Toward Sustainable 3D-Printed Sensor: Green Fabrication of CNT-Enhanced PLA Nanocomposite via Solution Casting
The current study explores, for the first time, an eco-friendly solution casting method using a green solvent, ethyl acetate, to prepare feedstock/filaments from polylactic acid (PLA) biopolymer reinforced with carbon nanotubes (CNTs), followed by 3D printing and surface activation for biosensing ap...
Gespeichert in:
Veröffentlicht in: | Materials 2024-11, Vol.17 (23), p.5782 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 23 |
container_start_page | 5782 |
container_title | Materials |
container_volume | 17 |
creator | Sharifi, Javid Rizvi, Ghaus Fayazfar, Haniyeh Ramona |
description | The current study explores, for the first time, an eco-friendly solution casting method using a green solvent, ethyl acetate, to prepare feedstock/filaments from polylactic acid (PLA) biopolymer reinforced with carbon nanotubes (CNTs), followed by 3D printing and surface activation for biosensing applications. Comprehensive measurements of thermal, electrical, rheological, microstructural, and mechanical properties of developed feedstock and 3D-printed parts were performed and analyzed. Herein, adding 2 wt.% CNTs to the PLA matrix marked the electrical percolation, achieving conductivity of 8.3 × 10
S.m
, thanks to the uniform distribution of CNTs within the PLA matrix facilitated by the solution casting method. Rheological assessments paralleled these findings; the addition of 2 wt.% CNTs transitioned the nanocomposite from liquid-like to a solid-like behavior with a percolated network structure, significantly elevating rheological properties compared to the composite with 1 wt.% CNTs. Mechanical evaluations of the printed samples revealed improvement in tensile strength and modulus compared to virgin PLA by a uniform distribution of 2 wt.% CNTs into PLA, with an increase of 14.5% and 10.3%, respectively. To further enhance the electrical conductivity and sensing capabilities of the developed samples, an electrochemical surface activation treatment was applied to as-printed nanocomposite samples. The field-emission scanning electron microscopy (FE-SEM) analysis confirmed that this surface activation effectively exposed the CNTs to the surface of 3D-printed parts by removing a thin layer of polymer from the surface, thereby optimizing the composite's electroconductivity performance. The findings of this study underscore the potential of the proposed eco-friendly method in developing advanced 3D-printed bio-nanocomposites based on carbon nanotubes and biopolymers, using a green solution casting and cost-effective material extrusion 3D-printing method, for electrochemical-sensing applications. |
doi_str_mv | 10.3390/ma17235782 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_3146914497</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A819952851</galeid><sourcerecordid>A819952851</sourcerecordid><originalsourceid>FETCH-LOGICAL-c243t-e8f1a27e9b245222b6be092163a8190304f5ff43982449b498c98712a0adcb963</originalsourceid><addsrcrecordid>eNpdkVtLJDEQhcOysor64g9YAvuyLLTbuXR34tsw6w0GFRyfm-pMxY10J2PSrfjvzTjuBaseqii-Uxw4hByx8lgIXf4cgDVcVI3in8ge07oumJby83_7LjlM6aHMJQRTXH8hu0LXquJM7RG_DM8QV_R2SiM4D12PVPwqbqLzI-Yz-hTiCT2PiJ6eQRedgdEFT4Ol86tlcep_gzeZvFnM6BX4YMKwDsmNSJ8c0NvQT2_4HNLo_P0B2bHQJzx8n_vk7ux0Ob8oFtfnl_PZojBcirFAZRnwBnXHZcU57-oOS81ZLUAxXYpS2spaKbTiUupOamW0ahiHElam07XYJ9-3f9cxPE6YxnZwyWDfg8cwpVYwWWuWtU1Gv31AH8IUfXa3oSRrBK83D4-31D302DpvwxjB5F7h4EzwaF2-z7I7XXFVsSz4sRWYGFKKaNt1dAPEl5aV7Sa59l9yGf767mHqBlz9Rf_kJF4ByXiQZQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3144173266</pqid></control><display><type>article</type><title>Toward Sustainable 3D-Printed Sensor: Green Fabrication of CNT-Enhanced PLA Nanocomposite via Solution Casting</title><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Sharifi, Javid ; Rizvi, Ghaus ; Fayazfar, Haniyeh Ramona</creator><creatorcontrib>Sharifi, Javid ; Rizvi, Ghaus ; Fayazfar, Haniyeh Ramona</creatorcontrib><description>The current study explores, for the first time, an eco-friendly solution casting method using a green solvent, ethyl acetate, to prepare feedstock/filaments from polylactic acid (PLA) biopolymer reinforced with carbon nanotubes (CNTs), followed by 3D printing and surface activation for biosensing applications. Comprehensive measurements of thermal, electrical, rheological, microstructural, and mechanical properties of developed feedstock and 3D-printed parts were performed and analyzed. Herein, adding 2 wt.% CNTs to the PLA matrix marked the electrical percolation, achieving conductivity of 8.3 × 10
