Machine learning prediction of brain metastasis invasion pattern on brain magnetic resonance imaging scans
Brain metastasis invasion pattern (BMIP) is an emerging biomarker associated with recurrence-free and overall survival in patients, and differential response to therapy in preclinical models. Currently, BMIP can only be determined from the histopathological examination of surgical specimens, preclud...
Gespeichert in:
Veröffentlicht in: | Neuro-oncology advances 2024-01, Vol.6 (1), p.vdae200 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | vdae200 |
container_title | Neuro-oncology advances |
container_volume | 6 |
creator | Najafian, Keyhan Rehany, Benjamin Nowakowski, Alexander Ghazimoghadam, Saba Pierre, Kevin Zakarian, Rita Al-Saadi, Tariq Reinhold, Caroline Babajani-Feremi, Abbas Wong, Joshua K Guiot, Marie-Christine Lacasse, Marie-Constance Lam, Stephanie Siegel, Peter M Petrecca, Kevin Dankner, Matthew Forghani, Reza |
description | Brain metastasis invasion pattern (BMIP) is an emerging biomarker associated with recurrence-free and overall survival in patients, and differential response to therapy in preclinical models. Currently, BMIP can only be determined from the histopathological examination of surgical specimens, precluding its use as a biomarker prior to therapy initiation. The aim of this study was to investigate the potential of machine learning (ML) approaches to develop a noninvasive magnetic resonance imaging (MRI)-based biomarker for BMIP determination.
From an initial cohort of 329 patients, a subset of 132 patients met the inclusion criteria for this retrospective study. We evaluated the ability of an expert neuroradiologist to reliably predict BMIP. Thereafter, the dataset was randomly divided into training/validation (80% of cases) and test subsets (20% of cases). The ground truth for BMIP was the histopathologic evaluation of resected specimens. Following MRI sequence co-registration, advanced feature extraction techniques deriving hand-crafted radiomic features with traditional ML classifiers and convolution-based deep learning (CDL) models were trained and evaluated. Different ML approaches were used individually or using ensembling techniques to determine the model with the best performance for BMIP prediction.
Expert evaluation of brain MRI scans could not reliably predict BMIP, with an accuracy of 44%-59% depending on the semantic feature used. Among the different ML and CDL models evaluated, the best-performing model achieved an accuracy of 85% and an F1 score of 90%.
ML approaches can effectively predict BMIP, representing a noninvasive MRI-based approach to guide the management of patients with brain metastases. |
doi_str_mv | 10.1093/noajnl/vdae200 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_3146857557</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3146857557</sourcerecordid><originalsourceid>FETCH-LOGICAL-p921-54091b9cfdb105a255813084f3ca54a11ba0c6f8ff63abaaee2ee80b4eb6c8273</originalsourceid><addsrcrecordid>eNpNkM1LAzEQxYMottRePUqOXtbmY5PdPUrRKlS89L5MsrM1ZZtdk23B_94UWxAG3vDmx-MxhNxz9sRZJRe-h53vFscGUDB2RaZCS5GJvCqv_-0TMo9xxxgTKlc5E7dkIitdVLzQU7L7APvlPNIOIXjnt3QI2Dg7ut7TvqUmgPN0jyPENC5S549J03GAccSQIH-BYOtxdJYGjL0Hb5G65J0yowUf78hNC13E-VlnZPP6slm-ZevP1fvyeZ0NleBZalhxU9m2MZwpEEqVXLIyb6UFlQPnBpjVbdm2WoIBQBSIJTM5Gm1LUcgZefyLHUL_fcA41nsXLXYdeOwPsZY816UqlDqhD2f0YPbY1ENIhcNPfXmP_AURSGud</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3146857557</pqid></control><display><type>article</type><title>Machine learning prediction of brain metastasis invasion pattern on brain magnetic resonance imaging scans</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Oxford Journals Open Access Collection</source><source>PubMed Central</source><creator>Najafian, Keyhan ; Rehany, Benjamin ; Nowakowski, Alexander ; Ghazimoghadam, Saba ; Pierre, Kevin ; Zakarian, Rita ; Al-Saadi, Tariq ; Reinhold, Caroline ; Babajani-Feremi, Abbas ; Wong, Joshua K ; Guiot, Marie-Christine ; Lacasse, Marie-Constance ; Lam, Stephanie ; Siegel, Peter M ; Petrecca, Kevin ; Dankner, Matthew ; Forghani, Reza</creator><creatorcontrib>Najafian, Keyhan ; Rehany, Benjamin ; Nowakowski, Alexander ; Ghazimoghadam, Saba ; Pierre, Kevin ; Zakarian, Rita ; Al-Saadi, Tariq ; Reinhold, Caroline ; Babajani-Feremi, Abbas ; Wong, Joshua K ; Guiot, Marie-Christine ; Lacasse, Marie-Constance ; Lam, Stephanie ; Siegel, Peter M ; Petrecca, Kevin ; Dankner, Matthew ; Forghani, Reza</creatorcontrib><description>Brain metastasis invasion pattern (BMIP) is an emerging biomarker associated with recurrence-free and overall survival in patients, and differential response to therapy in preclinical models. Currently, BMIP can only be determined from the histopathological examination of surgical specimens, precluding its use as a biomarker prior to therapy initiation. The aim of this study was to investigate the potential of machine learning (ML) approaches to develop a noninvasive magnetic resonance imaging (MRI)-based biomarker for BMIP determination.
