Utilizing large language models for identifying future research opportunities in environmental science

Facing pressing global challenges such as climate change, biodiversity loss, resource scarcity, and environmental pollution, the field of environmental science urgently needs innovative research methods. However, identifying meaningful and cutting-edge research topics is a significant challenge, as...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of environmental management 2025-01, Vol.373, p.123667, Article 123667
Hauptverfasser: Ji, Xiaoliang, Wu, Xinyue, Deng, Rui, Yang, Yue, Wang, Anxu, Zhu, Ya
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 123667
container_title Journal of environmental management
container_volume 373
creator Ji, Xiaoliang
Wu, Xinyue
Deng, Rui
Yang, Yue
Wang, Anxu
Zhu, Ya
description Facing pressing global challenges such as climate change, biodiversity loss, resource scarcity, and environmental pollution, the field of environmental science urgently needs innovative research methods. However, identifying meaningful and cutting-edge research topics is a significant challenge, as it requires a thorough understanding of existing literature and the ability to discern knowledge gaps. Traditional bibliometrics often fall short of capturing nascent interdisciplinary fields. Recent advancements in artificial intelligence (AI) offer potential solutions to this challenge. This study explores the capabilities of large language models (LLMs) in identifying and analyzing emerging research opportunities in environmental science. We employ a text retrieval method based on word embeddings, utilizing the emergent reasoning abilities of LLMs combined with embedded search techniques to dynamically integrate the latest literature. By comparing the GPT-3.5 API with supplementary literature, ChatGPT, and GPT-4, we find that the GPT-3.5 API provides a more comprehensive, detailed, and current analysis of cutting-edge environmental science, emphasizing the importance of understanding the dynamics and timeliness of the field. Our findings underscore the critical role of interdisciplinary research, AI, and big data in addressing urgent environmental challenges. LLMs can serve as valuable tools for researchers, offering guidance and inspiration for future directions in environmental science research. [Display omitted] •Explores how LLMs identify emerging research directions in environmental science.•Illustrates the superiority of LLMs over traditional bibliometrics in identifying interdisciplinary fields.•Highlights how LLMs extrapolate from existing literature patterns to discover new trajectories.•Emphasizes the role of machine learning in diverse environmental research domains.
doi_str_mv 10.1016/j.jenvman.2024.123667
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3146777559</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0301479724036533</els_id><sourcerecordid>3146777559</sourcerecordid><originalsourceid>FETCH-LOGICAL-c243t-665943ef4314edd04e87483630b521a339e5f6fe7400fb85310960cb70eb0dad3</originalsourceid><addsrcrecordid>eNqFkM1O3DAUha2qqAw_jwDKsptMr-O_ZIUqBBQJqZuytpz4evAosQc7QaJPj0czdNuN7cV37vX5CLmisKZA5Y_teovhbTJh3UDD17RhUqovZEWhE3UrGXwlK2BAa646dUrOct4CAGuo-kZOWScVawVdEfc8-9H_9WFTjSZtsJxhs5jymKLFMVcupspbDLN373vKLfOSsEqY0aThpYq7XUzzEvzsMVc-VOVXPsUwlYgZqzx4DANekBNnxoyXx_ucPN_f_bn9VT_9fni8_flUDw1ncy2l6DhDxxnlaC1wbBVvWWnTi4YaxjoUTjpUHMD1rWClrYShV4A9WGPZOfl-mLtL8XXBPOvJ5wHH0grjknWZK5VSQnQFFQd0SDHnhE7vkp9MetcU9F6x3uqjYr1XrA-KS-76uGLpJ7T_Up9OC3BzAIo-fPOY9FGC9QmHWdvo_7PiA6JRkX4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3146777559</pqid></control><display><type>article</type><title>Utilizing large language models for identifying future research opportunities in environmental science</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Ji, Xiaoliang ; Wu, Xinyue ; Deng, Rui ; Yang, Yue ; Wang, Anxu ; Zhu, Ya</creator><creatorcontrib>Ji, Xiaoliang ; Wu, Xinyue ; Deng, Rui ; Yang, Yue ; Wang, Anxu ; Zhu, Ya</creatorcontrib><description>Facing pressing global challenges such as climate change, biodiversity loss, resource scarcity, and environmental pollution, the field of environmental science urgently needs innovative research methods. However, identifying meaningful and cutting-edge research topics is a significant challenge, as it requires a thorough understanding of existing literature and the ability to discern knowledge gaps. Traditional bibliometrics often fall short of capturing nascent interdisciplinary fields. Recent advancements in artificial intelligence (AI) offer potential solutions to this challenge. This study explores the capabilities of large language models (LLMs) in identifying and analyzing emerging research opportunities in environmental science. We employ a text retrieval method based on word embeddings, utilizing the emergent reasoning abilities of LLMs combined with embedded search techniques to dynamically integrate the latest literature. By comparing the GPT-3.5 API with supplementary literature, ChatGPT, and GPT-4, we find that the GPT-3.5 API provides a more comprehensive, detailed, and current analysis of cutting-edge environmental science, emphasizing the importance of understanding the dynamics and timeliness of the field. Our findings underscore the critical role of interdisciplinary research, AI, and big data in addressing urgent environmental challenges. LLMs can serve as valuable tools for researchers, offering guidance and inspiration for future directions in environmental science research. [Display omitted] •Explores how LLMs identify emerging research directions in environmental science.