Influence of Initial Yield Strength Weighting on Residual Stresses in Quenched Cylinders Using Finite Element Analysis

Using the quenching process to create a specific residual stress distribution in steel parts is a key method for improving their strength. Although finite element simulation can overcome the time-consuming and labor-intensive limitations of experimental measurements, accurately predicting the residu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials 2024-11, Vol.17 (23), p.5833
Hauptverfasser: Li, Junpeng, Xu, Yingqiang, Liu, Youwei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 23
container_start_page 5833
container_title Materials
container_volume 17
creator Li, Junpeng
Xu, Yingqiang
Liu, Youwei
description Using the quenching process to create a specific residual stress distribution in steel parts is a key method for improving their strength. Although finite element simulation can overcome the time-consuming and labor-intensive limitations of experimental measurements, accurately predicting the residual stress distribution in quenched steel parts remains a challenge for researchers and manufacturers. The initial yield strength weighting scheme used in finite element simulations has a significant impact on the results. To investigate the influence of initial yield strength weighting on the residual stress distribution in quenched steel cylinders, finite element models with different yield strength weightings have been developed. The results show that the large hardness difference between austenite and martensite can cause significant deviations between the residual stress predicted using linear weighting and the experimental results. The linear weighting scheme commonly used by researchers overestimates the yield strength of the austenite phase in the mixed-phase material during cooling, leading to an overestimation of residual stress. Employing nonlinear yield strength weightings, such as Leblond weighting, can significantly improve the computational accuracy of finite element models, yielding more reliable and consistent predictions. This improved accuracy in predicting residual stress using finite element simulation offers a powerful tool for optimizing the quenching process.
doi_str_mv 10.3390/ma17235833
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_3146915697</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A819953215</galeid><sourcerecordid>A819953215</sourcerecordid><originalsourceid>FETCH-LOGICAL-c279t-e6f23eb0c90519a8bd952e19b7c47bf8db87f0ccd467f3e9c132f8d1b7e20ddd3</originalsourceid><addsrcrecordid>eNpdkV9LHDEUxUOpqFhf_AAl0JcirJ3kzkwmj8vinwVBtJXSpyGT3OxGMhlNZoT99mZdraW5Dwn3_s7hkkPICSvOAGTxo1dMcKgagE_kkElZz5gsy8__vA_IcUoPRT4ArOFynxyArJuK1_KQPC-D9RMGjXSwdBnc6JSnfxx6Q3-OEcNqXNPf6Fbr0YUVHQK9w-TMlKHtOCVM1AV6u7VYo6GLjXfBYEz0Pm0FFy5bIj332GMY6Twov0kufSF7VvmEx2_3Ebm_OP-1uJpd31wuF_PrmeZCjjOsLQfsCi2LiknVdEZWHJnshC5FZxvTNcIWWpuyFhZQagY8d1knkBfGGDgi33e-j3F4mjCNbe-SRu9VwGFKLbCylqyqpcjot__Qh2GKed9XqmQCBNSZOttRK-WxdcEOY1Q6l8He6SGgdbk_b_LvV8BZlQWnO4GOQ0oRbfsYXa_ipmVFu02w_Ugww1_fdpi6Hs1f9D0veAGX75Zu</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3144173736</pqid></control><display><type>article</type><title>Influence of Initial Yield Strength Weighting on Residual Stresses in Quenched Cylinders Using Finite Element Analysis</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>PubMed Central Open Access</source><creator>Li, Junpeng ; Xu, Yingqiang ; Liu, Youwei</creator><creatorcontrib>Li, Junpeng ; Xu, Yingqiang ; Liu, Youwei</creatorcontrib><description>Using the quenching process to create a specific residual stress distribution in steel parts is a key method for improving their strength. Although finite element simulation can overcome the time-consuming and labor-intensive limitations of experimental measurements, accurately predicting the residual stress distribution in quenched steel parts remains a challenge for researchers and manufacturers. The initial yield strength weighting scheme used in finite element simulations has a significant impact on the results. To investigate the influence of initial yield strength weighting on the residual stress distribution in quenched steel cylinders, finite element models with different yield strength weightings have been developed. The results show that the large hardness difference between austenite and martensite can cause significant deviations between the residual stress predicted using linear weighting and the experimental results. The linear weighting scheme commonly used by researchers overestimates the yield strength of the austenite phase in the mixed-phase material during cooling, leading to an overestimation of residual stress. Employing nonlinear yield strength weightings, such as Leblond weighting, can significantly improve the computational accuracy of finite element models, yielding more reliable and consistent predictions. This improved accuracy in predicting residual stress using finite element simulation offers a powerful tool for optimizing the quenching process.