Breath-hold diffusion-weighted MR imaging (DWI) using deep learning reconstruction: Comparison with navigator triggered DWI in patients with malignant liver tumors
This study investigated the feasibility of single breath-hold (BH) diffusion-weighted MR imaging (DWI) using deep learning reconstruction (DLR) compared to navigator triggered (NT) DWI in patients with malignant liver tumors. This study included 91 patients who underwent both BH-DWI and NT-DWI with...
Gespeichert in:
Veröffentlicht in: | Radiography (London, England. 1995) England. 1995), 2024-12, Vol.31 (1), p.275-280 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 280 |
---|---|
container_issue | 1 |
container_start_page | 275 |
container_title | Radiography (London, England. 1995) |
container_volume | 31 |
creator | Tanabe, M. Higashi, M. Miyoshi, K. Morooka, R. Kiyoyama, H. Ihara, K. Kawano, Y. Yamane, M. Yamaguchi, T. Ito, K. |
description | This study investigated the feasibility of single breath-hold (BH) diffusion-weighted MR imaging (DWI) using deep learning reconstruction (DLR) compared to navigator triggered (NT) DWI in patients with malignant liver tumors.
This study included 91 patients who underwent both BH-DWI and NT-DWI with 3T MR system. Abdominal MR images were subjectively analyzed to compare visualization of liver edges, presence of ghosting artifacts, conspicuity of malignant liver tumors, and overall image quality. Then, signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), and apparent diffusion coefficient (ADC) values of malignant liver tumors were objectively measured using regions of interest.
Image quality except conspicuity of malignant liver tumors were significantly better in BH-DW image than in NT-DW image (p |
doi_str_mv | 10.1016/j.radi.2024.11.027 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_3146663059</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1078817424003584</els_id><sourcerecordid>3146663059</sourcerecordid><originalsourceid>FETCH-LOGICAL-e1095-98e5a176d36140caa0e88e2a79f0e6af5e6aa7a515b3e2ea478d2d487c9390e3</originalsourceid><addsrcrecordid>eNo1kc1u1TAQhSMEoj_wAiyQl-0iqX8SO0Fs2kuhlYqQUCWW1jSe5PoqsYPt3Irn4UXx1S0bz1jz-Wh8TlF8YLRilMmrXRXA2IpTXleMVZSrV8UpawQveSvY69xT1ZYtU_VJcRbjjtJM8vZtcSI6KRWXzWnx9yYgpG259ZMhxg7DGq135TPacZvQkO8_iZ1htG4kF19-3V-SPM-9QVzIhBDc4Raw9y6msPYpP_5ENn5eINjoHXm2aUsc7O0IyQeSgh1HDFk4ixHryALJokvxCM4w2dGBS2Sye8z4OvsQ3xVvBpgivn-p58Xj19vHzV358OPb_eb6oURGu6bsWmyAKWmEZDXtASi2LXJQ3UBRwtDkAxQ0rHkSyBFq1Rpu6lb1negoivPi4ii7BP97xZj0bGOP0wQO_Rq1YLWUUtCmy-jHF3R9mtHoJWSTwh_939cMfD4CmPfdWww69vmfPRqbzUraeKsZ1YcY9U4fYtSHGDVjOsco_gHwN5Lw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3146663059</pqid></control><display><type>article</type><title>Breath-hold diffusion-weighted MR imaging (DWI) using deep learning reconstruction: Comparison with navigator triggered DWI in patients with malignant liver tumors</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Tanabe, M. ; Higashi, M. ; Miyoshi, K. ; Morooka, R. ; Kiyoyama, H. ; Ihara, K. ; Kawano, Y. ; Yamane, M. ; Yamaguchi, T. ; Ito, K.</creator><creatorcontrib>Tanabe, M. ; Higashi, M. ; Miyoshi, K. ; Morooka, R. ; Kiyoyama, H. ; Ihara, K. ; Kawano, Y. ; Yamane, M. ; Yamaguchi, T. ; Ito, K.</creatorcontrib><description>This study investigated the feasibility of single breath-hold (BH) diffusion-weighted MR imaging (DWI) using deep learning reconstruction (DLR) compared to navigator triggered (NT) DWI in patients with malignant liver tumors.