•Illustrates the superiority of LLMs over traditional bibliometrics in identifying interdisciplinary fields.•Highlights how LLMs extrapolate from existing literature patterns to discover new trajectories.•Emphasizes the role of machine learning in diverse environmental research domains.</description><identifier>ISSN: 0301-4797</identifier><identifier>ISSN: 1095-8630</identifier><identifier>EISSN: 1095-8630</identifier><identifier>DOI: 10.1016/j.jenvman.2024.123667</identifier><identifier>PMID: 39673851</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Artificial Intelligence ; ChatGPT ; Climate Change ; Environmental Science ; GPT-4 ; Language ; Large language models</subject><ispartof>Journal of environmental management, 2025-01, Vol.373, p.123667, Article 123667</ispartof><rights>2024 Elsevier Ltd</rights><rights>Copyright © 2024 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c243t-665943ef4314edd04e87483630b521a339e5f6fe7400fb85310960cb70eb0dad3</cites><orcidid>0000-0001-8987-2048</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0301479724036533$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39673851$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ji, Xiaoliang</creatorcontrib><creatorcontrib>Wu, Xinyue</creatorcontrib><creatorcontrib>Deng, Rui</creatorcontrib><creatorcontrib>Yang, Yue</creatorcontrib><creatorcontrib>Wang, Anxu</creatorcontrib><creatorcontrib>Zhu, Ya</creatorcontrib><title>Utilizing large language models for identifying future research opportunities in environmental science</title><title>Journal of environmental management</title><addtitle>J Environ Manage</addtitle><description>Facing pressing global challenges such as climate change, biodiversity loss, resource scarcity, and environmental pollution, the field of environmental science urgently needs innovative research methods. However, identifying meaningful and cutting-edge research topics is a significant challenge, as it requires a thorough understanding of existing literature and the ability to discern knowledge gaps. Traditional bibliometrics often fall short of capturing nascent interdisciplinary fields. Recent advancements in artificial intelligence (AI) offer potential solutions to this challenge. This study explores the capabilities of large language models (LLMs) in identifying and analyzing emerging research opportunities in environmental science. We employ a text retrieval method based on word embeddings, utilizing the emergent reasoning abilities of LLMs combined with embedded search techniques to dynamically integrate the latest literature. By comparing the GPT-3.5 API with supplementary literature, ChatGPT, and GPT-4, we find that the GPT-3.5 API provides a more comprehensive, detailed, and current analysis of cutting-edge environmental science, emphasizing the importance of understanding the dynamics and timeliness of the field. Our findings underscore the critical role of interdisciplinary research, AI, and big data in addressing urgent environmental challenges. LLMs can serve as valuable tools for researchers, offering guidance and inspiration for future directions in environmental science research. [Display omitted] •Explores how LLMs identify emerging research directions in environmental science.•Illustrates the superiority of LLMs over traditional bibliometrics in identifying interdisciplinary fields.•Highlights how LLMs extrapolate from existing literature patterns to discover new trajectories.•Emphasizes the role of machine learning in diverse environmental research domains.</description><subject>Artificial Intelligence</subject><subject>ChatGPT</subject><subject>Climate Change</subject><subject>Environmental Science</subject><subject>GPT-4</subject><subject>Language</subject><subject>Large language models</subject><issn>0301-4797</issn><issn>1095-8630</issn><issn>1095-8630</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkM1O3DAUha2qqAw_jwDKsptMr-O_ZIUqBBQJqZuytpz4evAosQc7QaJPj0czdNuN7cV37vX5CLmisKZA5Y_teovhbTJh3UDD17RhUqovZEWhE3UrGXwlK2BAa646dUrOct4CAGuo-kZOWScVawVdEfc8-9H_9WFTjSZtsJxhs5jymKLFMVcupspbDLN373vKLfOSsEqY0aThpYq7XUzzEvzsMVc-VOVXPsUwlYgZqzx4DANekBNnxoyXx_ucPN_f_bn9VT_9fni8_flUDw1ncy2l6DhDxxnlaC1wbBVvWWnTi4YaxjoUTjpUHMD1rWClrYShV4A9WGPZOfl-mLtL8XXBPOvJ5wHH0grjknWZK5VSQnQFFQd0SDHnhE7vkp9MetcU9F6x3uqjYr1XrA-KS-76uGLpJ7T_Up9OC3BzAIo-fPOY9FGC9QmHWdvo_7PiA6JRkX4</recordid><startdate>202501</startdate><enddate>202501</enddate><creator>Ji, Xiaoliang</creator><creator>Wu, Xinyue</creator><creator>Deng, Rui</creator><creator>Yang, Yue</creator><creator>Wang, Anxu</creator><creator>Zhu, Ya</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8987-2048</orcidid></search><sort><creationdate>202501</creationdate><title>Utilizing