Toward Sustainable 3D-Printed Sensor: Green Fabrication of CNT-Enhanced PLA Nanocomposite via Solution Casting

The current study explores, for the first time, an eco-friendly solution casting method using a green solvent, ethyl acetate, to prepare feedstock/filaments from polylactic acid (PLA) biopolymer reinforced with carbon nanotubes (CNTs), followed by 3D printing and surface activation for biosensing ap...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials 2024-11, Vol.17 (23), p.5782
Hauptverfasser: Sharifi, Javid, Rizvi, Ghaus, Fayazfar, Haniyeh Ramona
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 23
container_start_page 5782
container_title Materials
container_volume 17
creator Sharifi, Javid
Rizvi, Ghaus
Fayazfar, Haniyeh Ramona
description The current study explores, for the first time, an eco-friendly solution casting method using a green solvent, ethyl acetate, to prepare feedstock/filaments from polylactic acid (PLA) biopolymer reinforced with carbon nanotubes (CNTs), followed by 3D printing and surface activation for biosensing applications. Comprehensive measurements of thermal, electrical, rheological, microstructural, and mechanical properties of developed feedstock and 3D-printed parts were performed and analyzed. Herein, adding 2 wt.% CNTs to the PLA matrix marked the electrical percolation, achieving conductivity of 8.3 × 10 S.m , thanks to the uniform distribution of CNTs within the PLA matrix facilitated by the solution casting method. Rheological assessments paralleled these findings; the addition of 2 wt.% CNTs transitioned the nanocomposite from liquid-like to a solid-like behavior with a percolated network structure, significantly elevating rheological properties compared to the composite with 1 wt.% CNTs. Mechanical evaluations of the printed samples revealed improvement in tensile strength and modulus compared to virgin PLA by a uniform distribution of 2 wt.% CNTs into PLA, with an increase of 14.5% and 10.3%, respectively. To further enhance the electrical conductivity and sensing capabilities of the developed samples, an electrochemical surface activation treatment was applied to as-printed nanocomposite samples. The field-emission scanning electron microscopy (FE-SEM) analysis confirmed that this surface activation effectively exposed the CNTs to the surface of 3D-printed parts by removing a thin layer of polymer from the surface, thereby optimizing the composite's electroconductivity performance. The findings of this study underscore the potential of the proposed eco-friendly method in developing advanced 3D-printed bio-nanocomposites based on carbon nanotubes and biopolymers, using a green solution casting and cost-effective material extrusion 3D-printing method, for electrochemical-sensing applications.
doi_str_mv 10.3390/ma17235782
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_3146914497</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A819952851</galeid><sourcerecordid>A819952851</sourcerecordid><originalsourceid>FETCH-LOGICAL-c243t-e8f1a27e9b245222b6be092163a8190304f5ff43982449b498c98712a0adcb963</originalsourceid><addsrcrecordid>eNpdkVtLJDEQhcOysor64g9YAvuyLLTbuXR34tsw6w0GFRyfm-pMxY10J2PSrfjvzTjuBaseqii-Uxw4hByx8lgIXf4cgDVcVI3in8ge07oumJby83_7LjlM6aHMJQRTXH8hu0LXquJM7RG_DM8QV_R2SiM4D12PVPwqbqLzI-Yz-hTiCT2PiJ6eQRedgdEFT4Ol86tlcep_gzeZvFnM6BX4YMKwDsmNSJ8c0NvQT2_4HNLo_P0B2bHQJzx8n_vk7ux0Ob8oFtfnl_PZojBcirFAZRnwBnXHZcU57-oOS81ZLUAxXYpS2spaKbTiUupOamW0ahiHElam07XYJ9-3f9cxPE6YxnZwyWDfg8cwpVYwWWuWtU1Gv31AH8IUfXa3oSRrBK83D4-31D302DpvwxjB5F7h4EzwaF2-z7I7XXFVsSz4sRWYGFKKaNt1dAPEl5aV7Sa59l9yGf767mHqBlz9Rf_kJF4ByXiQZQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3144173266</pqid></control><display><type>article</type><title>Toward Sustainable 3D-Printed Sensor: Green Fabrication of CNT-Enhanced PLA Nanocomposite via Solution Casting</title><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Sharifi, Javid ; Rizvi, Ghaus ; Fayazfar, Haniyeh Ramona</creator><creatorcontrib>Sharifi, Javid ; Rizvi, Ghaus ; Fayazfar, Haniyeh Ramona</creatorcontrib><description>The current study explores, for the first time, an eco-friendly solution casting method using a green solvent, ethyl acetate, to prepare feedstock/filaments from polylactic acid (PLA) biopolymer reinforced with carbon nanotubes (CNTs), followed by 3D printing and surface activation for biosensing applications. Comprehensive measurements of thermal, electrical, rheological, microstructural, and mechanical properties of developed feedstock and 3D-printed parts were performed and analyzed. Herein, adding 2 wt.