This study included 91 patients who underwent both BH-DWI and NT-DWI with 3T MR system. Abdominal MR images were subjectively analyzed to compare visualization of liver edges, presence of ghosting artifacts, conspicuity of malignant liver tumors, and overall image quality. Then, signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), and apparent diffusion coefficient (ADC) values of malignant liver tumors were objectively measured using regions of interest.
Image quality except conspicuity of malignant liver tumors were significantly better in BH-DW image than in NT-DW image (p < 0.01). Regarding the conspicuity of malignant liver tumors, there was no statistically significant difference between BH-DWI and NT-DWI (p = 0.67). The conspicuity score of 1 or 2 was rendered in 19 (21 %) patients in NT-DWI group. Conversely, BH-DWI showed a score of 3 or 4 in 11 (58 %) of these 19 patients.
The SNR was significantly higher in BH-DWI than in NT-DWI (29.5 ± 14.0 vs. 27.3 ± 14.7, p < 0.047). No significant difference was observed between CNR and ADC values of malignant liver tumors between BH-DWI and NT-DWI (5.67 ± 3.57 vs. 5.78 ± 3.08, p = 0.243; 997.2 ± 207.0 vs. 1021.0 ± 253.1, p = 0.547).
The BH-DWI using DLR is feasible for liver MRI by improving the SNR and overall image quality, and may play a complementary role to NT-DWI by improving the conspicuity of malignant liver tumor in patients with image distortion in NT-DWI.
BH-DWI with DLR would be a preferred approach to achieving sufficient image quality in patients with an irregular triggering pattern, as an alternative to NT-DWI. A further reduction in BH duration (<15 s) should be achieved, taking into account patient tolerance.</description><identifier>ISSN: 1078-8174</identifier><identifier>ISSN: 1532-2831</identifier><identifier>EISSN: 1532-2831</identifier><identifier>DOI: 10.1016/j.radi.2024.11.027</identifier><identifier>PMID: 39667265</identifier><language>eng</language><publisher>Netherlands: Elsevier Ltd</publisher><subject>Breath holding ; Deep learning ; Diffusion magnetic resonance imaging ; Liver</subject><ispartof>Radiography (London, England. 1995), 2024-12, Vol.31 (1), p.275-280</ispartof><rights>2024 The College of Radiographers</rights><rights>Copyright © 2024 The College of Radiographers. Published by Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-1483-0369 ; 0000-0002-0302-4257 ; 0000-0003-3929-9495</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.radi.2024.11.027$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39667265$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tanabe, M.</creatorcontrib><creatorcontrib>Higashi, M.</creatorcontrib><creatorcontrib>Miyoshi, K.</creatorcontrib><creatorcontrib>Morooka, R.</creatorcontrib><creatorcontrib>Kiyoyama, H.</creatorcontrib><creatorcontrib>Ihara, K.</creatorcontrib><creatorcontrib>Kawano, Y.</creatorcontrib><creatorcontrib>Yamane, M.</creatorcontrib><creatorcontrib>Yamaguchi, T.</creatorcontrib><creatorcontrib>Ito, K.</creatorcontrib><title>Breath-hold diffusion-weighted MR imaging (DWI) using deep learning reconstruction: Comparison with navigator triggered DWI in patients with malignant liver tumors</title><title>Radiography (London, England. 1995)</title><addtitle>Radiography (Lond)</addtitle><description>This study investigated the feasibility of single breath-hold (BH) diffusion-weighted MR imaging (DWI) using deep learning reconstruction (DLR) compared to navigator triggered (NT) DWI in patients with malignant liver tumors.
This study included 91 patients who underwent both BH-DWI and NT-DWI with 3T MR system. Abdominal MR images were subjectively analyzed to compare visualization of liver edges, presence of ghosting artifacts, conspicuity of malignant liver tumors, and overall image quality. Then, signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), and apparent diffusion coefficient (ADC) values of malignant liver tumors were objectively measured using regions of interest.
Image quality except conspicuity of malignant liver tumors were significantly better in BH-DW image than in NT-DW image (p < 0.01). Regarding the conspicuity of malignant liver tumors, there was no statistically significant difference between BH-DWI and NT-DWI (p = 0.67). The conspicuity score of 1 or 2 was rendered in 19 (21 %) patients in NT-DWI group. Conversely, BH-DWI showed a score of 3 or 4 in 11 (58 %) of these 19 patients.
