Osseointegration of Implants Through Ti Biofunctionalization with Biomass from Chlorella sorokiniana UTEX 1230 and Synechococcus sp. PCC 7002
The inadequate osseointegration of titanium implants remains a significant challenge in orthopedics, limiting the long-term efficacy of prostheses and medical devices. It has been determined that biological aging of the titanium surface compromises the implant-bone tissue interaction due to increase...
Gespeichert in:
Veröffentlicht in: | International journal of molecular sciences 2024-12, Vol.25 (23), p.13161 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 23 |
container_start_page | 13161 |
container_title | International journal of molecular sciences |
container_volume | 25 |
creator | Bravo, Yarelis Miranda, Alejandra M Hernandez-Tenorio, Fabian Sáez, Alex A Paredes, Virginia |
description | The inadequate osseointegration of titanium implants remains a significant challenge in orthopedics, limiting the long-term efficacy of prostheses and medical devices. It has been determined that biological aging of the titanium surface compromises the implant-bone tissue interaction due to increased hydrophobicity and accumulation of organic molecules. To address this issue, an innovative strategy has been proposed: the biofunctionalization of Ti6Al4V surfaces utilizing biomass derived from
UTEX 1230 and
sp. PCC 7002. This research was structured to encompass microalgal culture optimization through biocompatibility evaluation of biofunctionalized surfaces. Biofunctionalization stages were analyzed using contact angle measurements, EDS, SEM, and cellular assays. It was observed that piranha solution activation generated a hydrophilic surface, while silanization was more efficient in samples treated for 14 h. It was found that
sp. PCC 7002 presented a higher biomass concentration on the surface compared to
UTEX 1230. Cytotoxicity assays revealed that the coating with
sp. PCC 7002 was potentially non-cytotoxic, with a cell viability of 86.8%. SEM images showed a significant number of cells adhered to the treated sample. In conclusion, the potential of using microalgal biomass to biofunctionalize titanium surfaces has been demonstrated, offering an innovative alternative to improve implant-tissue interaction and, consequently, the osseointegration process in orthopedic applications. |
doi_str_mv | 10.3390/ijms252313161 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_3146914594</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A819951149</galeid><sourcerecordid>A819951149</sourcerecordid><originalsourceid>FETCH-LOGICAL-g1901-5df32156b0b79b96f1411f507bdb8e08b252287c8f87e4c5c32c83863a57e72c3</originalsourceid><addsrcrecordid>eNptkc9rFTEQx4MotlaPXiXgxct7ZvJjkxzr0mqh0EJfwduSzSZv89xNnsku0v4P_s_usxWqyBxmmPnMd4YZhN4CWTOmycewGwsVlAGDCp6hY-CUrgip5PMn8RF6VcqOEMqo0C_REdOV4krCMfp5VYpLIU5um80UUsTJ44txP5g4Fbzpc5q3Pd4E_CkkP0d7QMwQ7h_YH2HqD5XRlIJ9TiOu-yFlNwwGl5TTtxCDiQbfbs6-YqCMYBM7fHMXne2TTdbOBZf9Gl_XNZbLeq_RC2-G4t48-hN0e362qb-sLq8-X9Snl6staAIr0XlGQVQtaaVudeWBA3hBZNu1yhHVLgehSlrllXTcCsuoVUxVzAjpJLXsBH140N3n9H12ZWrGUOxh7ejSXBoGvNLAheYL-v4fdJfmvNzgN8VBV0Q8obZmcE2IPk3Z2INoc6pAawHA9UKt_0Mt1rkx2BSdD0v-r4Z3j8PndnRds89hNPmu-fM_9guQAZnm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3144196054</pqid></control><display><type>article</type><title>Osseointegration of Implants Through Ti Biofunctionalization with Biomass from Chlorella sorokiniana UTEX 1230 and Synechococcus sp. PCC 7002</title><source>MEDLINE</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Bravo, Yarelis ; Miranda, Alejandra M ; Hernandez-Tenorio, Fabian ; Sáez, Alex A ; Paredes, Virginia</creator><creatorcontrib>Bravo, Yarelis ; Miranda, Alejandra M ; Hernandez-Tenorio, Fabian ; Sáez, Alex A ; Paredes, Virginia</creatorcontrib><description>The inadequate osseointegration of titanium implants remains a significant challenge in orthopedics, limiting the long-term efficacy of prostheses and medical devices. It has been determined that biological aging of the titanium surface compromises the implant-bone tissue interaction due to increased hydrophobicity and accumulation of organic molecules. To address this issue, an innovative strategy has been proposed: the biofunctionalization of Ti6Al4V surfaces utilizing biomass derived from