% CNTs to the PLA matrix marked the electrical percolation, achieving conductivity of 8.3 × 10 S.m , thanks to the uniform distribution of CNTs within the PLA matrix facilitated by the solution casting method. Rheological assessments paralleled these findings; the addition of 2 wt.% CNTs transitioned the nanocomposite from liquid-like to a solid-like behavior with a percolated network structure, significantly elevating rheological properties compared to the composite with 1 wt.% CNTs. Mechanical evaluations of the printed samples revealed improvement in tensile strength and modulus compared to virgin PLA by a uniform distribution of 2 wt.% CNTs into PLA, with an increase of 14.5% and 10.3%, respectively. To further enhance the electrical conductivity and sensing capabilities of the developed samples, an electrochemical surface activation treatment was applied to as-printed nanocomposite samples. The field-emission scanning electron microscopy (FE-SEM) analysis confirmed that this surface activation effectively exposed the CNTs to the surface of 3D-printed parts by removing a thin layer of polymer from the surface, thereby optimizing the composite's electroconductivity performance. The findings of this study underscore the potential of the proposed eco-friendly method in developing advanced 3D-printed bio-nanocomposites based on carbon nanotubes and biopolymers, using a green solution casting and cost-effective material extrusion 3D-printing method, for electrochemical-sensing applications.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma17235782</identifier><identifier>PMID: 39685218</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>3-D printers ; 3D printing ; Acetates ; Biocompatibility ; Biopolymers ; Biosensors ; Carbon ; Carbon nanotubes ; Conductivity ; Cost analysis ; Electric properties ; Electrical conductivity ; Electrical resistivity ; Electrodes ; Esters ; Ethyl acetate ; Filaments ; Founding ; Health risk assessment ; Health risks ; Manufacturing ; Mechanical properties ; Methods ; Nanocomposites ; Nanomaterials ; Nanotubes ; Percolation ; Polylactic acid ; Polymers ; Potassium ; Raw materials ; Rheological properties ; Screen printing ; Sensors ; Solvents ; Surface activation ; Sustainability ; Tensile strength ; Three dimensional composites ; Three dimensional printing ; Toxicity</subject><ispartof>Materials, 2024-11, Vol.17 (23), p.5782</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c243t-e8f1a27e9b245222b6be092163a8190304f5ff43982449b498c98712a0adcb963</cites><orcidid>0000-0003-4009-4075 ; 0000-0002-5194-6125</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39685218$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sharifi, Javid</creatorcontrib><creatorcontrib>Rizvi, Ghaus</creatorcontrib><creatorcontrib>Fayazfar, Haniyeh Ramona</creatorcontrib><title>Toward Sustainable 3D-Printed Sensor: Green Fabrication of CNT-Enhanced PLA Nanocomposite via Solution Casting</title><title>Materials</title><addtitle>Materials (Basel)</addtitle><description>The current study explores, for the first time, an eco-friendly solution casting method using a green solvent, ethyl acetate, to prepare feedstock/filaments from polylactic acid (PLA) biopolymer reinforced with carbon nanotubes (CNTs), followed by 3D printing and surface activation for biosensing applications. Comprehensive measurements of thermal, electrical, rheological, microstructural, and mechanical properties of developed feedstock and 3D-printed parts were performed and analyzed. Herein, adding 2 wt.% CNTs to the PLA matrix marked the electrical percolation, achieving conductivity of 8.3 × 10 S.m , thanks to the uniform distribution of CNTs within the PLA matrix facilitated by the solution casting method. Rheological assessments paralleled these findings; the addition of 2 wt.% CNTs transitioned the nanocomposite from liquid-like to a solid-like behavior with a percolated network structure, significantly elevating rheological properties compared to the composite with 1 wt.% CNTs. Mechanical evaluations of the printed samples revealed improvement in tensile strength and modulus compared to virgin PLA by a uniform distribution of 2 wt.