Evaluation of Alternative Lithium Salts for High-Voltage Lithium Ion Batteries: Higher Relevance of Plated Li Morphology Than the Amount of Electrode Crosstalk
Increasing the upper cut-off voltage (UCV) enhances the specific energy of Li-ion batteries (LIBs), but is accompanied by higher capacity fade as a result of electrode cross-talk, i.e., transition metals (TM) dissolution from cathode and deposition on anode, finally triggering high surface area lith...
Gespeichert in:
Veröffentlicht in: | Small (Weinheim an der Bergstrasse, Germany) Germany), 2024-12, p.e2410762 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | e2410762 |
container_title | Small (Weinheim an der Bergstrasse, Germany) |
container_volume | |
creator | Arifiadi, Anindityo Wichmann, Lennart Brake, Tobias Lechtenfeld, Christian Buchmann, Julius Demelash, Feleke Yan, Peng Brunklaus, Gunther Cekic-Laskovic, Isidora Wiemers-Meyer, Simon Winter, Martin Kasnatscheew, Johannes |
description | Increasing the upper cut-off voltage (UCV) enhances the specific energy of Li-ion batteries (LIBs), but is accompanied by higher capacity fade as a result of electrode cross-talk, i.e., transition metals (TM) dissolution from cathode and deposition on anode, finally triggering high surface area lithium (HSAL) formation due to locally enhanced resistance. Here, LiPF
, LiBF
, lithium difluoro(oxalate)borate (LiDFOB), lithium bis(oxalate)borate (LiBOB), lithium bis(fluorosulfonyl)imide (LiFSI), and lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) in carbonate-based solvents are investigated in LiNi
Co
Mn
O
(NCM 622) || graphite pouch cells with 4.5 V UCV. Despite the lower oxidative stabilities of LiBF
and LiDFOB, thus enhanced HF formation, TM dissolution, and consequently electrode cross-talk, higher capacity retention is observed compared to the case of LiPF
electrolyte. Counterintuitively, it is not the TM deposit amount but rather the Li plating morphology that governs capacity fade, as these salts cause more uniform and compact lithium plating, i.e., lower surface area. In contrast, the dendritic HSAL with LiPF
has a higher surface area, and more parasitic reactions, thus active Li ("Li inventory") losses and capacity fade. Although NCM initiates the failure cascade, the capacity losses and cycle life of high-voltage LIBs are predominantly determined by the anode, in particular the Li plating morphology and the corresponding surface area. |
doi_str_mv | 10.1002/smll.202410762 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_3146851767</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3146851767</sourcerecordid><originalsourceid>FETCH-LOGICAL-p181t-70bd5b662191dc24a4815e7c59b1eb1c67da790d2f27d1ac85029738a2ae5f6f3</originalsourceid><addsrcrecordid>eNpNkMtOwzAQRS0EglLYskReskmxncRO2JWqPKQiEBS21SSZNAEnLrZTqV_Dr5LyEKxmRnPOXVxCTjgbccbEuWu0HgkmIs6UFDtkwCUPA5mIdPfffkAOnXtlLOQiUvvkIEylkjFXA_IxXYPuwNempaakY-3Rtv25RjqrfVV3DX0C7R0tjaU39bIKXoz2sPx73_bmJfjeq9FdfDFo6SNqXEOb4zb1QYPHojfonbGrymiz3NB5BS31FdJxY7rWb7mpxtxbUyCdWOOcB_12RPZK0A6Pf-aQPF9N55ObYHZ_fTsZz4IVT7gPFMuKOJNS8JQXuYggSniMKo_TjGPGc6kKUCkrRClUwSFPYiZSFSYgAONSluGQnH3nrqx579D5RVO7HLWGFk3nFiGPZNI3JlWPnv6gXdZgsVjZugG7WfyWGn4CLQV7dA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3146851767</pqid></control><display><type>article</type><title>Evaluation of Alternative Lithium Salts for High-Voltage Lithium Ion Batteries: Higher Relevance of Plated Li Morphology Than the Amount of Electrode Crosstalk</title><source>Wiley Journals</source><creator>Arifiadi, Anindityo ; Wichmann, Lennart ; Brake, Tobias ; Lechtenfeld, Christian ; Buchmann, Julius ; Demelash, Feleke ; Yan, Peng ; Brunklaus, Gunther ; Cekic-Laskovic, Isidora ; Wiemers-Meyer, Simon ; Winter, Martin ; Kasnatscheew, Johannes</creator><creatorcontrib>Arifiadi, Anindityo ; Wichmann, Lennart ; Brake, Tobias ; Lechtenfeld, Christian ; Buchmann, Julius ; Demelash, Feleke ; Yan, Peng ; Brunklaus, Gunther ; Cekic-Laskovic, Isidora ; Wiemers-Meyer, Simon ; Winter, Martin ; Kasnatscheew, Johannes</creatorcontrib><description>Increasing the upper cut-off voltage (UCV) enhances the specific energy of Li-ion batteries (LIBs), but is accompanied by higher capacity fade as a result of electrode cross-talk, i.e., transition metals (TM) dissolution from cathode and deposition on anode, finally triggering high surface area lithium (HSAL) formation due to locally enhanced resistance. Here, LiPF
, LiBF
, lithium difluoro(oxalate)borate (LiDFOB), lithium bis(oxalate)borate (LiBOB), lithium bis(fluorosulfonyl)imide (LiFSI), and lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) in carbonate-based solvents are investigated in LiNi
Co
Mn
O
(NCM 622) || graphite pouch cells with 4.5 V UCV. Despite the lower oxidative stabilities of LiBF
and LiDFOB, thus enhanced HF formation, TM dissolution, and consequently electrode cross-talk, higher capacity retention is observed compared to the case of LiPF
electrolyte. Counterintuitively, it is not the TM deposit amount but rather the Li plating morphology that governs capacity fade, as these salts cause more uniform and compact lithium plating, i.e., lower surface area. In contrast, the dendritic HSAL with LiPF
has a higher surface area, and more parasitic reactions, thus active Li ("Li inventory") losses and capacity fade. Although NCM initiates the failure cascade, the capacity losses and cycle life of high-voltage LIBs are predominantly determined by the anode, in particular the Li plating morphology and the corresponding surface area.</description><identifier>ISSN: 1613-6829</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202410762</identifier><identifier>PMID: 39676517</identifier><language>eng</language><publisher>Germany</publisher><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2024-12, p.e2410762</ispartof><rights>2024 The Author(s). Small published by Wiley‐VCH GmbH.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-8885-8591 ; 0000-0002-1329-1295</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39676517$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Arifiadi, Anindityo</creatorcontrib><creatorcontrib>Wichmann, Lennart</creatorcontrib><creatorcontrib>Brake, Tobias</creatorcontrib><creatorcontrib>Lechtenfeld, Christian</creatorcontrib><creatorcontrib>Buchmann, Julius</creatorcontrib><creatorcontrib>Demelash, Feleke</creatorcontrib><creatorcontrib>Yan, Peng</creatorcontrib><creatorcontrib>Brunklaus, Gunther</creatorcontrib><creatorcontrib>Cekic-Laskovic, Isidora</creatorcontrib><creatorcontrib>Wiemers-Meyer, Simon</creatorcontrib><creatorcontrib>Winter, Martin</creatorcontrib><creatorcontrib>Kasnatscheew, Johannes</creatorcontrib><title>Evaluation of Alternative Lithium Salts for High-Voltage Lithium Ion Batteries: Higher Relevance of Plated Li Morphology Than the Amount of Electrode Crosstalk</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>Increasing the upper cut-off voltage (UCV) enhances the specific energy of Li-ion batteries (LIBs), but is accompanied by higher capacity fade as a result of electrode cross-talk, i.e., transition metals (TM) dissolution from cathode and deposition on anode, finally triggering high surface area lithium (HSAL) formation due to locally enhanced resistance. Here, LiPF
