Molecular Insights into Single-Chain Lipid Modulation of Acid-Sensing Ion Channel 3

Polyunsaturated fatty acids (PUFAs) and their analogs play a significant role in modulating the activity of diverse ion channels, and recent studies show that these lipids potentiate acid-sensing ion channels (ASICs), leading to increased activity. The potentiation of the channel stems from multiple...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry. B 2024-12, Vol.128 (51), p.12685-12697
Hauptverfasser: Bandarupalli, Ramya, Roth, Rebecca, Klipp, Robert C, Bankston, John R, Li, Jing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12697
container_issue 51
container_start_page 12685
container_title The journal of physical chemistry. B
container_volume 128
creator Bandarupalli, Ramya
Roth, Rebecca
Klipp, Robert C
Bankston, John R
Li, Jing
description Polyunsaturated fatty acids (PUFAs) and their analogs play a significant role in modulating the activity of diverse ion channels, and recent studies show that these lipids potentiate acid-sensing ion channels (ASICs), leading to increased activity. The potentiation of the channel stems from multiple gating changes, but the exact mechanism of these effects remains uncertain. We posit a mechanistic explanation for one of these changes in channel function, the increase in the maximal current, by applying a combination of electrophysiology and all-atom molecular dynamics simulations on open-state hASIC3. Microsecond-scale simulations were performed on open-state hASIC3 in the absence and presence of a PUFA, docosahexaenoic acid (DHA), and a PUFA analogue, N-arachidonyl glycine (AG). Intriguingly, our simulations in the absence of PUFA or PUFA analogs reveal that a tail from the membrane phospholipid POPC inserts itself into the pore of the channel through lateral fenestrations on the sides of the transmembrane segments, obstructing ion permeation through the channel. The binding of either DHA or AG prevented POPC from accessing the pore in our simulations, which relied on the block of ionic conduction by phospholipids. Finally, we use single-channel recording to show that DHA increases the amplitude of the single-channel currents in ASIC3, which is consistent with our hypothesis that PUFAs relieve the pore block of the channel induced by POPCs. Together, these findings offer a potential mechanistic explanation of how PUFAs modulate the ASIC maximal current, revealing a novel mechanism of action for PUFA-induced modulation of ion channels.
doi_str_mv 10.1021/acs.jpcb.4c04289
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_3146662883</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3146662883</sourcerecordid><originalsourceid>FETCH-LOGICAL-a220t-63b48d8929bb3301a6b9df2b96dbb7a3cfc629f9e632835d40c1088fdc0fe4043</originalsourceid><addsrcrecordid>eNo1kDtPwzAQgC0EoqWwMyGPDKT4kbr2WFUFKrViKMyWX2ldpXaIk4F_j6FhON3p9N3p7gPgHqMpRgQ_K5Omx8boaWlQSbi4AGM8I6jIMb8caoYRG4GblI4IkRnh7BqMqGCMCTEfg9021s70tWrhOiS_P3QJ-tBFuPNhX7tieVA-wI1vvIXbaDPY-RhgrODCeFvsXB4Ke7jOvYyG4GpIb8FVperk7oY8AZ8vq4_lW7F5f10vF5tCEYK6glFdcssFEVpTirBiWtiKaMGs1nNFTWUYEZVwjBJOZ7ZEBiPOK2tQ5UpU0gl4PO9t2vjVu9TJk0_G1bUKLvZJUlzmNwnnNKMPA9rrk7Oyaf1Jtd_yX0QGns5AViqPsW9DvlxiJH89y79m9iwHz_QHMQ1utg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3146662883</pqid></control><display><type>article</type><title>Molecular Insights into Single-Chain Lipid Modulation of Acid-Sensing Ion Channel 3</title><source>MEDLINE</source><source>ACS Publications</source><creator>Bandarupalli, Ramya ; Roth, Rebecca ; Klipp, Robert C ; Bankston, John R ; Li, Jing</creator><creatorcontrib>Bandarupalli, Ramya ; Roth, Rebecca ; Klipp, Robert C ; Bankston, John R ; Li, Jing</creatorcontrib><description>Polyunsaturated fatty acids (PUFAs) and their