Online monitoring of Haematococcus lacustris cell cycle using machine and deep learning techniques

[Display omitted] •Trained and validated two artificial intelligence models for image classification.•Automated system classifies four Haematococcus cell cycle stages.•Identified key system requirements through model explainability using SHAP.•Successful application to a dynamic photobioreactor cult...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioresource technology 2025-02, Vol.418, p.131976, Article 131976
Hauptverfasser: Stegemüller, Lars, Caccavale, Fiammetta, Valverde-Pérez, Borja, Angelidaki, Irini
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 131976
container_title Bioresource technology
container_volume 418
creator Stegemüller, Lars
Caccavale, Fiammetta
Valverde-Pérez, Borja
Angelidaki, Irini
description [Display omitted] •Trained and validated two artificial intelligence models for image classification.•Automated system classifies four Haematococcus cell cycle stages.•Identified key system requirements through model explainability using SHAP.•Successful application to a dynamic photobioreactor culture. Optimal control and process optimization of astaxanthin production from Haematococcuslacustris is directly linked to its complex cell cycle ranging from vegetative green cells to astaxanthin-rich cysts. This study developed an automated online monitoring system classifying four different cell cycle stages using a scanning microscope. Decision-tree based machine learning and deep learning convolutional neural network algorithms were developed, validated, and evaluated. SHapley Additive exPlanations was used to examine the most important system requirements for accurate image classification. The models achieved accuracies on unseen data of 92.4 and 90.9%, respectively. Furthermore, both models were applied to a photobioreactor culturing H.lacustris, effectively monitoring the transition from a green culture in the exponential growth phase to a stationary red culture. Therefore, online image analysis using artificial intelligence models has great potential for process optimization and as a data-driven decision support tool during microalgae cultivation.
doi_str_mv 10.1016/j.biortech.2024.131976
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3146848624</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0960852424016808</els_id><sourcerecordid>3146848624</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2086-f3a317f8f09fb9a2421ed4c820cc2f783a3733f1b91be1e348efa0933a9a2203</originalsourceid><addsrcrecordid>eNqFkEtPAyEUhYnRaK3-hYalm6k8pgyz0zS-EpNuuicMc7E0M1BhxqT_XiZVt26A5H6Hc-5BaEHJkhIq7vfLxoU4gNktGWHlknJaV-IMzaiseMHy-xzNSC1IIVesvELXKe0JIZxW7BJd8VpUK8HlDDUb3zkPuA_eDSE6_4GDxa8aej0EE4wZE-50PofoEjbQddgcTQd4TBPba7Ob5Nq3uAU44A509NNkiubd5wjpBl1Y3SW4_bnnaPv8tF2_Fu-bl7f143thGJGisFzndFZaUtum1qxkFNrSSEaMYbaSeVxxbmlT0wYo8FKC1aTmXGeYET5Hd6dvDzFMtoPqXZoCaw9hTIrTUshSClZmVJxQE0NKEaw6RNfreFSUqKletVe_9aqpXnWqNwsXPx5j00P7J_vtMwMPJwDyol8OokrGgTfQughmUG1w_3l8A5lxkFU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3146848624</pqid></control><display><type>article</type><title>Online monitoring of Haematococcus lacustris cell cycle using machine and deep learning techniques</title><source>Elsevier ScienceDirect Journals</source><creator>Stegemüller, Lars ; Caccavale, Fiammetta ; Valverde-Pérez, Borja ; Angelidaki, Irini</creator><creatorcontrib>Stegemüller, Lars ; Caccavale, Fiammetta ; Valverde-Pérez, Borja ; Angelidaki, Irini</creatorcontrib><description>[Display omitted] •Trained and validated two artificial intelligence models for image classification.•Automated system classifies four Haematococcus cell cycle stages.•Identified key system requirements through model explainability using SHAP.•Successful application to a dynamic photobioreactor culture. Optimal control and process optimization of astaxanthin production from Haematococcuslacustris is directly linked to its complex cell cycle ranging from vegetative green cells to astaxanthin-rich cysts. This study developed an automated online monitoring system classifying four different cell cycle stages using a scanning microscope. Decision-tree based machine learning and deep learning convolutional neural network algorithms were developed, validated, and evaluated. SHapley Additive exPlanations was used to examine the most important system requirements for accurate image classification. The models achieved accuracies on unseen data of 92.4 and 90.9%, respectively. Furthermore, both models were applied to a photobioreactor culturing H.lacustris, effectively monitoring the transition from a green culture in the exponential growth phase to a stationary red culture. Therefore, online image analysis using artificial intelligence models has great potential for process optimization and as a data-driven decision support tool during microalgae cultivation.