The SNR was significantly higher in BH-DWI than in NT-DWI (29.5 ± 14.0 vs. 27.3 ± 14.7, p < 0.047). No significant difference was observed between CNR and ADC values of malignant liver tumors between BH-DWI and NT-DWI (5.67 ± 3.57 vs. 5.78 ± 3.08, p = 0.243; 997.2 ± 207.0 vs. 1021.0 ± 253.1, p = 0.547).
The BH-DWI using DLR is feasible for liver MRI by improving the SNR and overall image quality, and may play a complementary role to NT-DWI by improving the conspicuity of malignant liver tumor in patients with image distortion in NT-DWI.
BH-DWI with DLR would be a preferred approach to achieving sufficient image quality in patients with an irregular triggering pattern, as an alternative to NT-DWI. A further reduction in BH duration (<15 s) should be achieved, taking into account patient tolerance.</description><subject>Breath holding</subject><subject>Deep learning</subject><subject>Diffusion magnetic resonance imaging</subject><subject>Liver</subject><issn>1078-8174</issn><issn>1532-2831</issn><issn>1532-2831</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo1kc1u1TAQhSMEoj_wAiyQl-0iqX8SO0Fs2kuhlYqQUCWW1jSe5PoqsYPt3Irn4UXx1S0bz1jz-Wh8TlF8YLRilMmrXRXA2IpTXleMVZSrV8UpawQveSvY69xT1ZYtU_VJcRbjjtJM8vZtcSI6KRWXzWnx9yYgpG259ZMhxg7DGq135TPacZvQkO8_iZ1htG4kF19-3V-SPM-9QVzIhBDc4Raw9y6msPYpP_5ENn5eINjoHXm2aUsc7O0IyQeSgh1HDFk4ixHryALJokvxCM4w2dGBS2Sye8z4OvsQ3xVvBpgivn-p58Xj19vHzV358OPb_eb6oURGu6bsWmyAKWmEZDXtASi2LXJQ3UBRwtDkAxQ0rHkSyBFq1Rpu6lb1negoivPi4ii7BP97xZj0bGOP0wQO_Rq1YLWUUtCmy-jHF3R9mtHoJWSTwh_939cMfD4CmPfdWww69vmfPRqbzUraeKsZ1YcY9U4fYtSHGDVjOsco_gHwN5Lw</recordid><startdate>20241211</startdate><enddate>20241211</enddate><creator>Tanabe, M.</creator><creator>Higashi, M.</creator><creator>Miyoshi, K.</creator><creator>Morooka, R.</creator><creator>Kiyoyama, H.</creator><creator>Ihara, K.</creator><creator>Kawano, Y.</creator><creator>Yamane, M.</creator><creator>Yamaguchi, T.</creator><creator>Ito, K.</creator><general>Elsevier Ltd</general><scope>NPM</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1483-0369</orcidid><orcidid>https://orcid.org/0000-0002-0302-4257</orcidid><orcidid>https://orcid.org/0000-0003-3929-9495</orcidid></search><sort><creationdate>20241211</creationdate><title>Breath-hold diffusion-weighted MR imaging (DWI) using deep learning reconstruction: Comparison with navigator triggered DWI in patients with malignant liver tumors</title><author>Tanabe, M. ; Higashi, M. ; Miyoshi, K. ; Morooka, R. ; Kiyoyama, H. ; Ihara, K. ; Kawano, Y. ; Yamane, M. ; Yamaguchi, T. ; Ito, K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-e1095-98e5a176d36140caa0e88e2a79f0e6af5e6aa7a515b3e2ea478d2d487c9390e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Breath holding</topic><topic>Deep learning</topic><topic>Diffusion magnetic resonance imaging</topic><topic>Liver</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tanabe, M.</creatorcontrib><creatorcontrib>Higashi, M.</creatorcontrib><creatorcontrib>Miyoshi, K.</creatorcontrib><creatorcontrib>Morooka, R.</creatorcontrib><creatorcontrib>Kiyoyama, H.</creatorcontrib><creatorcontrib>Ihara, K.</creatorcontrib><creatorcontrib>Kawano, Y.</creatorcontrib><creatorcontrib>Yamane, M.</creatorcontrib><creatorcontrib>Yamaguchi, T.</creatorcontrib><creatorcontrib>Ito, K.</creatorcontrib><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>Radiography (London, England. 1995)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tanabe, M.</au><au>Higashi, M.</au><au>Miyoshi, K.</au><au>Morooka, R.</au><au>Kiyoyama, H.</au><au>Ihara, K.</au><au>Kawano, Y.</au><au>Yamane, M.</au><au>Yamaguchi, T.</au><au>Ito, K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Breath-hold diffusion-weighted MR imaging (DWI) using deep learning reconstruction: Comparison with navigator triggered DWI in patients with malignant liver tumors</atitle><jtitle>Radiography (London, England. 1995)</jtitle><addtitle>Radiography (Lond)</addtitle><date>2024-12-11</date><risdate>2024</risdate><volume>31</volume><issue>1</issue><spage>275</spage><epage>280</epage><pages>275-280</pages><issn>1078-8174</issn><issn>1532-2831</issn><eissn>1532-2831</eissn><abstract>This study investigated the feasibility of single breath-hold (BH) diffusion-weighted MR imaging (DWI) using deep learning reconstruction (DLR) compared to navigator triggered (NT) DWI in patients with malignant liver tumors.