analogs play a significant role in modulating the activity of diverse ion channels, and recent studies show that these lipids potentiate acid-sensing ion channels (ASICs), leading to increased activity. The potentiation of the channel stems from multiple gating changes, but the exact mechanism of these effects remains uncertain. We posit a mechanistic explanation for one of these changes in channel function, the increase in the maximal current, by applying a combination of electrophysiology and all-atom molecular dynamics simulations on open-state hASIC3. Microsecond-scale simulations were performed on open-state hASIC3 in the absence and presence of a PUFA, docosahexaenoic acid (DHA), and a PUFA analogue, N-arachidonyl glycine (AG). Intriguingly, our simulations in the absence of PUFA or PUFA analogs reveal that a tail from the membrane phospholipid POPC inserts itself into the pore of the channel through lateral fenestrations on the sides of the transmembrane segments, obstructing ion permeation through the channel. The binding of either DHA or AG prevented POPC from accessing the pore in our simulations, which relied on the block of ionic conduction by phospholipids. Finally, we use single-channel recording to show that DHA increases the amplitude of the single-channel currents in ASIC3, which is consistent with our hypothesis that PUFAs relieve the pore block of the channel induced by POPCs. Together, these findings offer a potential mechanistic explanation of how PUFAs modulate the ASIC maximal current, revealing a novel mechanism of action for PUFA-induced modulation of ion channels.</description><identifier>ISSN: 1520-6106</identifier><identifier>ISSN: 1520-5207</identifier><identifier>EISSN: 1520-5207</identifier><identifier>DOI: 10.1021/acs.jpcb.4c04289</identifier><identifier>PMID: 39666997</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Acid Sensing Ion Channels - chemistry ; Acid Sensing Ion Channels - metabolism ; Animals ; B: Biophysical and Biochemical Systems and Processes ; Docosahexaenoic Acids - chemistry ; Docosahexaenoic Acids - metabolism ; Docosahexaenoic Acids - pharmacology ; Fatty Acids, Unsaturated - chemistry ; Fatty Acids, Unsaturated - metabolism ; Fatty Acids, Unsaturated - pharmacology ; Glycine - chemistry ; Glycine - metabolism ; Molecular Dynamics Simulation ; Phosphatidylcholines - chemistry</subject><ispartof>The journal of physical chemistry. B, 2024-12, Vol.128 (51), p.12685-12697</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-3277-6818</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpcb.4c04289$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpcb.4c04289$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39666997$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bandarupalli, Ramya</creatorcontrib><creatorcontrib>Roth, Rebecca</creatorcontrib><creatorcontrib>Klipp, Robert C</creatorcontrib><creatorcontrib>Bankston, John R</creatorcontrib><creatorcontrib>Li, Jing</creatorcontrib><title>Molecular Insights into Single-Chain Lipid Modulation of Acid-Sensing Ion Channel 3</title><title>The journal of physical chemistry. B</title><addtitle>J. Phys. Chem. B</addtitle><description>Polyunsaturated fatty acids (PUFAs) and their analogs play a significant role in modulating the activity of diverse ion channels, and recent studies show that these lipids potentiate acid-sensing ion channels (ASICs), leading to increased activity. The potentiation of the channel stems from multiple gating changes, but the exact mechanism of these effects remains uncertain. We posit a mechanistic explanation for one of these changes in channel function, the increase in the maximal current, by applying a combination of electrophysiology and all-atom molecular dynamics