</description><identifier>ISSN: 0960-8524</identifier><identifier>ISSN: 1873-2976</identifier><identifier>EISSN: 1873-2976</identifier><identifier>DOI: 10.1016/j.biortech.2024.131976</identifier><identifier>PMID: 39675638</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Astaxanthin ; Convolutional neural networks ; Data driven modelling ; Digitalization ; Image analysis ; Microalgae</subject><ispartof>Bioresource technology, 2025-02, Vol.418, p.131976, Article 131976</ispartof><rights>2024 The Author(s)</rights><rights>Copyright © 2024 The Author(s). Published by Elsevier Ltd.. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2086-f3a317f8f09fb9a2421ed4c820cc2f783a3733f1b91be1e348efa0933a9a2203</cites><orcidid>0000-0001-8978-8882 ; 0000-0002-6357-578X ; 0000-0003-0795-5988 ; 0000-0001-7255-1395</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.biortech.2024.131976$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,3538,27906,27907,45977</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39675638$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Stegemüller, Lars</creatorcontrib><creatorcontrib>Caccavale, Fiammetta</creatorcontrib><creatorcontrib>Valverde-Pérez, Borja</creatorcontrib><creatorcontrib>Angelidaki, Irini</creatorcontrib><title>Online monitoring of Haematococcus lacustris cell cycle using machine and deep learning techniques</title><title>Bioresource technology</title><addtitle>Bioresour Technol</addtitle><description>[Display omitted] •Trained and validated two artificial intelligence models for image classification.•Automated system classifies four Haematococcus cell cycle stages.•Identified key system requirements through model explainability using SHAP.•Successful application to a dynamic photobioreactor culture. Optimal control and process optimization of astaxanthin production from Haematococcuslacustris is directly linked to its complex cell cycle ranging from vegetative green cells to astaxanthin-rich cysts. This study developed an automated online monitoring system classifying four different cell cycle stages using a scanning microscope. Decision-tree based machine learning and deep learning convolutional neural network algorithms were developed, validated, and evaluated. SHapley Additive exPlanations was used to examine the most important system requirements for accurate image classification. The models achieved accuracies on unseen data of 92.4 and 90.9%, respectively. Furthermore, both models were applied to a photobioreactor culturing H.lacustris, effectively monitoring the transition from a green culture in the exponential growth phase to a stationary red culture. Therefore, online image analysis using artificial intelligence models has great potential for process optimization and as a data-driven decision support tool during microalgae cultivation.</description><subject>Astaxanthin</subject><subject>Convolutional neural networks</subject><subject>Data driven modelling</subject><subject>Digitalization</subject><subject>Image analysis</subject><subject>Microalgae</subject><issn>0960-8524</issn><issn>1873-2976</issn><issn>1873-2976</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNqFkEtPAyEUhYnRaK3-hYalm6k8pgyz0zS-EpNuuicMc7E0M1BhxqT_XiZVt26A5H6Hc-5BaEHJkhIq7vfLxoU4gNktGWHlknJaV-IMzaiseMHy-xzNSC1IIVesvELXKe0JIZxW7BJd8VpUK8HlDDUb3zkPuA_eDSE6_4GDxa8aej0EE4wZE-50PofoEjbQddgcTQd4TBPba7Ob5Nq3uAU44A509NNkiubd5wjpBl1Y3SW4_bnnaPv8tF2_Fu-bl7f143thGJGisFzndFZaUtum1qxkFNrSSEaMYbaSeVxxbmlT0wYo8FKC1aTmXGeYET5Hd6dvDzFMtoPqXZoCaw9hTIrTUshSClZmVJxQE0NKEaw6RNfreFSUqKletVe_9aqpXnWqNwsXPx5j00P7J_vtMwMPJwDyol8OokrGgTfQughmUG1w_3l8A5lxkFU</recordid><startdate>202502</startdate><enddate>202502</enddate><creator>Stegemüller, Lars</creator><creator>Caccavale, Fiammetta</creator><creator>Valverde-Pérez, Borja</creator><creator>Angelidaki, Irini</creator><general>Elsevier Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8978-8882</orcidid><orcidid>https://orcid.org/0000-0002-6357-578X</orcidid><orcidid>https://orcid.org/0000-0003-0795-5988</orcidid><orcidid>https://orcid.org/0000-0001-7255-1395</orcidid></search><sort><creationdate>202502</creationdate><title>Online