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma17235833</identifier><identifier>PMID: 39685269</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Accuracy ; Analysis ; Austenite ; Bainitic transformations ; Cooling ; Cylinder liners ; Experimental methods ; Finite element method ; Heat conductivity ; Heat transfer ; Impact prediction ; Martensite ; Quenching ; Research methodology ; Residual stress ; Simulation ; Simulation methods ; Software ; Stress distribution ; Weighting ; Yield strength ; Yield stress</subject><ispartof>Materials, 2024-11, Vol.17 (23), p.5833</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c279t-e6f23eb0c90519a8bd952e19b7c47bf8db87f0ccd467f3e9c132f8d1b7e20ddd3</cites><orcidid>0009-0002-0349-4758</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39685269$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Junpeng</creatorcontrib><creatorcontrib>Xu, Yingqiang</creatorcontrib><creatorcontrib>Liu, Youwei</creatorcontrib><title>Influence of Initial Yield Strength Weighting on Residual Stresses in Quenched Cylinders Using Finite Element Analysis</title><title>Materials</title><addtitle>Materials (Basel)</addtitle><description>Using the quenching process to create a specific residual stress distribution in steel parts is a key method for improving their strength. Although finite element simulation can overcome the time-consuming and labor-intensive limitations of experimental measurements, accurately predicting the residual stress distribution in quenched steel parts remains a challenge for researchers and manufacturers. The initial yield strength weighting scheme used in finite element simulations has a significant impact on the results. To investigate the influence of initial yield strength weighting on the residual stress distribution in quenched steel cylinders, finite element models with different yield strength weightings have been developed. The results show that the large hardness difference between austenite and martensite can cause significant deviations between the residual stress predicted using linear weighting and the experimental results. The linear weighting scheme commonly used by researchers overestimates the yield strength of the austenite phase in the mixed-phase material during cooling, leading to an overestimation of residual stress. Employing nonlinear yield strength weightings, such as Leblond weighting, can significantly improve the computational accuracy of finite element models, yielding more reliable and consistent predictions. This improved accuracy in predicting residual stress using finite element simulation offers a powerful tool for optimizing the quenching process.</description><subject>Accuracy</subject><subject>Analysis</subject><subject>Austenite</subject><subject>Bainitic transformations</subject><subject>Cooling</subject><subject>Cylinder liners</subject><subject>Experimental methods</subject><subject>Finite element method</subject><subject>Heat conductivity</subject><subject>Heat transfer</subject><subject>Impact prediction</subject><subject>Martensite</subject><subject>Quenching</subject><subject>Research methodology</subject><subject>Residual stress</subject><subject>Simulation</subject><subject>Simulation methods</subject><subject>Software</subject><subject>Stress distribution</subject><subject>Weighting</subject><subject>Yield strength</subject><subject>Yield stress</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpdkV9LHDEUxUOpqFhf_AAl0JcirJ3kzkwmj8vinwVBtJXSpyGT3OxGMhlNZoT99mZdraW5Dwn3_s7hkkPICSvOAGTxo1dMcKgagE_kkElZz5gsy8__vA_IcUoPRT4ArOFynxyArJuK1_KQPC-D9RMGjXSwdBnc6JSnfxx6Q3-OEcNqXNPf6Fbr0YUVHQK9w-TMlKHtOCVM1AV6u7VYo6GLjXfBYEz0Pm0FFy5bIj332GMY6Twov0kufSF7VvmEx2_3Ebm_OP-1uJpd31wuF_PrmeZCjjOsLQfsCi2LiknVdEZWHJnshC5FZxvTNcIWWpuyFhZQagY8d1knkBfGGDgi33e-j3F4mjCNbe-SRu9VwGFKLbCylqyqpcjot__Qh2GKed9XqmQCBNSZOttRK-WxdcEOY1Q6l8He6SGgdbk_b_LvV8BZlQWnO4GOQ0oRbfsYXa_ipmVFu02w_Ugww1_fdpi6Hs1f9D0veAGX75Zu</recordid><startdate>20241128</startdate><enddate>20241128</enddate><creator>Li, Junpeng</creator><creator>Xu, Yingqiang</creator><creator>Liu, Youwei</creator><general>MDPI AG</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><orcidid>https://orcid.org/0009-0002-0349-4758</orcidid></search><sort><creationdate>20241128</creationdate><title>Influence