Evaluation of Alternative Lithium Salts for High-Voltage Lithium Ion Batteries: Higher Relevance of Plated Li Morphology Than the Amount of Electrode Crosstalk

Increasing the upper cut-off voltage (UCV) enhances the specific energy of Li-ion batteries (LIBs), but is accompanied by higher capacity fade as a result of electrode cross-talk, i.e., transition metals (TM) dissolution from cathode and deposition on anode, finally triggering high surface area lith...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Small (Weinheim an der Bergstrasse, Germany) Germany), 2024-12, p.e2410762
Hauptverfasser: Arifiadi, Anindityo, Wichmann, Lennart, Brake, Tobias, Lechtenfeld, Christian, Buchmann, Julius, Demelash, Feleke, Yan, Peng, Brunklaus, Gunther, Cekic-Laskovic, Isidora, Wiemers-Meyer, Simon, Winter, Martin, Kasnatscheew, Johannes
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page e2410762
container_title Small (Weinheim an der Bergstrasse, Germany)
container_volume
creator Arifiadi, Anindityo
Wichmann, Lennart
Brake, Tobias
Lechtenfeld, Christian
Buchmann, Julius
Demelash, Feleke
Yan, Peng
Brunklaus, Gunther
Cekic-Laskovic, Isidora
Wiemers-Meyer, Simon
Winter, Martin
Kasnatscheew, Johannes
description Increasing the upper cut-off voltage (UCV) enhances the specific energy of Li-ion batteries (LIBs), but is accompanied by higher capacity fade as a result of electrode cross-talk, i.e., transition metals (TM) dissolution from cathode and deposition on anode, finally triggering high surface area lithium (HSAL) formation due to locally enhanced resistance. Here, LiPF , LiBF , lithium difluoro(oxalate)borate (LiDFOB), lithium bis(oxalate)borate (LiBOB), lithium bis(fluorosulfonyl)imide (LiFSI), and lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) in carbonate-based solvents are investigated in LiNi Co Mn O (NCM 622) || graphite pouch cells with 4.5 V UCV. Despite the lower oxidative stabilities of LiBF and LiDFOB, thus enhanced HF formation, TM dissolution, and consequently electrode cross-talk, higher capacity retention is observed compared to the case of LiPF electrolyte. Counterintuitively, it is not the TM deposit amount but rather the Li plating morphology that governs capacity fade, as these salts cause more uniform and compact lithium plating, i.e., lower surface area. In contrast, the dendritic HSAL with LiPF has a higher surface area, and more parasitic reactions, thus active Li ("Li inventory") losses and capacity fade. Although NCM initiates the failure cascade, the capacity losses and cycle life of high-voltage LIBs are predominantly determined by the anode, in particular the Li plating morphology and the corresponding surface area.
doi_str_mv 10.1002/smll.202410762
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_3146851767</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3146851767</sourcerecordid><originalsourceid>FETCH-LOGICAL-p181t-70bd5b662191dc24a4815e7c59b1eb1c67da790d2f27d1ac85029738a2ae5f6f3</originalsourceid><addsrcrecordid>eNpNkMtOwzAQRS0EglLYskReskmxncRO2JWqPKQiEBS21SSZNAEnLrZTqV_Dr5LyEKxmRnPOXVxCTjgbccbEuWu0HgkmIs6UFDtkwCUPA5mIdPfffkAOnXtlLOQiUvvkIEylkjFXA_IxXYPuwNempaakY-3Rtv25RjqrfVV3DX0C7R0tjaU39bIKXoz2sPx73_bmJfjeq9FdfDFo6SNqXEOb4zb1QYPHojfonbGrymiz3NB5BS31FdJxY7rWb7mpxtxbUyCdWOOcB_12RPZK0A6Pf-aQPF9N55ObYHZ_fTsZz4IVT7gPFMuKOJNS8JQXuYggSniMKo_TjGPGc6kKUCkrRClUwSFPYiZSFSYgAONSluGQnH3nrqx579D5RVO7HLWGFk3nFiGPZNI3JlWPnv6gXdZgsVjZugG7WfyWGn4CLQV7dA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3146851767</pqid></control><display><type>article</type><title>Evaluation of Alternative Lithium Salts for High-Voltage Lithium Ion