S.m
, thanks to the uniform distribution of CNTs within the PLA matrix facilitated by the solution casting method. Rheological assessments paralleled these findings; the addition of 2 wt.% CNTs transitioned the nanocomposite from liquid-like to a solid-like behavior with a percolated network structure, significantly elevating rheological properties compared to the composite with 1 wt.% CNTs. Mechanical evaluations of the printed samples revealed improvement in tensile strength and modulus compared to virgin PLA by a uniform distribution of 2 wt.% CNTs into PLA, with an increase of 14.5% and 10.3%, respectively. To further enhance the electrical conductivity and sensing capabilities of the developed samples, an electrochemical surface activation treatment was applied to as-printed nanocomposite samples. The field-emission scanning electron microscopy (FE-SEM) analysis confirmed that this surface activation effectively exposed the CNTs to the surface of 3D-printed parts by removing a thin layer of polymer from the surface, thereby optimizing the composite's electroconductivity performance. The findings of this study underscore the potential of the proposed eco-friendly method in developing advanced 3D-printed bio-nanocomposites based on carbon nanotubes and biopolymers, using a green solution casting and cost-effective material extrusion 3D-printing method, for electrochemical-sensing applications.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma17235782</identifier><identifier>PMID: 39685218</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>3-D printers ; 3D printing ; Acetates ; Biocompatibility ; Biopolymers ; Biosensors ; Carbon ; Carbon nanotubes ; Conductivity ; Cost analysis ; Electric properties ; Electrical conductivity ; Electrical resistivity ; Electrodes ; Esters ; Ethyl acetate ; Filaments ; Founding ; Health risk assessment ; Health risks ; Manufacturing ; Mechanical properties ; Methods ; Nanocomposites ; Nanomaterials ; Nanotubes ; Percolation ; Polylactic acid ; Polymers ; Potassium ; Raw materials ; Rheological properties ; Screen printing ; Sensors ; Solvents ; Surface activation ; Sustainability ; Tensile strength ; Three dimensional composites ; Three dimensional printing ; Toxicity</subject><ispartof>Materials, 2024-11, Vol.17 (23), p.5782</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c243t-e8f1a27e9b245222b6be092163a8190304f5ff43982449b498c98712a0adcb963</cites><orcidid>0000-0003-4009-4075 ; 0000-0002-5194-6125</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39685218$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sharifi, Javid</creatorcontrib><creatorcontrib>Rizvi, Ghaus</creatorcontrib><creatorcontrib>Fayazfar, Haniyeh Ramona</creatorcontrib><title>Toward Sustainable 3D-Printed Sensor: Green Fabrication of CNT-Enhanced PLA Nanocomposite via Solution Casting</title><title>Materials</title><addtitle>Materials (Basel)</addtitle><description>The current study explores, for the first time, an eco-friendly solution casting method using a green solvent, ethyl acetate, to prepare feedstock/filaments from polylactic acid (PLA) biopolymer reinforced with carbon nanotubes (CNTs), followed by 3D printing and surface activation for biosensing applications. Comprehensive measurements of thermal, electrical, rheological, microstructural, and mechanical properties of developed feedstock and 3D-printed parts were performed and analyzed. Herein, adding 2 wt.% CNTs to the PLA matrix marked the electrical percolation, achieving conductivity of 8.3 × 10
S.m
, thanks to the uniform distribution of CNTs within the PLA matrix facilitated by the solution casting method. Rheological assessments paralleled these findings; the addition of 2 wt.% CNTs transitioned the nanocomposite from liquid-like to a solid-like behavior with a percolated network structure, significantly elevating rheological properties compared to the composite with 1 wt.% CNTs. Mechanical evaluations of the printed samples revealed improvement in tensile strength and modulus compared to virgin PLA by a uniform distribution of 2 wt.