large language models for identifying future research opportunities in environmental science</title><author>Ji, Xiaoliang ; Wu, Xinyue ; Deng, Rui ; Yang, Yue ; Wang, Anxu ; Zhu, Ya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c243t-665943ef4314edd04e87483630b521a339e5f6fe7400fb85310960cb70eb0dad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Artificial Intelligence</topic><topic>ChatGPT</topic><topic>Climate Change</topic><topic>Environmental Science</topic><topic>GPT-4</topic><topic>Language</topic><topic>Large language models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ji, Xiaoliang</creatorcontrib><creatorcontrib>Wu, Xinyue</creatorcontrib><creatorcontrib>Deng, Rui</creatorcontrib><creatorcontrib>Yang, Yue</creatorcontrib><creatorcontrib>Wang, Anxu</creatorcontrib><creatorcontrib>Zhu, Ya</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of environmental management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ji, Xiaoliang</au><au>Wu, Xinyue</au><au>Deng, Rui</au><au>Yang, Yue</au><au>Wang, Anxu</au><au>Zhu, Ya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Utilizing large language models for identifying future research opportunities in environmental science</atitle><jtitle>Journal of environmental management</jtitle><addtitle>J Environ Manage</addtitle><date>2025-01</date><risdate>2025</risdate><volume>373</volume><spage>123667</spage><pages>123667-</pages><artnum>123667</artnum><issn>0301-4797</issn><issn>1095-8630</issn><eissn>1095-8630</eissn><abstract>Facing pressing global challenges such as climate change, biodiversity loss, resource scarcity, and environmental pollution, the field of environmental science urgently needs innovative research methods. However, identifying meaningful and cutting-edge research topics is a significant challenge, as it requires a thorough understanding of existing literature and the ability to discern knowledge gaps. Traditional bibliometrics often fall short of capturing nascent interdisciplinary fields. Recent advancements in artificial intelligence (AI) offer potential solutions to this challenge. This study explores the capabilities of large language models (LLMs) in identifying and analyzing emerging research opportunities in environmental science. We employ a text retrieval method based on word embeddings, utilizing the emergent reasoning abilities of LLMs combined with embedded search techniques to dynamically integrate the latest literature. By comparing the GPT-3.5 API with supplementary literature, ChatGPT, and GPT-4, we find that the GPT-3.5 API provides a more comprehensive, detailed, and current analysis of cutting-edge environmental science, emphasizing the importance of understanding the dynamics and timeliness of the field. Our findings underscore the critical role of interdisciplinary research, AI, and big data in addressing urgent environmental challenges. LLMs can serve as valuable tools for researchers, offering guidance and inspiration for future directions in environmental science research. [Display omitted] •Explores how LLMs identify emerging research directions in environmental science.•Illustrates the superiority of LLMs over traditional bibliometrics in identifying interdisciplinary fields.•Highlights how LLMs extrapolate from existing literature patterns to discover new trajectories.•Emphasizes the role of machine learning in diverse environmental research domains.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>39673851</pmid><doi>10.1016/j.jenvman.2024.123667</doi><orcidid>https://orcid.org/0000-0001-8987-2048</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0301-4797
ispartof Journal of environmental management, 2025-01, Vol.373, p.123667, Article 123667
issn 0301-4797
1095-8630
1095-8630
language eng
recordid cdi_proquest_miscellaneous_3146777559
source MEDLINE; Elsevier ScienceDirect Journals
subjects Artificial Intelligence
ChatGPT
Climate Change
Environmental Science
GPT-4
Language
Large language models
title Utilizing large language models for identifying future research opportunities in environmental science
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T23%3A59%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Utilizing%20large%20language%20models%20for%20identifying%20future%20research%20opportunities%20in%20environmental%20science&rft.jtitle=Journal%20of%20environmental%20management&rft.au=Ji,%20Xiaoliang&rft.date=2025-01&rft.volume=373&rft.spage=123667&rft.pages=123667-&rft.artnum=123667&rft.issn=0301-4797&rft.eissn=1095-8630&rft_id=info:doi/10.1016/j.jenvman.2024.123667&rft_dat=%3Cproquest_cross%3E3146777559%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3146777559&rft_id=info:pmid/39673851&rft_els_id=S0301479724036533&rfr_iscdi=true