monitoring of Haematococcus lacustris cell cycle using machine and deep learning techniques</title><author>Stegemüller, Lars ; Caccavale, Fiammetta ; Valverde-Pérez, Borja ; Angelidaki, Irini</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2086-f3a317f8f09fb9a2421ed4c820cc2f783a3733f1b91be1e348efa0933a9a2203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Astaxanthin</topic><topic>Convolutional neural networks</topic><topic>Data driven modelling</topic><topic>Digitalization</topic><topic>Image analysis</topic><topic>Microalgae</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stegemüller, Lars</creatorcontrib><creatorcontrib>Caccavale, Fiammetta</creatorcontrib><creatorcontrib>Valverde-Pérez, Borja</creatorcontrib><creatorcontrib>Angelidaki, Irini</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Bioresource technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stegemüller, Lars</au><au>Caccavale, Fiammetta</au><au>Valverde-Pérez, Borja</au><au>Angelidaki, Irini</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Online monitoring of Haematococcus lacustris cell cycle using machine and deep learning techniques</atitle><jtitle>Bioresource technology</jtitle><addtitle>Bioresour Technol</addtitle><date>2025-02</date><risdate>2025</risdate><volume>418</volume><spage>131976</spage><pages>131976-</pages><artnum>131976</artnum><issn>0960-8524</issn><issn>1873-2976</issn><eissn>1873-2976</eissn><abstract>[Display omitted] •Trained and validated two artificial intelligence models for image classification.•Automated system classifies four Haematococcus cell cycle stages.•Identified key system requirements through model explainability using SHAP.•Successful application to a dynamic photobioreactor culture. Optimal control and process optimization of astaxanthin production from Haematococcuslacustris is directly linked to its complex cell cycle ranging from vegetative green cells to astaxanthin-rich cysts. This study developed an automated online monitoring system classifying four different cell cycle stages using a scanning microscope. Decision-tree based machine learning and deep learning convolutional neural network algorithms were developed, validated, and evaluated. SHapley Additive exPlanations was used to examine the most important system requirements for accurate image classification. The models achieved accuracies on unseen data of 92.4 and 90.9%, respectively. Furthermore, both models were applied to a photobioreactor culturing H.lacustris, effectively monitoring the transition from a green culture in the exponential growth phase to a stationary red culture. Therefore, online image analysis using artificial intelligence models has great potential for process optimization and as a data-driven decision support tool during microalgae cultivation.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>39675638</pmid><doi>10.1016/j.biortech.2024.131976</doi><orcidid>https://orcid.org/0000-0001-8978-8882</orcidid><orcidid>https://orcid.org/0000-0002-6357-578X</orcidid><orcidid>https://orcid.org/0000-0003-0795-5988</orcidid><orcidid>https://orcid.org/0000-0001-7255-1395</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0960-8524
ispartof Bioresource technology, 2025-02, Vol.418, p.131976, Article 131976
issn 0960-8524
1873-2976
1873-2976
language eng
recordid cdi_proquest_miscellaneous_3146848624
source Elsevier ScienceDirect Journals
subjects Astaxanthin
Convolutional neural networks
Data driven modelling
Digitalization
Image analysis
Microalgae
title Online monitoring of Haematococcus lacustris cell cycle using machine and deep learning techniques
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T09%3A01%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Online%20monitoring%20of%20Haematococcus%20lacustris%20cell%20cycle%20using%20machine%20and%20deep%20learning%20techniques&rft.jtitle=Bioresource%20technology&rft.au=Stegem%C3%BCller,%20Lars&rft.date=2025-02&rft.volume=418&rft.spage=131976&rft.pages=131976-&rft.artnum=131976&rft.issn=0960-8524&rft.eissn=1873-2976&rft_id=info:doi/10.1016/j.biortech.2024.131976&rft_dat=%3Cproquest_cross%3E3146848624%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3146848624&rft_id=info:pmid/39675638&rft_els_id=S0960852424016808&rfr_iscdi=true