% CNTs into PLA, with an increase of 14.5% and 10.3%, respectively. To further enhance the electrical conductivity and sensing capabilities of the developed samples, an electrochemical surface activation treatment was applied to as-printed nanocomposite samples. The field-emission scanning electron microscopy (FE-SEM) analysis confirmed that this surface activation effectively exposed the CNTs to the surface of 3D-printed parts by removing a thin layer of polymer from the surface, thereby optimizing the composite's electroconductivity performance. The findings of this study underscore the potential of the proposed eco-friendly method in developing advanced 3D-printed bio-nanocomposites based on carbon nanotubes and biopolymers, using a green solution casting and cost-effective material extrusion 3D-printing method, for electrochemical-sensing applications.</description><subject>3-D printers</subject><subject>3D printing</subject><subject>Acetates</subject><subject>Biocompatibility</subject><subject>Biopolymers</subject><subject>Biosensors</subject><subject>Carbon</subject><subject>Carbon nanotubes</subject><subject>Conductivity</subject><subject>Cost analysis</subject><subject>Electric properties</subject><subject>Electrical conductivity</subject><subject>Electrical resistivity</subject><subject>Electrodes</subject><subject>Esters</subject><subject>Ethyl acetate</subject><subject>Filaments</subject><subject>Founding</subject><subject>Health risk assessment</subject><subject>Health risks</subject><subject>Manufacturing</subject><subject>Mechanical properties</subject><subject>Methods</subject><subject>Nanocomposites</subject><subject>Nanomaterials</subject><subject>Nanotubes</subject><subject>Percolation</subject><subject>Polylactic acid</subject><subject>Polymers</subject><subject>Potassium</subject><subject>Raw materials</subject><subject>Rheological properties</subject><subject>Screen printing</subject><subject>Sensors</subject><subject>Solvents</subject><subject>Surface activation</subject><subject>Sustainability</subject><subject>Tensile strength</subject><subject>Three dimensional composites</subject><subject>Three dimensional printing</subject><subject>Toxicity</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdkVtLJDEQhcOysor64g9YAvuyLLTbuXR34tsw6w0GFRyfm-pMxY10J2PSrfjvzTjuBaseqii-Uxw4hByx8lgIXf4cgDVcVI3in8ge07oumJby83_7LjlM6aHMJQRTXH8hu0LXquJM7RG_DM8QV_R2SiM4D12PVPwqbqLzI-Yz-hTiCT2PiJ6eQRedgdEFT4Ol86tlcep_gzeZvFnM6BX4YMKwDsmNSJ8c0NvQT2_4HNLo_P0B2bHQJzx8n_vk7ux0Ob8oFtfnl_PZojBcirFAZRnwBnXHZcU57-oOS81ZLUAxXYpS2spaKbTiUupOamW0ahiHElam07XYJ9-3f9cxPE6YxnZwyWDfg8cwpVYwWWuWtU1Gv31AH8IUfXa3oSRrBK83D4-31D302DpvwxjB5F7h4EzwaF2-z7I7XXFVsSz4sRWYGFKKaNt1dAPEl5aV7Sa59l9yGf767mHqBlz9Rf_kJF4ByXiQZQ</recordid><startdate>20241125</startdate><enddate>20241125</enddate><creator>Sharifi, Javid</creator><creator>Rizvi, Ghaus</creator><creator>Fayazfar, Haniyeh Ramona</creator><general>MDPI AG</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4009-4075</orcidid><orcidid>https://orcid.org/0000-0002-5194-6125</orcidid></search><sort><creationdate>20241125</creationdate><title>Toward Sustainable 3D-Printed Sensor: Green Fabrication of CNT-Enhanced PLA Nanocomposite via Solution Casting</title><author>Sharifi, Javid ; Rizvi, Ghaus ; Fayazfar, Haniyeh Ramona</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c243t-e8f1a27e9b245222b6be092163a8190304f5ff43982449b498c98712a0adcb963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>3-D printers</topic><topic>3D printing</topic><topic>Acetates</topic><topic>Biocompatibility</topic><topic>Biopolymers</topic><topic>Biosensors</topic><topic>Carbon</topic><topic>Carbon nanotubes</topic><topic>Conductivity</topic><topic>Cost analysis</topic><topic>Electric properties</topic><topic>Electrical conductivity</topic><topic>Electrical resistivity</topic><topic>Electrodes</topic><topic>Esters</topic><topic>Ethyl acetate</topic><topic>Filaments</topic><topic>Founding</topic><topic>Health risk assessment</topic><topic>Health risks</topic><topic>Manufacturing</topic><topic>Mechanical properties</topic><topic>Methods</topic><topic>Nanocomposites</topic><topic>Nanomaterials</topic><topic>Nanotubes</topic><topic>Percolation</topic><topic>Polylactic acid</topic><topic>Polymers</topic><topic>Potassium</topic><topic>Raw materials</topic><topic>Rheological properties</topic><topic>Screen printing</topic><topic>Sensors</topic><topic>Solvents</topic><topic>Surface activation</topic><topic>Sustainability</topic><topic>Tensile strength</topic><topic>Three dimensional composites</topic><topic>Three dimensional