Batteries: Higher Relevance of Plated Li Morphology Than the Amount of Electrode Crosstalk</title><source>Wiley Journals</source><creator>Arifiadi, Anindityo ; Wichmann, Lennart ; Brake, Tobias ; Lechtenfeld, Christian ; Buchmann, Julius ; Demelash, Feleke ; Yan, Peng ; Brunklaus, Gunther ; Cekic-Laskovic, Isidora ; Wiemers-Meyer, Simon ; Winter, Martin ; Kasnatscheew, Johannes</creator><creatorcontrib>Arifiadi, Anindityo ; Wichmann, Lennart ; Brake, Tobias ; Lechtenfeld, Christian ; Buchmann, Julius ; Demelash, Feleke ; Yan, Peng ; Brunklaus, Gunther ; Cekic-Laskovic, Isidora ; Wiemers-Meyer, Simon ; Winter, Martin ; Kasnatscheew, Johannes</creatorcontrib><description>Increasing the upper cut-off voltage (UCV) enhances the specific energy of Li-ion batteries (LIBs), but is accompanied by higher capacity fade as a result of electrode cross-talk, i.e., transition metals (TM) dissolution from cathode and deposition on anode, finally triggering high surface area lithium (HSAL) formation due to locally enhanced resistance. Here, LiPF , LiBF , lithium difluoro(oxalate)borate (LiDFOB), lithium bis(oxalate)borate (LiBOB), lithium bis(fluorosulfonyl)imide (LiFSI), and lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) in carbonate-based solvents are investigated in LiNi Co Mn O (NCM 622) || graphite pouch cells with 4.5 V UCV. Despite the lower oxidative stabilities of LiBF and LiDFOB, thus enhanced HF formation, TM dissolution, and consequently electrode cross-talk, higher capacity retention is observed compared to the case of LiPF electrolyte. Counterintuitively, it is not the TM deposit amount but rather the Li plating morphology that governs capacity fade, as these salts cause more uniform and compact lithium plating, i.e., lower surface area. In contrast, the dendritic HSAL with LiPF has a higher surface area, and more parasitic reactions, thus active Li ("Li inventory") losses and capacity fade. Although NCM initiates the failure cascade, the capacity losses and cycle life of high-voltage LIBs are predominantly determined by the anode, in particular the Li plating morphology and the corresponding surface area.</description><identifier>ISSN: 1613-6829</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202410762</identifier><identifier>PMID: 39676517</identifier><language>eng</language><publisher>Germany</publisher><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2024-12, p.e2410762</ispartof><rights>2024 The Author(s). Small published by Wiley‐VCH GmbH.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-8885-8591 ; 0000-0002-1329-1295</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39676517$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Arifiadi, Anindityo</creatorcontrib><creatorcontrib>Wichmann, Lennart</creatorcontrib><creatorcontrib>Brake, Tobias</creatorcontrib><creatorcontrib>Lechtenfeld, Christian</creatorcontrib><creatorcontrib>Buchmann, Julius</creatorcontrib><creatorcontrib>Demelash, Feleke</creatorcontrib><creatorcontrib>Yan, Peng</creatorcontrib><creatorcontrib>Brunklaus, Gunther</creatorcontrib><creatorcontrib>Cekic-Laskovic, Isidora</creatorcontrib><creatorcontrib>Wiemers-Meyer, Simon</creatorcontrib><creatorcontrib>Winter, Martin</creatorcontrib><creatorcontrib>Kasnatscheew, Johannes</creatorcontrib><title>Evaluation of Alternative Lithium Salts for High-Voltage Lithium Ion Batteries: Higher Relevance of Plated Li Morphology Than the Amount of Electrode Crosstalk</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>Increasing the upper cut-off voltage (UCV) enhances the specific energy of Li-ion batteries (LIBs), but is accompanied