From an initial cohort of 329 patients, a subset of 132 patients met the inclusion criteria for this retrospective study. We evaluated the ability of an expert neuroradiologist to reliably predict BMIP. Thereafter, the dataset was randomly divided into training/validation (80% of cases) and test subsets (20% of cases). The ground truth for BMIP was the histopathologic evaluation of resected specimens. Following MRI sequence co-registration, advanced feature extraction techniques deriving hand-crafted radiomic features with traditional ML classifiers and convolution-based deep learning (CDL) models were trained and evaluated. Different ML approaches were used individually or using ensembling techniques to determine the model with the best performance for BMIP prediction.
Expert evaluation of brain MRI scans could not reliably predict BMIP, with an accuracy of 44%-59% depending on the semantic feature used. Among the different ML and CDL models evaluated, the best-performing model achieved an accuracy of 85% and an F1 score of 90%.
ML approaches can effectively predict BMIP, representing a noninvasive MRI-based approach to guide the management of patients with brain metastases.</description><identifier>ISSN: 2632-2498</identifier><identifier>EISSN: 2632-2498</identifier><identifier>DOI: 10.1093/noajnl/vdae200</identifier><identifier>PMID: 39679176</identifier><language>eng</language><publisher>England</publisher><ispartof>Neuro-oncology advances, 2024-01, Vol.6 (1), p.vdae200</ispartof><rights>The Author(s) 2024. Published by Oxford University Press, the Society for Neuro-Oncology and the European Association of Neuro-Oncology.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-4869-5895 ; 0000-0003-3503-5281 ; 0000-0002-8572-1864</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39679176$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Najafian, Keyhan</creatorcontrib><creatorcontrib>Rehany, Benjamin</creatorcontrib><creatorcontrib>Nowakowski, Alexander</creatorcontrib><creatorcontrib>Ghazimoghadam, Saba</creatorcontrib><creatorcontrib>Pierre, Kevin</creatorcontrib><creatorcontrib>Zakarian, Rita</creatorcontrib><creatorcontrib>Al-Saadi, Tariq</creatorcontrib><creatorcontrib>Reinhold, Caroline</creatorcontrib><creatorcontrib>Babajani-Feremi, Abbas</creatorcontrib><creatorcontrib>Wong, Joshua K</creatorcontrib><creatorcontrib>Guiot, Marie-Christine</creatorcontrib><creatorcontrib>Lacasse, Marie-Constance</creatorcontrib><creatorcontrib>Lam, Stephanie</creatorcontrib><creatorcontrib>Siegel, Peter M</creatorcontrib><creatorcontrib>Petrecca, Kevin</creatorcontrib><creatorcontrib>Dankner, Matthew</creatorcontrib><creatorcontrib>Forghani, Reza</creatorcontrib><title>Machine learning prediction of brain metastasis invasion pattern on brain magnetic resonance imaging scans</title><title>Neuro-oncology advances</title><addtitle>Neurooncol Adv</addtitle><description>Brain metastasis invasion pattern (BMIP) is an emerging biomarker associated with recurrence-free and overall survival in patients, and differential response to therapy in preclinical models. Currently, BMIP can only be determined from the histopathological examination of surgical specimens, precluding its use as a biomarker prior to therapy initiation. The aim of this study was to investigate the potential of machine learning (ML) approaches to develop a noninvasive magnetic resonance imaging (MRI)-based biomarker for BMIP determination.