printing</topic><topic>Toxicity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sharifi, Javid</creatorcontrib><creatorcontrib>Rizvi, Ghaus</creatorcontrib><creatorcontrib>Fayazfar, Haniyeh Ramona</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sharifi, Javid</au><au>Rizvi, Ghaus</au><au>Fayazfar, Haniyeh Ramona</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Toward Sustainable 3D-Printed Sensor: Green Fabrication of CNT-Enhanced PLA Nanocomposite via Solution Casting</atitle><jtitle>Materials</jtitle><addtitle>Materials (Basel)</addtitle><date>2024-11-25</date><risdate>2024</risdate><volume>17</volume><issue>23</issue><spage>5782</spage><pages>5782-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>The current study explores, for the first time, an eco-friendly solution casting method using a green solvent, ethyl acetate, to prepare feedstock/filaments from polylactic acid (PLA) biopolymer reinforced with carbon nanotubes (CNTs), followed by 3D printing and surface activation for biosensing applications. Comprehensive measurements of thermal, electrical, rheological, microstructural, and mechanical properties of developed feedstock and 3D-printed parts were performed and analyzed. Herein, adding 2 wt.% CNTs to the PLA matrix marked the electrical percolation, achieving conductivity of 8.3 × 10
S.m
, thanks to the uniform distribution of CNTs within the PLA matrix facilitated by the solution casting method. Rheological assessments paralleled these findings; the addition of 2 wt.% CNTs transitioned the nanocomposite from liquid-like to a solid-like behavior with a percolated network structure, significantly elevating rheological properties compared to the composite with 1 wt.% CNTs. Mechanical evaluations of the printed samples revealed improvement in tensile strength and modulus compared to virgin PLA by a uniform distribution of 2 wt.% CNTs into PLA, with an increase of 14.5% and 10.3%, respectively. To further enhance the electrical conductivity and sensing capabilities of the developed samples, an electrochemical surface activation treatment was applied to as-printed nanocomposite samples. The field-emission scanning electron microscopy (FE-SEM) analysis confirmed that this surface activation effectively exposed the CNTs to the surface of 3D-printed parts by removing a thin layer of polymer from the surface, thereby optimizing the composite's electroconductivity performance. The findings of this study underscore the potential of the proposed eco-friendly method in developing advanced 3D-printed bio-nanocomposites based on carbon nanotubes and biopolymers, using a green solution casting and cost-effective material extrusion 3D-printing method, for electrochemical-sensing applications.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>39685218</pmid><doi>10.3390/ma17235782</doi><orcidid>https://orcid.org/0000-0003-4009-4075</orcidid><orcidid>https://orcid.org/0000-0002-5194-6125</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1996-1944 |
ispartof | Materials, 2024-11, Vol.17 (23), p.5782 |
issn | 1996-1944 1996-1944 |
language | eng |
recordid | cdi_proquest_miscellaneous_3146914497 |
source | PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | 3-D printers 3D printing Acetates Biocompatibility Biopolymers Biosensors Carbon Carbon nanotubes Conductivity Cost analysis Electric properties Electrical conductivity Electrical resistivity Electrodes Esters Ethyl acetate Filaments Founding Health risk assessment Health risks Manufacturing Mechanical properties Methods Nanocomposites Nanomaterials Nanotubes Percolation Polylactic acid Polymers Potassium Raw materials Rheological properties Screen printing Sensors Solvents Surface activation Sustainability Tensile strength Three dimensional composites Three dimensional printing Toxicity |
title | Toward Sustainable 3D-Printed Sensor: Green Fabrication of CNT-Enhanced PLA Nanocomposite via Solution Casting |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T06%3A08%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Toward%20Sustainable%203D-Printed%20Sensor:%20Green%20Fabrication%20of%20CNT-Enhanced%20PLA%20Nanocomposite%20via%20Solution%20Casting&rft.jtitle=Materials&rft.au=Sharifi,%20Javid&rft.date=2024-11-25&rft.volume=17&rft.issue=23&rft.spage=5782&rft.pages=5782-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma17235782&rft_dat=%3Cgale_proqu%3EA819952851%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3144173266&rft_id=info:pmid/39685218&rft_galeid=A819952851&rfr_iscdi=true |