% CNTs into PLA, with an increase of 14.5% and 10.3%, respectively. To further enhance the electrical conductivity and sensing capabilities of the developed samples, an electrochemical surface activation treatment was applied to as-printed nanocomposite samples. The field-emission scanning electron microscopy (FE-SEM) analysis confirmed that this surface activation effectively exposed the CNTs to the surface of 3D-printed parts by removing a thin layer of polymer from the surface, thereby optimizing the composite's electroconductivity performance. The findings of this study underscore the potential of the proposed eco-friendly method in developing advanced 3D-printed bio-nanocomposites based on carbon nanotubes and biopolymers, using a green solution casting and cost-effective material extrusion 3D-printing method, for electrochemical-sensing applications.</description><subject>3-D printers</subject><subject>3D printing</subject><subject>Acetates</subject><subject>Biocompatibility</subject><subject>Biopolymers</subject><subject>Biosensors</subject><subject>Carbon</subject><subject>Carbon nanotubes</subject><subject>Conductivity</subject><subject>Cost analysis</subject><subject>Electric properties</subject><subject>Electrical conductivity</subject><subject>Electrical resistivity</subject><subject>Electrodes</subject><subject>Esters</subject><subject>Ethyl acetate</subject><subject>Filaments</subject><subject>Founding</subject><subject>Health risk assessment</subject><subject>Health risks</subject><subject>Manufacturing</subject><subject>Mechanical properties</subject><subject>Methods</subject><subject>Nanocomposites</subject><subject>Nanomaterials</subject><subject>Nanotubes</subject><subject>Percolation</subject><subject>Polylactic acid</subject><subject>Polymers</subject><subject>Potassium</subject><subject>Raw materials</subject><subject>Rheological properties</subject><subject>Screen printing</subject><subject>Sensors</subject><subject>Solvents</subject><subject>Surface activation</subject><subject>Sustainability</subject><subject>Tensile strength</subject><subject>Three dimensional composites</subject><subject>Three dimensional printing</subject><subject>Toxicity</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdkVtLJDEQhcOysor64g9YAvuyLLTbuXR34tsw6w0GFRyfm-pMxY10J2PSrfjvzTjuBaseqii-Uxw4hByx8lgIXf4cgDVcVI3in8ge07oumJby83_7LjlM6aHMJQRTXH8hu0LXquJM7RG_DM8QV_R2SiM4D12PVPwqbqLzI-Yz-hTiCT2PiJ6eQRedgdEFT4Ol86tlcep_gzeZvFnM6BX4YMKwDsmNSJ8c0NvQT2_4HNLo_P0B2bHQJzx8n_vk7ux0Ob8oFtfnl_PZojBcirFAZRnwBnXHZcU57-oOS81ZLUAxXYpS2spaKbTiUupOamW0ahiHElam07XYJ9-3f9cxPE6YxnZwyWDfg8cwpVYwWWuWtU1Gv31AH8IUfXa3oSRrBK83D4-31D302DpvwxjB5F7h4EzwaF2-z7I7XXFVsSz4sRWYGFKKaNt1dAPEl5aV7Sa59l9yGf767mHqBlz9Rf_kJF4ByXiQZQ</recordid><startdate>20241125</startdate><enddate>20241125</enddate><creator>Sharifi, Javid</creator><creator>Rizvi, Ghaus</creator><creator>Fayazfar, Haniyeh Ramona</creator><general>MDPI AG</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4009-4075</orcidid><orcidid>https://orcid.org/0000-0002-5194-6125</orcidid></search><sort><creationdate>20241125</creationdate><title>Toward Sustainable 3D-Printed Sensor: Green Fabrication of CNT-Enhanced PLA Nanocomposite via Solution Casting</title><author>Sharifi, Javid ; Rizvi, Ghaus ; Fayazfar, Haniyeh Ramona</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c243t-e8f1a27e9b245222b6be092163a8190304f5ff43982449b498c98712a0adcb963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>3-D printers</topic><topic>3D printing</topic><topic>Acetates</topic><topic>Biocompatibility</topic><topic>Biopolymers</topic><topic>Biosensors</topic><topic>Carbon</topic><topic>Carbon nanotubes</topic><topic>Conductivity</topic><topic>Cost analysis</topic><topic>Electric properties</topic><topic>Electrical conductivity</topic><topic>Electrical resistivity</topic><topic>Electrodes</topic><topic>Esters</topic><topic>Ethyl acetate</topic><topic>Filaments</topic><topic>Founding</topic><topic>Health risk assessment</topic><topic>Health risks</topic><topic>Manufacturing</topic><topic>Mechanical properties</topic><topic>Methods</topic><topic>Nanocomposites</topic><topic>Nanomaterials</topic><topic>Nanotubes</topic><topic>Percolation</topic><topic>Polylactic acid</topic><topic>Polymers</topic><topic>Potassium</topic><topic>Raw materials</topic><topic>Rheological properties</topic><topic>Screen printing</topic><topic>Sensors</topic><topic>Solvents</topic><topic>Surface activation</topic><topic>Sustainability</topic><topic>Tensile strength</topic><topic>Three dimensional composites</topic><topic>Three dimensional