UTEX 1230 and
sp. PCC 7002. This research was structured to encompass microalgal culture optimization through biocompatibility evaluation of biofunctionalized surfaces. Biofunctionalization stages were analyzed using contact angle measurements, EDS, SEM, and cellular assays. It was observed that piranha solution activation generated a hydrophilic surface, while silanization was more efficient in samples treated for 14 h. It was found that
sp. PCC 7002 presented a higher biomass concentration on the surface compared to
UTEX 1230. Cytotoxicity assays revealed that the coating with
sp. PCC 7002 was potentially non-cytotoxic, with a cell viability of 86.8%. SEM images showed a significant number of cells adhered to the treated sample. In conclusion, the potential of using microalgal biomass to biofunctionalize titanium surfaces has been demonstrated, offering an innovative alternative to improve implant-tissue interaction and, consequently, the osseointegration process in orthopedic applications.</description><identifier>ISSN: 1422-0067</identifier><identifier>ISSN: 1661-6596</identifier><identifier>EISSN: 1422-0067</identifier><identifier>DOI: 10.3390/ijms252313161</identifier><identifier>PMID: 39684871</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Algae ; Alloys - chemistry ; Analysis ; Animals ; Biocompatibility ; Biomass ; Biomedical materials ; Carbohydrates ; Cell division ; Cell Survival - drug effects ; Chlorella - growth & development ; Chlorella - metabolism ; Coated Materials, Biocompatible - chemistry ; Coated Materials, Biocompatible - pharmacology ; Contact angle ; Dietary minerals ; Implants, Artificial ; Lipids ; Microorganisms ; Nitrogen ; Osseointegration ; Peptides ; Prostheses and Implants ; Prosthesis ; Protein synthesis ; Proteins ; Sulfuric acid ; Surface Properties ; Synechococcus - growth & development ; Synechococcus - metabolism ; Titanium ; Titanium - chemistry ; Transplants & implants</subject><ispartof>International journal of molecular sciences, 2024-12, Vol.25 (23), p.13161</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0009-0000-0867-6417 ; 0000-0001-7467-8752 ; 0000-0001-5314-0515 ; 0000-0003-4519-1739</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39684871$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bravo, Yarelis</creatorcontrib><creatorcontrib>Miranda, Alejandra M</creatorcontrib><creatorcontrib>Hernandez-Tenorio, Fabian</creatorcontrib><creatorcontrib>Sáez, Alex A</creatorcontrib><creatorcontrib>Paredes, Virginia</creatorcontrib><title>Osseointegration of Implants Through Ti Biofunctionalization with Biomass from Chlorella sorokiniana UTEX 1230 and Synechococcus sp. PCC 7002</title><title>International journal of molecular sciences</title><addtitle>Int J Mol Sci</addtitle><description>The inadequate osseointegration of titanium implants remains a significant challenge in orthopedics, limiting the long-term efficacy of prostheses and medical devices. It has been determined that biological aging of the titanium surface compromises the implant-bone tissue interaction due to increased hydrophobicity and accumulation of organic molecules. To address this issue, an innovative strategy has been proposed: the biofunctionalization of Ti6Al4V surfaces utilizing biomass derived from
UTEX 1230 and
sp. PCC 7002. This research was structured to encompass microalgal culture optimization through biocompatibility evaluation of biofunctionalized surfaces. Biofunctionalization stages were analyzed using contact angle measurements, EDS, SEM, and cellular assays. It was observed that piranha solution activation generated a hydrophilic surface, while silanization was more efficient in samples treated for 14 h. It was found that
sp. PCC 7002 presented a higher biomass concentration on the surface compared to
UTEX 1230. Cytotoxicity assays revealed that the coating with