, LiBF
, lithium difluoro(oxalate)borate (LiDFOB), lithium bis(oxalate)borate (LiBOB), lithium bis(fluorosulfonyl)imide (LiFSI), and lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) in carbonate-based solvents are investigated in LiNi
Co
Mn
O
(NCM 622) || graphite pouch cells with 4.5 V UCV. Despite the lower oxidative stabilities of LiBF
and LiDFOB, thus enhanced HF formation, TM dissolution, and consequently electrode cross-talk, higher capacity retention is observed compared to the case of LiPF
electrolyte. Counterintuitively, it is not the TM deposit amount but rather the Li plating morphology that governs capacity fade, as these salts cause more uniform and compact lithium plating, i.e., lower surface area. In contrast, the dendritic HSAL with LiPF
has a higher surface area, and more parasitic reactions, thus active Li ("Li inventory") losses and capacity fade. Although NCM initiates the failure cascade, the capacity losses and cycle life of high-voltage LIBs are predominantly determined by the anode, in particular the Li plating morphology and the corresponding surface area.</description><issn>1613-6829</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkMtOwzAQRS0EglLYskReskmxncRO2JWqPKQiEBS21SSZNAEnLrZTqV_Dr5LyEKxmRnPOXVxCTjgbccbEuWu0HgkmIs6UFDtkwCUPA5mIdPfffkAOnXtlLOQiUvvkIEylkjFXA_IxXYPuwNempaakY-3Rtv25RjqrfVV3DX0C7R0tjaU39bIKXoz2sPx73_bmJfjeq9FdfDFo6SNqXEOb4zb1QYPHojfonbGrymiz3NB5BS31FdJxY7rWb7mpxtxbUyCdWOOcB_12RPZK0A6Pf-aQPF9N55ObYHZ_fTsZz4IVT7gPFMuKOJNS8JQXuYggSniMKo_TjGPGc6kKUCkrRClUwSFPYiZSFSYgAONSluGQnH3nrqx579D5RVO7HLWGFk3nFiGPZNI3JlWPnv6gXdZgsVjZugG7WfyWGn4CLQV7dA</recordid><startdate>20241215</startdate><enddate>20241215</enddate><creator>Arifiadi, Anindityo</creator><creator>Wichmann, Lennart</creator><creator>Brake, Tobias</creator><creator>Lechtenfeld, Christian</creator><creator>Buchmann, Julius</creator><creator>Demelash, Feleke</creator><creator>Yan, Peng</creator><creator>Brunklaus, Gunther</creator><creator>Cekic-Laskovic, Isidora</creator><creator>Wiemers-Meyer, Simon</creator><creator>Winter, Martin</creator><creator>Kasnatscheew, Johannes</creator><scope>NPM</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8885-8591</orcidid><orcidid>https://orcid.org/0000-0002-1329-1295</orcidid></search><sort><creationdate>20241215</creationdate><title>Evaluation of Alternative Lithium Salts for High-Voltage Lithium Ion Batteries: Higher Relevance of Plated Li Morphology Than the Amount of Electrode Crosstalk</title><author>Arifiadi, Anindityo ; Wichmann, Lennart ; Brake, Tobias ; Lechtenfeld, Christian ; Buchmann, Julius ; Demelash, Feleke ; Yan, Peng ; Brunklaus, Gunther ; Cekic-Laskovic, Isidora ; Wiemers-Meyer, Simon ; Winter, Martin ; Kasnatscheew, Johannes</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p181t-70bd5b662191dc24a4815e7c59b1eb1c67da790d2f27d1ac85029738a2ae5f6f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arifiadi, Anindityo</creatorcontrib><creatorcontrib>Wichmann, Lennart</creatorcontrib><creatorcontrib>Brake, Tobias</creatorcontrib><creatorcontrib>Lechtenfeld, Christian</creatorcontrib><creatorcontrib>Buchmann, Julius</creatorcontrib><creatorcontrib>Demelash, Feleke</creatorcontrib><creatorcontrib>Yan, Peng</creatorcontrib><creatorcontrib>Brunklaus, Gunther</creatorcontrib><creatorcontrib>Cekic-Laskovic, Isidora</creatorcontrib><creatorcontrib>Wiemers-Meyer, Simon</creatorcontrib><creatorcontrib>Winter, Martin</creatorcontrib><creatorcontrib>Kasnatscheew, Johannes</creatorcontrib><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arifiadi, Anindityo</au><au>Wichmann, Lennart</au><au>Brake, Tobias</au><au>Lechtenfeld, Christian</au><au>Buchmann, Julius</au><au>Demelash, Feleke</au><au>Yan, Peng</au><au>Brunklaus, Gunther</au><au>Cekic-Laskovic, Isidora</au><au>Wiemers-Meyer, Simon</au><au>Winter, Martin</au><au>Kasnatscheew, Johannes</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaluation of Alternative Lithium Salts for High-Voltage Lithium Ion Batteries: Higher Relevance of Plated Li Morphology Than the Amount of Electrode Crosstalk</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2024-12-15</date><risdate>2024</risdate><spage>e2410762</spage><pages>e2410762-</pages><issn>1613-6829</issn><eissn>1613-6829</eissn><abstract>Increasing the upper cut-off voltage (UCV) enhances the specific energy of Li-ion batteries (LIBs), but is accompanied by higher capacity fade as a result of electrode cross-talk, i.e., transition metals (TM) dissolution from cathode and deposition on anode, finally triggering high surface area lithium (HSAL) formation due to locally enhanced resistance. Here, LiPF
, LiBF
, lithium difluoro(oxalate)borate (LiDFOB), lithium bis(oxalate)borate (LiBOB), lithium bis(fluorosulfonyl)imide (LiFSI), and lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) in carbonate-based solvents are investigated in LiNi
Co
Mn
O
(NCM 622) || graphite pouch cells with 4.5 V UCV. Despite the lower oxidative stabilities of LiBF
and LiDFOB, thus enhanced HF formation, TM dissolution, and consequently electrode cross-talk, higher capacity retention is observed compared to the case of LiPF
electrolyte. Counterintuitively, it is not the TM deposit amount but rather the Li plating morphology that governs capacity fade, as these salts cause more uniform and compact lithium plating, i.e., lower surface area. In contrast, the dendritic HSAL with LiPF
has a higher surface area, and more parasitic reactions, thus active Li ("Li inventory") losses and capacity fade. Although NCM initiates the failure cascade, the capacity losses and cycle life of high-voltage LIBs are predominantly determined by the anode, in particular the Li plating morphology and the corresponding surface area.</abstract><cop>Germany</cop><pmid>39676517</pmid><doi>10.1002/smll.202410762</doi><orcidid>https://orcid.org/0000-0002-8885-8591</orcidid><orcidid>https://orcid.org/0000-0002-1329-1295</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1613-6829 |
ispartof | Small (Weinheim an der Bergstrasse, Germany), 2024-12, p.e2410762 |
issn | 1613-6829 1613-6829 |
language | eng |
recordid | cdi_proquest_miscellaneous_3146851767 |
source | Wiley Journals |
title | Evaluation of Alternative Lithium Salts for High-Voltage Lithium Ion Batteries: Higher Relevance of Plated Li Morphology Than the Amount of Electrode Crosstalk |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T06%3A16%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaluation%20of%20Alternative%20Lithium%20Salts%20for%20High-Voltage%20Lithium%20Ion%20Batteries:%20Higher%20Relevance%20of%20Plated%20Li%20Morphology%20Than%20the%20Amount%20of%20Electrode%20Crosstalk&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Arifiadi,%20Anindityo&rft.date=2024-12-15&rft.spage=e2410762&rft.pages=e2410762-&rft.issn=1613-6829&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202410762&rft_dat=%3Cproquest_pubme%3E3146851767%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3146851767&rft_id=info:pmid/39676517&rfr_iscdi=true |