generation CALPHAD Modeling of Elemental Nb and Zr and Partial Re-Assessment of Their Binary Phase Diagram
Liquid metals and metallic alloys often exist as metastable phases or can be undercooled below their equilibrium melting point. The Traditional CALPHAD (CALculation of PHAse Diagrams) approach struggles to accurately model these metastable conditions, which are important in rapid quenching technique...
Gespeichert in:
Veröffentlicht in: | Materials 2024-12, Vol.17 (23), p.5978 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 23 |
container_start_page | 5978 |
container_title | Materials |
container_volume | 17 |
creator | Traversari, Gabriele Casu, Mariano Orrù, Roberto Cincotti, Alberto Concas, Alessandro Cao, Giacomo Locci, Antonio Mario |
description | Liquid metals and metallic alloys often exist as metastable phases or can be undercooled below their equilibrium melting point. The Traditional CALPHAD (CALculation of PHAse Diagrams) approach struggles to accurately model these metastable conditions, which are important in rapid quenching techniques like additive manufacturing, and to understand glass formation or oxidation phenomena occurring in the liquid phase during nuclear and high-temperature aerospace applications. On the contrary, the third-generation CALPHAD models have the potential to accurately describe metastable phase diagrams to provide better predictions of molten phase behavior under non-equilibrium conditions. The latter approach is utilized in this study to achieve a more accurate description of the thermodynamic properties of elemental Nb and Zr, with a particular focus on their liquid phases. By incorporating available first-principles data, the representation of the liquid state is improved for both elements, capturing the peculiar behavior of the heat capacity in a wide temperature range. These improvements enable a more reliable prediction of phase stability and liquidus boundaries in the Nb-Zr system. A partial re-assessment of the Nb-Zr binary phase diagram is also conducted with refined predictions of liquidus boundaries that align well with experimental data. |
doi_str_mv | 10.3390/ma17235978 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_3146916365</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A819952390</galeid><sourcerecordid>A819952390</sourcerecordid><originalsourceid>FETCH-LOGICAL-c279t-522cfaad14cc86f2113571cd9c256b17f0eeafde7ce5007fbcfd4dd44dfb6d273</originalsourceid><addsrcrecordid>eNpdkU1LJDEQhsPiouJ68QcsAS8itHY-utM5jt-Cuw4yXrw06aQyE-lOxqTn4L8347irWHWoUDxvpagXoQNSnjAmy9NBEUFZJUXzA-0SKeuCSM63vrx30H5Kz2UOxkhD5TbaYbJuKk74LlrOFi6a4ho8RDW64PH55G56M7nAf4KB3vk5DhZf9jCAH1WP_3ZYeYOf4nuZqji63H2AYpISpLSm1oLZAlzEZ86r-IqnC5UAXzg1j2r4hX5a1SfY_6h76PHqcnZ-U9zdX9_mvwtNhRyLilJtlTKEa93UlhLCKkG0kZpWdUeELQGUNSA0VGUpbKet4cZwbmxXGyrYHjrazF3G8LKCNLaDSxr6XnkIq9QywmtJalZXGT38hj6HVfR5uzXFiWCN5Jk62VBz1UPrvA1jVDqngcHp4MG63J80-e4Vzc5kwfFGoGNIKYJtl9EN-SAtKdu1d-2ndxn-_bHDqhvA_Ef_OcXeAMbikno</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3144173894</pqid></control><display><type>article</type><title>Third-Generation CALPHAD Modeling of Elemental Nb and Zr and Partial Re-Assessment of Their Binary Phase Diagram</title><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Traversari, Gabriele ; Casu, Mariano ; Orrù, Roberto ; Cincotti, Alberto ; Concas, Alessandro ; Cao, Giacomo ; Locci, Antonio Mario</creator><creatorcontrib>Traversari, Gabriele ; Casu, Mariano ; Orrù, Roberto ; Cincotti, Alberto ; Concas, Alessandro ; Cao, Giacomo ; Locci, Antonio Mario</creatorcontrib><description>Liquid metals and metallic alloys often exist as metastable phases or can be undercooled below their equilibrium melting point. The Traditional CALPHAD (CALculation of PHAse Diagrams) approach struggles to accurately model these metastable conditions, which are important in rapid quenching techniques like additive manufacturing, and to understand glass formation or oxidation phenomena occurring in the liquid phase during nuclear and high-temperature aerospace applications. On the contrary, the third-generation CALPHAD models have the potential to accurately describe metastable phase diagrams to provide better predictions of molten phase behavior under non-equilibrium conditions. The latter approach is utilized in this study to achieve a more accurate description of the thermodynamic properties of elemental Nb and Zr, with a particular focus on their liquid phases. By incorporating available first-principles data, the representation of the liquid state is improved for both elements, capturing the peculiar behavior of the heat capacity in a wide temperature range. These improvements enable a more reliable prediction of phase stability and liquidus boundaries in the Nb-Zr system. A partial re-assessment of the Nb-Zr binary phase diagram is also conducted with refined predictions of liquidus boundaries that align well with experimental data.