printing</topic><topic>Toxicity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sharifi, Javid</creatorcontrib><creatorcontrib>Rizvi, Ghaus</creatorcontrib><creatorcontrib>Fayazfar, Haniyeh Ramona</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sharifi, Javid</au><au>Rizvi, Ghaus</au><au>Fayazfar, Haniyeh Ramona</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Toward Sustainable 3D-Printed Sensor: Green Fabrication of CNT-Enhanced PLA Nanocomposite via Solution Casting</atitle><jtitle>Materials</jtitle><addtitle>Materials (Basel)</addtitle><date>2024-11-25</date><risdate>2024</risdate><volume>17</volume><issue>23</issue><spage>5782</spage><pages>5782-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>The current study explores, for the first time, an eco-friendly solution casting method using a green solvent, ethyl acetate, to prepare feedstock/filaments from polylactic acid (PLA) biopolymer reinforced with carbon nanotubes (CNTs), followed by 3D printing and surface activation for biosensing applications. Comprehensive measurements of thermal, electrical, rheological, microstructural, and mechanical properties of developed feedstock and 3D-printed parts were performed and analyzed. Herein, adding 2 wt.% CNTs to the PLA matrix marked the electrical percolation, achieving conductivity of 8.3 × 10 S.m , thanks to the uniform distribution of CNTs within the PLA matrix facilitated by the solution casting method. Rheological assessments paralleled these findings; the addition of 2 wt.% CNTs transitioned the nanocomposite from liquid-like to a solid-like behavior with a percolated network structure, significantly elevating rheological properties compared to the composite with 1 wt.% CNTs. Mechanical evaluations of the printed samples revealed improvement in tensile strength and modulus compared to virgin PLA by a uniform distribution of 2 wt.% CNTs into PLA, with an increase of 14.5% and 10.3%, respectively. To further enhance the electrical conductivity and sensing capabilities of the developed samples, an electrochemical surface activation treatment was applied to as-printed nanocomposite samples. The field-emission scanning electron microscopy (FE-SEM) analysis confirmed that this surface activation effectively exposed the CNTs to the surface of 3D-printed parts by removing a thin layer of polymer from the surface, thereby optimizing the composite's electroconductivity performance. The findings of this study underscore the potential of the proposed eco-friendly method in developing advanced 3D-printed bio-nanocomposites based on carbon nanotubes and biopolymers, using a green solution casting and cost-effective material extrusion 3D-printing method, for electrochemical-sensing applications.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>39685218</pmid><doi>10.3390/ma17235782</doi><orcidid>https://orcid.org/0000-0003-4009-4075</orcidid><orcidid>https://orcid.org/0000-0002-5194-6125</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1996-1944
ispartof Materials, 2024-11, Vol.17 (23), p.5782
issn 1996-1944
1996-1944
language eng
recordid cdi_proquest_miscellaneous_3146914497
source PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects 3-D printers
3D printing
Acetates
Biocompatibility
Biopolymers
Biosensors
Carbon
Carbon nanotubes
Conductivity
Cost analysis
Electric properties
Electrical conductivity
Electrical resistivity
Electrodes
Esters
Ethyl acetate
Filaments
Founding
Health risk assessment
Health risks
Manufacturing
Mechanical properties
Methods
Nanocomposites
Nanomaterials
Nanotubes
Percolation
Polylactic acid
Polymers
Potassium
Raw materials
Rheological properties
Screen printing
Sensors
Solvents
Surface activation
Sustainability
Tensile strength
Three dimensional composites
Three dimensional printing
Toxicity
title Toward Sustainable 3D-Printed Sensor: Green Fabrication of CNT-Enhanced PLA Nanocomposite via Solution Casting
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T06%3A08%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Toward%20Sustainable%203D-Printed%20Sensor:%20Green%20Fabrication%20of%20CNT-Enhanced%20PLA%20Nanocomposite%20via%20Solution%20Casting&rft.jtitle=Materials&rft.au=Sharifi,%20Javid&rft.date=2024-11-25&rft.volume=17&rft.issue=23&rft.spage=5782&rft.pages=5782-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma17235782&rft_dat=%3Cgale_proqu%3EA819952851%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3144173266&rft_id=info:pmid/39685218&rft_galeid=A819952851&rfr_iscdi=true