sp. PCC 7002 was potentially non-cytotoxic, with a cell viability of 86.8%. SEM images showed a significant number of cells adhered to the treated sample. In conclusion, the potential of using microalgal biomass to biofunctionalize titanium surfaces has been demonstrated, offering an innovative alternative to improve implant-tissue interaction and, consequently, the osseointegration process in orthopedic applications.</description><subject>Algae</subject><subject>Alloys - chemistry</subject><subject>Analysis</subject><subject>Animals</subject><subject>Biocompatibility</subject><subject>Biomass</subject><subject>Biomedical materials</subject><subject>Carbohydrates</subject><subject>Cell division</subject><subject>Cell Survival - drug effects</subject><subject>Chlorella - growth & development</subject><subject>Chlorella - metabolism</subject><subject>Coated Materials, Biocompatible - chemistry</subject><subject>Coated Materials, Biocompatible - pharmacology</subject><subject>Contact angle</subject><subject>Dietary minerals</subject><subject>Implants, Artificial</subject><subject>Lipids</subject><subject>Microorganisms</subject><subject>Nitrogen</subject><subject>Osseointegration</subject><subject>Peptides</subject><subject>Prostheses and Implants</subject><subject>Prosthesis</subject><subject>Protein synthesis</subject><subject>Proteins</subject><subject>Sulfuric acid</subject><subject>Surface Properties</subject><subject>Synechococcus - growth & development</subject><subject>Synechococcus - metabolism</subject><subject>Titanium</subject><subject>Titanium - chemistry</subject><subject>Transplants & implants</subject><issn>1422-0067</issn><issn>1661-6596</issn><issn>1422-0067</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNptkc9rFTEQx4MotlaPXiXgxct7ZvJjkxzr0mqh0EJfwduSzSZv89xNnsku0v4P_s_usxWqyBxmmPnMd4YZhN4CWTOmycewGwsVlAGDCp6hY-CUrgip5PMn8RF6VcqOEMqo0C_REdOV4krCMfp5VYpLIU5um80UUsTJ44txP5g4Fbzpc5q3Pd4E_CkkP0d7QMwQ7h_YH2HqD5XRlIJ9TiOu-yFlNwwGl5TTtxCDiQbfbs6-YqCMYBM7fHMXne2TTdbOBZf9Gl_XNZbLeq_RC2-G4t48-hN0e362qb-sLq8-X9Snl6staAIr0XlGQVQtaaVudeWBA3hBZNu1yhHVLgehSlrllXTcCsuoVUxVzAjpJLXsBH140N3n9H12ZWrGUOxh7ejSXBoGvNLAheYL-v4fdJfmvNzgN8VBV0Q8obZmcE2IPk3Z2INoc6pAawHA9UKt_0Mt1rkx2BSdD0v-r4Z3j8PndnRds89hNPmu-fM_9guQAZnm</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Bravo, Yarelis</creator><creator>Miranda, Alejandra M</creator><creator>Hernandez-Tenorio, Fabian</creator><creator>Sáez, Alex A</creator><creator>Paredes, Virginia</creator><general>MDPI AG</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><orcidid>https://orcid.org/0009-0000-0867-6417</orcidid><orcidid>https://orcid.org/0000-0001-7467-8752</orcidid><orcidid>https://orcid.org/0000-0001-5314-0515</orcidid><orcidid>https://orcid.org/0000-0003-4519-1739</orcidid></search><sort><creationdate>20241201</creationdate><title>Osseointegration of Implants Through Ti Biofunctionalization with Biomass from Chlorella sorokiniana UTEX 1230 and Synechococcus sp. PCC 7002</title><author>Bravo, Yarelis ; Miranda, Alejandra M ; Hernandez-Tenorio, Fabian ; Sáez, Alex A ; Paredes, Virginia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g1901-5df32156b0b79b96f1411f507bdb8e08b252287c8f87e4c5c32c83863a57e72c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algae</topic><topic>Alloys - chemistry</topic><topic>Analysis</topic><topic>Animals</topic><topic>Biocompatibility</topic><topic>Biomass</topic><topic>Biomedical materials</topic><topic>Carbohydrates</topic><topic>Cell division</topic><topic>Cell Survival - drug effects</topic><topic>Chlorella - growth & development</topic><topic>Chlorella - metabolism</topic><topic>Coated Materials, Biocompatible - chemistry</topic><topic>Coated Materials, Biocompatible - pharmacology</topic><topic>Contact angle</topic><topic>Dietary minerals</topic><topic>Implants, Artificial</topic><topic>Lipids</topic><topic>Microorganisms</topic><topic>Nitrogen</topic><topic>Osseointegration</topic><topic>Peptides</topic><topic>Prostheses and Implants</topic><topic>Prosthesis</topic><topic>Protein synthesis</topic><topic>Proteins</topic><topic>Sulfuric acid</topic><topic>Surface Properties</topic><topic>Synechococcus - growth & development</topic><topic>Synechococcus - metabolism</topic><topic>Titanium</topic><topic>Titanium - chemistry</topic><topic>Transplants & implants</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bravo, Yarelis</creatorcontrib><creatorcontrib>Miranda, Alejandra M</creatorcontrib><creatorcontrib>Hernandez-Tenorio, Fabian</creatorcontrib><creatorcontrib>Sáez, Alex A</creatorcontrib><creatorcontrib>Paredes, Virginia</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>International journal of molecular sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bravo, Yarelis</au><au>Miranda, Alejandra M</au><au>Hernandez-Tenorio, Fabian</au><au>Sáez, Alex A</au><au>Paredes, Virginia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Osseointegration of Implants Through Ti Biofunctionalization with Biomass from Chlorella sorokiniana UTEX 1230 and Synechococcus sp. PCC 7002</atitle><jtitle>International journal of molecular sciences</jtitle><addtitle>Int J Mol Sci</addtitle><date>2024-12-01</date><risdate>2024</risdate><volume>25</volume><issue>23</issue><spage>13161</spage><pages>13161-</pages><issn>1422-0067</issn><issn>1661-6596</issn><eissn>1422-0067</eissn><abstract>The inadequate osseointegration of titanium implants remains a significant challenge in orthopedics, limiting the long-term efficacy of prostheses and medical devices. It has been determined that biological aging of the titanium surface compromises the implant-bone tissue interaction due to increased hydrophobicity and accumulation of organic molecules. To address this issue, an innovative strategy has been proposed: the biofunctionalization of Ti6Al4V surfaces utilizing biomass derived from
UTEX 1230 and
sp. PCC 7002. This research was structured to encompass microalgal culture optimization through biocompatibility evaluation of biofunctionalized surfaces. Biofunctionalization stages were analyzed using contact angle measurements, EDS, SEM, and cellular assays. It was observed that piranha solution activation generated a hydrophilic surface, while silanization was more efficient in samples treated for 14 h. It was found that
sp. PCC 7002 presented a higher biomass concentration on the surface compared to
UTEX 1230. Cytotoxicity assays revealed that the coating with
sp. PCC 7002 was potentially non-cytotoxic, with a cell viability of 86.8%. SEM images showed a significant number of cells adhered to the treated sample. In conclusion, the potential of using microalgal biomass to biofunctionalize titanium surfaces has been demonstrated, offering an innovative alternative to improve implant-tissue interaction and, consequently, the osseointegration process in orthopedic applications.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>39684871</pmid><doi>10.3390/ijms252313161</doi><orcidid>https://orcid.org/0009-0000-0867-6417</orcidid><orcidid>https://orcid.org/0000-0001-7467-8752</orcidid><orcidid>https://orcid.org/0000-0001-5314-0515</orcidid><orcidid>https://orcid.org/0000-0003-4519-1739</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1422-0067 |
ispartof | International journal of molecular sciences, 2024-12, Vol.25 (23), p.13161 |
issn | 1422-0067 1661-6596 1422-0067 |
language | eng |
recordid | cdi_proquest_miscellaneous_3146914594 |
source | MEDLINE; MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Algae Alloys - chemistry Analysis Animals Biocompatibility Biomass Biomedical materials Carbohydrates Cell division Cell Survival - drug effects Chlorella - growth & development Chlorella - metabolism Coated Materials, Biocompatible - chemistry Coated Materials, Biocompatible - pharmacology Contact angle Dietary minerals Implants, Artificial Lipids Microorganisms Nitrogen Osseointegration Peptides Prostheses and Implants Prosthesis Protein synthesis Proteins Sulfuric acid Surface Properties Synechococcus - growth & development Synechococcus - metabolism Titanium Titanium - chemistry Transplants & implants |
title | Osseointegration of Implants Through Ti Biofunctionalization with Biomass from Chlorella sorokiniana UTEX 1230 and Synechococcus sp. PCC 7002 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T00%3A23%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Osseointegration%20of%20Implants%20Through%20Ti%20Biofunctionalization%20with%20Biomass%20from%20Chlorella%20sorokiniana%20UTEX%201230%20and%20Synechococcus%20sp.%20PCC%207002&rft.jtitle=International%20journal%20of%20molecular%20sciences&rft.au=Bravo,%20Yarelis&rft.date=2024-12-01&rft.volume=25&rft.issue=23&rft.spage=13161&rft.pages=13161-&rft.issn=1422-0067&rft.eissn=1422-0067&rft_id=info:doi/10.3390/ijms252313161&rft_dat=%3Cgale_proqu%3EA819951149%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3144196054&rft_id=info:pmid/39684871&rft_galeid=A819951149&rfr_iscdi=true |