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma17235978</identifier><identifier>PMID: 39685414</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Alloying elements ; Alloys ; Analysis ; Binary alloys ; Entropy ; Equilibrium conditions ; First principles ; High temperature ; Liquid metals ; Liquid phases ; Liquidus ; Melting points ; Metals ; Metastable phases ; Nuclear energy ; Oxidation ; Phase diagrams ; Phase stability ; Rapid quenching (metallurgy) ; Temperature ; Thermodynamic properties ; Thermodynamics ; Zirconium</subject><ispartof>Materials, 2024-12, Vol.17 (23), p.5978</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c279t-522cfaad14cc86f2113571cd9c256b17f0eeafde7ce5007fbcfd4dd44dfb6d273</cites><orcidid>0000-0003-1024-1345 ; 0009-0008-6144-8905 ; 0000-0002-4410-8545 ; 0000-0003-4034-656X ; 0000-0003-3090-7757</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39685414$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Traversari, Gabriele</creatorcontrib><creatorcontrib>Casu, Mariano</creatorcontrib><creatorcontrib>Orrù, Roberto</creatorcontrib><creatorcontrib>Cincotti, Alberto</creatorcontrib><creatorcontrib>Concas, Alessandro</creatorcontrib><creatorcontrib>Cao, Giacomo</creatorcontrib><creatorcontrib>Locci, Antonio Mario</creatorcontrib><title>Third-Generation CALPHAD Modeling of Elemental Nb and Zr and Partial Re-Assessment of Their Binary Phase Diagram</title><title>Materials</title><addtitle>Materials (Basel)</addtitle><description>Liquid metals and metallic alloys often exist as metastable phases or can be undercooled below their equilibrium melting point. The Traditional CALPHAD (CALculation of PHAse Diagrams) approach struggles to accurately model these metastable conditions, which are important in rapid quenching techniques like additive manufacturing, and to understand glass formation or oxidation phenomena occurring in the liquid phase during nuclear and high-temperature aerospace applications. On the contrary, the third-generation CALPHAD models have the potential to accurately describe metastable phase diagrams to provide better predictions of molten phase behavior under non-equilibrium conditions. The latter approach is utilized in this study to achieve a more accurate description of the thermodynamic properties of elemental Nb and Zr, with a particular focus on their liquid phases. By incorporating available first-principles data, the representation of the liquid state is improved for both elements, capturing the peculiar behavior of the heat capacity in a wide temperature range. These improvements enable a more reliable prediction of phase stability and liquidus boundaries in the Nb-Zr system. A partial re-assessment of the Nb-Zr binary phase diagram is also conducted with refined predictions of liquidus boundaries that align well with experimental data.</description><subject>Alloying elements</subject><subject>Alloys</subject><subject>Analysis</subject><subject>Binary alloys</subject><subject>Entropy</subject><subject>Equilibrium conditions</subject><subject>First principles</subject><subject>High temperature</subject><subject>Liquid metals</subject><subject>Liquid phases</subject><subject>Liquidus</subject><subject>Melting points</subject><subject>Metals</subject><subject>Metastable phases</subject><subject>Nuclear energy</subject><subject>Oxidation</subject><subject>Phase diagrams</subject><subject>Phase stability</subject><subject>Rapid quenching (metallurgy)</subject><subject>Temperature</subject><subject>Thermodynamic properties</subject><subject>Thermodynamics</subject><subject>Zirconium</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdkU1LJDEQhsPiouJ68QcsAS8itHY-utM5jt-Cuw4yXrw06aQyE-lOxqTn4L8347irWHWoUDxvpagXoQNSnjAmy9NBEUFZJUXzA-0SKeuCSM63vrx30H5Kz2UOxkhD5TbaYbJuKk74LlrOFi6a4ho8RDW64PH55G56M7nAf4KB3vk5DhZf9jCAH1WP_3ZYeYOf4nuZqji63H2AYpISpLSm1oLZAlzEZ86r-IqnC5UAXzg1j2r4hX5a1SfY_6h76PHqcnZ-U9zdX9_mvwtNhRyLilJtlTKEa93UlhLCKkG0kZpWdUeELQGUNSA0VGUpbKet4cZwbmxXGyrYHjrazF3G8LKCNLaDSxr6XnkIq9QywmtJalZXGT38hj6HVfR5uzXFiWCN5Jk62VBz1UPrvA1jVDqngcHp4MG63J80-e4Vzc5kwfFGoGNIKYJtl9EN-SAtKdu1d-2ndxn-_bHDqhvA_Ef_OcXeAMbikno</recordid><startdate>20241206</startdate><enddate>20241206</enddate><creator>Traversari, Gabriele</creator><creator>Casu, Mariano</creator><creator>Orrù, Roberto</creator><creator>Cincotti, Alberto</creator><creator>Concas, Alessandro</creator><creator>Cao, Giacomo</creator><creator>Locci, Antonio Mario</creator><general>MDPI AG</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1024-1345</orcidid><orcidid>https://orcid.org/0009-0008-6144-8905</orcidid><orcidid>https://orcid.org/0000-0002-4410-8545</orcidid><orcidid>https://orcid.org/0000-0003-4034-656X</orcidid><orcidid>https://orcid.org/0000-0003-3090-7757</orcidid></search><sort><creationdate>20241206</creationdate><title>Third-Generation CALPHAD Modeling of Elemental Nb and Zr and Partial Re-Assessment of Their Binary Phase Diagram</title><author>Traversari, Gabriele ; Casu, Mariano ; Orrù, Roberto ; Cincotti, Alberto ; Concas, Alessandro ; Cao, Giacomo ; Locci, Antonio Mario</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c279t-522cfaad14cc86f2113571cd9c256b17f0eeafde7ce5007fbcfd4dd44dfb6d273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Alloying elements</topic><topic>Alloys</topic><topic>Analysis</topic><topic>Binary alloys</topic><topic>Entropy</topic><topic>Equilibrium conditions</topic><topic>First principles</topic><topic>High temperature</topic><topic>Liquid metals</topic><topic>Liquid phases</topic><topic>Liquidus</topic><topic>Melting points</topic><topic>Metals</topic><topic>Metastable phases</topic><topic>Nuclear energy</topic><topic>Oxidation</topic><topic>Phase diagrams</topic><topic>Phase stability</topic><topic>Rapid quenching (metallurgy)</topic><topic>Temperature</topic><topic>Thermodynamic properties</topic><topic>Thermodynamics</topic><topic>Zirconium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Traversari, Gabriele</creatorcontrib><creatorcontrib>Casu, Mariano</creatorcontrib><creatorcontrib>Orrù, Roberto</creatorcontrib><creatorcontrib>Cincotti, Alberto</creatorcontrib><creatorcontrib>Concas, Alessandro</creatorcontrib><creatorcontrib>Cao, Giacomo</creatorcontrib><creatorcontrib>Locci, Antonio Mario</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Traversari, Gabriele</au><au>Casu, Mariano</au><au>Orrù, Roberto</au><au>Cincotti, Alberto</au><au>Concas, Alessandro</au><au>Cao, Giacomo</au><au>Locci, Antonio Mario</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Third-Generation CALPHAD Modeling of Elemental Nb and Zr and Partial Re-Assessment of Their Binary Phase Diagram</atitle><jtitle>Materials</jtitle><addtitle>Materials (Basel)</addtitle><date>2024-12-06</date><risdate>2024</risdate><volume>17</volume><issue>23</issue><spage>5978</spage><pages>5978-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>Liquid metals and metallic alloys often exist as metastable phases or can be undercooled below their equilibrium melting point. The Traditional CALPHAD (CALculation of PHAse Diagrams) approach struggles to accurately model these metastable conditions, which are important in rapid quenching techniques like additive manufacturing, and to understand glass formation or oxidation phenomena occurring in the liquid phase during nuclear and high-temperature aerospace applications. On the contrary, the third-generation CALPHAD models have the potential to accurately describe metastable phase diagrams to provide better predictions of molten phase behavior under non-equilibrium conditions. The latter approach is utilized in this study to achieve a more accurate description of the thermodynamic properties of elemental Nb and Zr, with a particular focus on their liquid phases. By incorporating available first-principles data, the representation of the liquid state is improved for both elements, capturing the peculiar behavior of the heat capacity in a wide temperature range. These improvements enable a more reliable prediction of phase stability and liquidus boundaries in the Nb-Zr system. A partial re-assessment of the Nb-Zr binary phase diagram is also conducted with refined predictions of liquidus boundaries that align well with experimental data.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>39685414</pmid><doi>10.3390/ma17235978</doi><orcidid>https://orcid.org/0000-0003-1024-1345</orcidid><orcidid>https://orcid.org/0009-0008-6144-8905</orcidid><orcidid>https://orcid.org/0000-0002-4410-8545</orcidid><orcidid>https://orcid.org/0000-0003-4034-656X</orcidid><orcidid>https://orcid.org/0000-0003-3090-7757</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1996-1944 |
ispartof | Materials, 2024-12, Vol.17 (23), p.5978 |
issn | 1996-1944 1996-1944 |
language | eng |
recordid | cdi_proquest_miscellaneous_3146916365 |
source | PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Alloying elements Alloys Analysis Binary alloys Entropy Equilibrium conditions First principles High temperature Liquid metals Liquid phases Liquidus Melting points Metals Metastable phases Nuclear energy Oxidation Phase diagrams Phase stability Rapid quenching (metallurgy) Temperature Thermodynamic properties Thermodynamics Zirconium |
title | Third-Generation CALPHAD Modeling of Elemental Nb and Zr and Partial Re-Assessment of Their Binary Phase Diagram |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T18%3A08%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Third-Generation%20CALPHAD%20Modeling%20of%20Elemental%20Nb%20and%20Zr%20and%20Partial%20Re-Assessment%20of%20Their%20Binary%20Phase%20Diagram&rft.jtitle=Materials&rft.au=Traversari,%20Gabriele&rft.date=2024-12-06&rft.volume=17&rft.issue=23&rft.spage=5978&rft.pages=5978-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma17235978&rft_dat=%3Cgale_proqu%3EA819952390%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3144173894&rft_id=info:pmid/39685414&rft_galeid=A819952390&rfr_iscdi=true |