This study included 91 patients who underwent both BH-DWI and NT-DWI with 3T MR system. Abdominal MR images were subjectively analyzed to compare visualization of liver edges, presence of ghosting artifacts, conspicuity of malignant liver tumors, and overall image quality. Then, signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), and apparent diffusion coefficient (ADC) values of malignant liver tumors were objectively measured using regions of interest.
Image quality except conspicuity of malignant liver tumors were significantly better in BH-DW image than in NT-DW image (p < 0.01). Regarding the conspicuity of malignant liver tumors, there was no statistically significant difference between BH-DWI and NT-DWI (p = 0.67). The conspicuity score of 1 or 2 was rendered in 19 (21 %) patients in NT-DWI group. Conversely, BH-DWI showed a score of 3 or 4 in 11 (58 %) of these 19 patients.
The SNR was significantly higher in BH-DWI than in NT-DWI (29.5 ± 14.0 vs. 27.3 ± 14.7, p < 0.047). No significant difference was observed between CNR and ADC values of malignant liver tumors between BH-DWI and NT-DWI (5.67 ± 3.57 vs. 5.78 ± 3.08, p = 0.243; 997.2 ± 207.0 vs. 1021.0 ± 253.1, p = 0.547).
The BH-DWI using DLR is feasible for liver MRI by improving the SNR and overall image quality, and may play a complementary role to NT-DWI by improving the conspicuity of malignant liver tumor in patients with image distortion in NT-DWI.
BH-DWI with DLR would be a preferred approach to achieving sufficient image quality in patients with an irregular triggering pattern, as an alternative to NT-DWI. A further reduction in BH duration (<15 s) should be achieved, taking into account patient tolerance.</abstract><cop>Netherlands</cop><pub>Elsevier Ltd</pub><pmid>39667265</pmid><doi>10.1016/j.radi.2024.11.027</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-1483-0369</orcidid><orcidid>https://orcid.org/0000-0002-0302-4257</orcidid><orcidid>https://orcid.org/0000-0003-3929-9495</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1078-8174 |
ispartof | Radiography (London, England. 1995), 2024-12, Vol.31 (1), p.275-280 |
issn | 1078-8174 1532-2831 1532-2831 |
language | eng |
recordid | cdi_proquest_miscellaneous_3146663059 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Breath holding Deep learning Diffusion magnetic resonance imaging Liver |
title | Breath-hold diffusion-weighted MR imaging (DWI) using deep learning reconstruction: Comparison with navigator triggered DWI in patients with malignant liver tumors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T02%3A58%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Breath-hold%20diffusion-weighted%20MR%20imaging%20(DWI)%20using%20deep%20learning%20reconstruction:%20Comparison%20with%20navigator%20triggered%20DWI%20in%20patients%20with%20malignant%20liver%20tumors&rft.jtitle=Radiography%20(London,%20England.%201995)&rft.au=Tanabe,%20M.&rft.date=2024-12-11&rft.volume=31&rft.issue=1&rft.spage=275&rft.epage=280&rft.pages=275-280&rft.issn=1078-8174&rft.eissn=1532-2831&rft_id=info:doi/10.1016/j.radi.2024.11.027&rft_dat=%3Cproquest_pubme%3E3146663059%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3146663059&rft_id=info:pmid/39667265&rft_els_id=S1078817424003584&rfr_iscdi=true |