of Initial Yield Strength Weighting on Residual Stresses in Quenched Cylinders Using Finite Element Analysis</title><author>Li, Junpeng ; Xu, Yingqiang ; Liu, Youwei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c279t-e6f23eb0c90519a8bd952e19b7c47bf8db87f0ccd467f3e9c132f8d1b7e20ddd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Analysis</topic><topic>Austenite</topic><topic>Bainitic transformations</topic><topic>Cooling</topic><topic>Cylinder liners</topic><topic>Experimental methods</topic><topic>Finite element method</topic><topic>Heat conductivity</topic><topic>Heat transfer</topic><topic>Impact prediction</topic><topic>Martensite</topic><topic>Quenching</topic><topic>Research methodology</topic><topic>Residual stress</topic><topic>Simulation</topic><topic>Simulation methods</topic><topic>Software</topic><topic>Stress distribution</topic><topic>Weighting</topic><topic>Yield strength</topic><topic>Yield stress</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Junpeng</creatorcontrib><creatorcontrib>Xu, Yingqiang</creatorcontrib><creatorcontrib>Liu, Youwei</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Junpeng</au><au>Xu, Yingqiang</au><au>Liu, Youwei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence of Initial Yield Strength Weighting on Residual Stresses in Quenched Cylinders Using Finite Element Analysis</atitle><jtitle>Materials</jtitle><addtitle>Materials (Basel)</addtitle><date>2024-11-28</date><risdate>2024</risdate><volume>17</volume><issue>23</issue><spage>5833</spage><pages>5833-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>Using the quenching process to create a specific residual stress distribution in steel parts is a key method for improving their strength. Although finite element simulation can overcome the time-consuming and labor-intensive limitations of experimental measurements, accurately predicting the residual stress distribution in quenched steel parts remains a challenge for researchers and manufacturers. The initial yield strength weighting scheme used in finite element simulations has a significant impact on the results. To investigate the influence of initial yield strength weighting on the residual stress distribution in quenched steel cylinders, finite element models with different yield strength weightings have been developed. The results show that the large hardness difference between austenite and martensite can cause significant deviations between the residual stress predicted using linear weighting and the experimental results. The linear weighting scheme commonly used by researchers overestimates the yield strength of the austenite phase in the mixed-phase material during cooling, leading to an overestimation of residual stress. Employing nonlinear yield strength weightings, such as Leblond weighting, can significantly improve the computational accuracy of finite element models, yielding more reliable and consistent predictions. This improved accuracy in predicting residual stress using finite element simulation offers a powerful tool for optimizing the quenching process.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>39685269</pmid><doi>10.3390/ma17235833</doi><orcidid>https://orcid.org/0009-0002-0349-4758</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1996-1944
ispartof Materials, 2024-11, Vol.17 (23), p.5833
issn 1996-1944
1996-1944
language eng
recordid cdi_proquest_miscellaneous_3146915697
source MDPI - Multidisciplinary Digital Publishing Institute; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; PubMed Central Open Access
subjects Accuracy
Analysis
Austenite
Bainitic transformations
Cooling
Cylinder liners
Experimental methods
Finite element method
Heat conductivity
Heat transfer
Impact prediction
Martensite
Quenching
Research methodology
Residual stress
Simulation
Simulation methods
Software
Stress distribution
Weighting
Yield strength
Yield stress
title Influence of Initial Yield Strength Weighting on Residual Stresses in Quenched Cylinders Using Finite Element Analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T04%3A59%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20of%20Initial%20Yield%20Strength%20Weighting%20on%20Residual%20Stresses%20in%20Quenched%20Cylinders%20Using%20Finite%20Element%20Analysis&rft.jtitle=Materials&rft.au=Li,%20Junpeng&rft.date=2024-11-28&rft.volume=17&rft.issue=23&rft.spage=5833&rft.pages=5833-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma17235833&rft_dat=%3Cgale_proqu%3EA819953215%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3144173736&rft_id=info:pmid/39685269&rft_galeid=A819953215&rfr_iscdi=true