by higher capacity fade as a result of electrode cross-talk, i.e., transition metals (TM) dissolution from cathode and deposition on anode, finally triggering high surface area lithium (HSAL) formation due to locally enhanced resistance. Here, LiPF , LiBF , lithium difluoro(oxalate)borate (LiDFOB), lithium bis(oxalate)borate (LiBOB), lithium bis(fluorosulfonyl)imide (LiFSI), and lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) in carbonate-based solvents are investigated in LiNi Co Mn O (NCM 622) || graphite pouch cells with 4.5 V UCV. Despite the lower oxidative stabilities of LiBF and LiDFOB, thus enhanced HF formation, TM dissolution, and consequently electrode cross-talk, higher capacity retention is observed compared to the case of LiPF electrolyte. Counterintuitively, it is not the TM deposit amount but rather the Li plating morphology that governs capacity fade, as these salts cause more uniform and compact lithium plating, i.e., lower surface area. In contrast, the dendritic HSAL with LiPF has a higher surface area, and more parasitic reactions, thus active Li ("Li inventory") losses and capacity fade. Although NCM initiates the failure cascade, the capacity losses and cycle life of high-voltage LIBs are predominantly determined by the anode, in particular the Li plating morphology and the corresponding surface area.</description><issn>1613-6829</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkMtOwzAQRS0EglLYskReskmxncRO2JWqPKQiEBS21SSZNAEnLrZTqV_Dr5LyEKxmRnPOXVxCTjgbccbEuWu0HgkmIs6UFDtkwCUPA5mIdPfffkAOnXtlLOQiUvvkIEylkjFXA_IxXYPuwNempaakY-3Rtv25RjqrfVV3DX0C7R0tjaU39bIKXoz2sPx73_bmJfjeq9FdfDFo6SNqXEOb4zb1QYPHojfonbGrymiz3NB5BS31FdJxY7rWb7mpxtxbUyCdWOOcB_12RPZK0A6Pf-aQPF9N55ObYHZ_fTsZz4IVT7gPFMuKOJNS8JQXuYggSniMKo_TjGPGc6kKUCkrRClUwSFPYiZSFSYgAONSluGQnH3nrqx579D5RVO7HLWGFk3nFiGPZNI3JlWPnv6gXdZgsVjZugG7WfyWGn4CLQV7dA</recordid><startdate>20241215</startdate><enddate>20241215</enddate><creator>Arifiadi, Anindityo</creator><creator>Wichmann, Lennart</creator><creator>Brake, Tobias</creator><creator>Lechtenfeld, Christian</creator><creator>Buchmann, Julius</creator><creator>Demelash, Feleke</creator><creator>Yan, Peng</creator><creator>Brunklaus, Gunther</creator><creator>Cekic-Laskovic, Isidora</creator><creator>Wiemers-Meyer, Simon</creator><creator>Winter, Martin</creator><creator>Kasnatscheew, Johannes</creator><scope>NPM</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8885-8591</orcidid><orcidid>https://orcid.org/0000-0002-1329-1295</orcidid></search><sort><creationdate>20241215</creationdate><title>Evaluation of Alternative Lithium Salts for High-Voltage Lithium Ion Batteries: Higher Relevance of Plated Li Morphology Than the Amount of Electrode Crosstalk</title><author>Arifiadi, Anindityo ; Wichmann, Lennart ; Brake, Tobias ; Lechtenfeld, Christian ; Buchmann, Julius ; Demelash, Feleke ; Yan, Peng ; Brunklaus, Gunther ; Cekic-Laskovic, Isidora ; Wiemers-Meyer, Simon ; Winter, Martin ; Kasnatscheew, Johannes</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p181t-70bd5b662191dc24a4815e7c59b1eb1c67da790d2f27d1ac85029738a2ae5f6f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arifiadi, Anindityo</creatorcontrib><creatorcontrib>Wichmann, Lennart</creatorcontrib><creatorcontrib>Brake, Tobias</creatorcontrib><creatorcontrib>Lechtenfeld, Christian</creatorcontrib><creatorcontrib>Buchmann, Julius</creatorcontrib><creatorcontrib>Demelash, Feleke</creatorcontrib><creatorcontrib>Yan, Peng</creatorcontrib><creatorcontrib>Brunklaus, Gunther</creatorcontrib><creatorcontrib>Cekic-Laskovic, Isidora</creatorcontrib><creatorcontrib>Wiemers-Meyer, Simon</creatorcontrib><creatorcontrib>Winter, Martin</creatorcontrib><creatorcontrib>Kasnatscheew, Johannes</creatorcontrib><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arifiadi, Anindityo</au><au>Wichmann, Lennart</au><au>Brake, Tobias</au><au>Lechtenfeld, Christian</au><au>Buchmann, Julius</au><au>Demelash, Feleke</au><au>Yan, Peng</au><au>Brunklaus, Gunther</au><au>Cekic-Laskovic, Isidora</au><au>Wiemers-Meyer, Simon</au><au>Winter, Martin</au><au>Kasnatscheew, Johannes</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaluation of Alternative Lithium Salts for High-Voltage Lithium Ion Batteries: Higher Relevance of Plated Li Morphology Than the Amount of Electrode Crosstalk</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2024-12-15</date><risdate>2024</risdate><spage>e2410762</spage><pages>e2410762-</pages><issn>1613-6829</issn><eissn>1613-6829</eissn><abstract>Increasing the upper cut-off voltage (UCV) enhances the specific energy of Li-ion batteries (LIBs), but is accompanied by higher capacity fade as a result of electrode cross-talk, i.e., transition metals (TM) dissolution from cathode and deposition on anode, finally triggering high surface area lithium (HSAL) formation due to locally enhanced resistance. Here, LiPF , LiBF , lithium difluoro(oxalate)borate (LiDFOB), lithium bis(oxalate)borate (LiBOB), lithium bis(fluorosulfonyl)imide (LiFSI), and lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) in carbonate-based solvents are investigated in LiNi Co Mn O (NCM 622) || graphite pouch cells with 4.5 V UCV. Despite the lower oxidative stabilities of LiBF and LiDFOB, thus enhanced HF formation, TM dissolution, and consequently electrode cross-talk, higher capacity retention is observed compared to the case of LiPF electrolyte. Counterintuitively, it is not the TM deposit amount but rather the Li plating morphology that governs capacity fade, as these salts cause more uniform and compact lithium plating, i.e., lower surface area. In contrast, the dendritic HSAL with LiPF has a higher surface area, and more parasitic reactions, thus active Li ("Li inventory") losses and capacity fade. Although NCM initiates the failure cascade, the capacity losses and cycle life of high-voltage LIBs are predominantly determined by the anode, in particular the Li plating morphology and the corresponding surface area.</abstract><cop>Germany</cop><pmid>39676517</pmid><doi>10.1002/smll.202410762</doi><orcidid>https://orcid.org/0000-0002-8885-8591</orcidid><orcidid>https://orcid.org/0000-0002-1329-1295</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1613-6829
ispartof Small (Weinheim an der Bergstrasse, Germany), 2024-12, p.e2410762
issn 1613-6829
1613-6829
language eng
recordid cdi_proquest_miscellaneous_3146851767
source Wiley Journals
title Evaluation of Alternative Lithium Salts for High-Voltage Lithium Ion Batteries: Higher Relevance of Plated Li Morphology Than the Amount of Electrode Crosstalk
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T06%3A16%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaluation%20of%20Alternative%20Lithium%20Salts%20for%20High-Voltage%20Lithium%20Ion%20Batteries:%20Higher%20Relevance%20of%20Plated%20Li%20Morphology%20Than%20the%20Amount%20of%20Electrode%20Crosstalk&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Arifiadi,%20Anindityo&rft.date=2024-12-15&rft.spage=e2410762&rft.pages=e2410762-&rft.issn=1613-6829&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202410762&rft_dat=%3Cproquest_pubme%3E3146851767%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3146851767&rft_id=info:pmid/39676517&rfr_iscdi=true