From an initial cohort of 329 patients, a subset of 132 patients met the inclusion criteria for this retrospective study. We evaluated the ability of an expert neuroradiologist to reliably predict BMIP. Thereafter, the dataset was randomly divided into training/validation (80% of cases) and test subsets (20% of cases). The ground truth for BMIP was the histopathologic evaluation of resected specimens. Following MRI sequence co-registration, advanced feature extraction techniques deriving hand-crafted radiomic features with traditional ML classifiers and convolution-based deep learning (CDL) models were trained and evaluated. Different ML approaches were used individually or using ensembling techniques to determine the model with the best performance for BMIP prediction.
Expert evaluation of brain MRI scans could not reliably predict BMIP, with an accuracy of 44%-59% depending on the semantic feature used. Among the different ML and CDL models evaluated, the best-performing model achieved an accuracy of 85% and an F1 score of 90%.
ML approaches can effectively predict BMIP, representing a noninvasive MRI-based approach to guide the management of patients with brain metastases.</description><issn>2632-2498</issn><issn>2632-2498</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkM1LAzEQxYMottRePUqOXtbmY5PdPUrRKlS89L5MsrM1ZZtdk23B_94UWxAG3vDmx-MxhNxz9sRZJRe-h53vFscGUDB2RaZCS5GJvCqv_-0TMo9xxxgTKlc5E7dkIitdVLzQU7L7APvlPNIOIXjnt3QI2Dg7ut7TvqUmgPN0jyPENC5S549J03GAccSQIH-BYOtxdJYGjL0Hb5G65J0yowUf78hNC13E-VlnZPP6slm-ZevP1fvyeZ0NleBZalhxU9m2MZwpEEqVXLIyb6UFlQPnBpjVbdm2WoIBQBSIJTM5Gm1LUcgZefyLHUL_fcA41nsXLXYdeOwPsZY816UqlDqhD2f0YPbY1ENIhcNPfXmP_AURSGud</recordid><startdate>202401</startdate><enddate>202401</enddate><creator>Najafian, Keyhan</creator><creator>Rehany, Benjamin</creator><creator>Nowakowski, Alexander</creator><creator>Ghazimoghadam, Saba</creator><creator>Pierre, Kevin</creator><creator>Zakarian, Rita</creator><creator>Al-Saadi, Tariq</creator><creator>Reinhold, Caroline</creator><creator>Babajani-Feremi, Abbas</creator><creator>Wong, Joshua K</creator><creator>Guiot, Marie-Christine</creator><creator>Lacasse, Marie-Constance</creator><creator>Lam, Stephanie</creator><creator>Siegel, Peter M</creator><creator>Petrecca, Kevin</creator><creator>Dankner, Matthew</creator><creator>Forghani, Reza</creator><scope>NPM</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4869-5895</orcidid><orcidid>https://orcid.org/0000-0003-3503-5281</orcidid><orcidid>https://orcid.org/0000-0002-8572-1864</orcidid></search><sort><creationdate>202401</creationdate><title>Machine learning prediction of brain metastasis invasion pattern on brain magnetic resonance imaging scans</title><author>Najafian, Keyhan ; Rehany, Benjamin ; Nowakowski, Alexander ; Ghazimoghadam, Saba ; Pierre, Kevin ; Zakarian, Rita ; Al-Saadi, Tariq ; Reinhold, Caroline ; Babajani-Feremi, Abbas ; Wong, Joshua K ; Guiot, Marie-Christine ; Lacasse, Marie-Constance ; Lam, Stephanie ; Siegel, Peter M ; Petrecca, Kevin ; Dankner, Matthew ; Forghani, Reza</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p921-54091b9cfdb105a255813084f3ca54a11ba0c6f8ff63abaaee2ee80b4eb6c8273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Najafian, Keyhan</creatorcontrib><creatorcontrib>Rehany, Benjamin</creatorcontrib><creatorcontrib>Nowakowski, Alexander</creatorcontrib><creatorcontrib>Ghazimoghadam, Saba</creatorcontrib><creatorcontrib>Pierre, Kevin</creatorcontrib><creatorcontrib>Zakarian, Rita</creatorcontrib><creatorcontrib>Al-Saadi, Tariq</creatorcontrib><creatorcontrib>Reinhold, Caroline</creatorcontrib><creatorcontrib>Babajani-Feremi, Abbas</creatorcontrib><creatorcontrib>Wong, Joshua K</creatorcontrib><creatorcontrib>Guiot, Marie-Christine</creatorcontrib><creatorcontrib>Lacasse, Marie-Constance</creatorcontrib><creatorcontrib>Lam, Stephanie</creatorcontrib><creatorcontrib>Siegel, Peter M</creatorcontrib><creatorcontrib>Petrecca, Kevin</creatorcontrib><creatorcontrib>Dankner, Matthew</creatorcontrib><creatorcontrib>Forghani, Reza</creatorcontrib><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>Neuro-oncology advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Najafian, Keyhan</au><au>Rehany, Benjamin</au><au>Nowakowski, Alexander</au><au>Ghazimoghadam, Saba</au><au>Pierre, Kevin</au><au>Zakarian, Rita</au><au>Al-Saadi, Tariq</au><au>Reinhold, Caroline</au><au>Babajani-Feremi, Abbas</au><au>Wong, Joshua K</au><au>Guiot, Marie-Christine</au><au>Lacasse, Marie-Constance</au><au>Lam, Stephanie</au><au>Siegel, Peter M</au><au>Petrecca, Kevin</au><au>Dankner, Matthew</au><au>Forghani, Reza</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine learning prediction of brain metastasis invasion pattern on brain magnetic resonance imaging scans</atitle><jtitle>Neuro-oncology advances</jtitle><addtitle>Neurooncol Adv</addtitle><date>2024-01</date><risdate>2024</risdate><volume>6</volume><issue>1</issue><spage>vdae200</spage><pages>vdae200-</pages><issn>2632-2498</issn><eissn>2632-2498</eissn><abstract>Brain metastasis invasion pattern (BMIP) is an emerging biomarker associated with recurrence-free and overall survival in patients, and differential response to therapy in preclinical models. Currently, BMIP can only be determined from the histopathological examination of surgical specimens, precluding its use as a biomarker prior to therapy initiation. The aim of this study was to investigate the potential of machine learning (ML) approaches to develop a noninvasive magnetic resonance imaging (MRI)-based biomarker for BMIP determination.
From an initial cohort of 329 patients, a subset of 132 patients met the inclusion criteria for this retrospective study. We evaluated the ability of an expert neuroradiologist to reliably predict BMIP. Thereafter, the dataset was randomly divided into training/validation (80% of cases) and test subsets (20% of cases). The ground truth for BMIP was the histopathologic evaluation of resected specimens. Following MRI sequence co-registration, advanced feature extraction techniques deriving hand-crafted radiomic features with traditional ML classifiers and convolution-based deep learning (CDL) models were trained and evaluated. Different ML approaches were used individually or using ensembling techniques to determine the model with the best performance for BMIP prediction.
Expert evaluation of brain MRI scans could not reliably predict BMIP, with an accuracy of 44%-59% depending on the semantic feature used. Among the different ML and CDL models evaluated, the best-performing model achieved an accuracy of 85% and an F1 score of 90%.
ML approaches can effectively predict BMIP, representing a noninvasive MRI-based approach to guide the management of patients with brain metastases.</abstract><cop>England</cop><pmid>39679176</pmid><doi>10.1093/noajnl/vdae200</doi><orcidid>https://orcid.org/0000-0003-4869-5895</orcidid><orcidid>https://orcid.org/0000-0003-3503-5281</orcidid><orcidid>https://orcid.org/0000-0002-8572-1864</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2632-2498 |
ispartof | Neuro-oncology advances, 2024-01, Vol.6 (1), p.vdae200 |
issn | 2632-2498 2632-2498 |
language | eng |
recordid | cdi_proquest_miscellaneous_3146857557 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Oxford Journals Open Access Collection; PubMed Central |
title | Machine learning prediction of brain metastasis invasion pattern on brain magnetic resonance imaging scans |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T19%3A16%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20learning%20prediction%20of%20brain%20metastasis%20invasion%20pattern%20on%20brain%20magnetic%20resonance%20imaging%20scans&rft.jtitle=Neuro-oncology%20advances&rft.au=Najafian,%20Keyhan&rft.date=2024-01&rft.volume=6&rft.issue=1&rft.spage=vdae200&rft.pages=vdae200-&rft.issn=2632-2498&rft.eissn=2632-2498&rft_id=info:doi/10.1093/noajnl/vdae200&rft_dat=%3Cproquest_pubme%3E3146857557%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3146857557&rft_id=info:pmid/39679176&rfr_iscdi=true |