simulations on open-state hASIC3. Microsecond-scale simulations were performed on open-state hASIC3 in the absence and presence of a PUFA, docosahexaenoic acid (DHA), and a PUFA analogue, N-arachidonyl glycine (AG). Intriguingly, our simulations in the absence of PUFA or PUFA analogs reveal that a tail from the membrane phospholipid POPC inserts itself into the pore of the channel through lateral fenestrations on the sides of the transmembrane segments, obstructing ion permeation through the channel. The binding of either DHA or AG prevented POPC from accessing the pore in our simulations, which relied on the block of ionic conduction by phospholipids. Finally, we use single-channel recording to show that DHA increases the amplitude of the single-channel currents in ASIC3, which is consistent with our hypothesis that PUFAs relieve the pore block of the channel induced by POPCs. Together, these findings offer a potential mechanistic explanation of how PUFAs modulate the ASIC maximal current, revealing a novel mechanism of action for PUFA-induced modulation of ion channels.</description><subject>Acid Sensing Ion Channels - chemistry</subject><subject>Acid Sensing Ion Channels - metabolism</subject><subject>Animals</subject><subject>B: Biophysical and Biochemical Systems and Processes</subject><subject>Docosahexaenoic Acids - chemistry</subject><subject>Docosahexaenoic Acids - metabolism</subject><subject>Docosahexaenoic Acids - pharmacology</subject><subject>Fatty Acids, Unsaturated - chemistry</subject><subject>Fatty Acids, Unsaturated - metabolism</subject><subject>Fatty Acids, Unsaturated - pharmacology</subject><subject>Glycine - chemistry</subject><subject>Glycine - metabolism</subject><subject>Molecular Dynamics Simulation</subject><subject>Phosphatidylcholines - chemistry</subject><issn>1520-6106</issn><issn>1520-5207</issn><issn>1520-5207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo1kDtPwzAQgC0EoqWwMyGPDKT4kbr2WFUFKrViKMyWX2ldpXaIk4F_j6FhON3p9N3p7gPgHqMpRgQ_K5Omx8boaWlQSbi4AGM8I6jIMb8caoYRG4GblI4IkRnh7BqMqGCMCTEfg9021s70tWrhOiS_P3QJ-tBFuPNhX7tieVA-wI1vvIXbaDPY-RhgrODCeFvsXB4Ke7jOvYyG4GpIb8FVperk7oY8AZ8vq4_lW7F5f10vF5tCEYK6glFdcssFEVpTirBiWtiKaMGs1nNFTWUYEZVwjBJOZ7ZEBiPOK2tQ5UpU0gl4PO9t2vjVu9TJk0_G1bUKLvZJUlzmNwnnNKMPA9rrk7Oyaf1Jtd_yX0QGns5AViqPsW9DvlxiJH89y79m9iwHz_QHMQ1utg</recordid><startdate>20241226</startdate><enddate>20241226</enddate><creator>Bandarupalli, Ramya</creator><creator>Roth, Rebecca</creator><creator>Klipp, Robert C</creator><creator>Bankston, John R</creator><creator>Li, Jing</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3277-6818</orcidid></search><sort><creationdate>20241226</creationdate><title>Molecular Insights into Single-Chain Lipid Modulation of Acid-Sensing Ion Channel 3</title><author>Bandarupalli, Ramya ; Roth, Rebecca ; Klipp, Robert C ; Bankston, John R ; Li, Jing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a220t-63b48d8929bb3301a6b9df2b96dbb7a3cfc629f9e632835d40c1088fdc0fe4043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Acid Sensing Ion Channels - chemistry</topic><topic>Acid Sensing Ion Channels - metabolism</topic><topic>Animals</topic><topic>B: Biophysical and Biochemical Systems and Processes</topic><topic>Docosahexaenoic Acids - chemistry</topic><topic>Docosahexaenoic Acids - metabolism</topic><topic>Docosahexaenoic Acids - pharmacology</topic><topic>Fatty Acids, Unsaturated - chemistry</topic><topic>Fatty Acids, Unsaturated - metabolism</topic><topic>Fatty Acids, Unsaturated - pharmacology</topic><topic>Glycine - chemistry</topic><topic>Glycine - metabolism</topic><topic>Molecular Dynamics Simulation</topic><topic>Phosphatidylcholines - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bandarupalli, Ramya</creatorcontrib><creatorcontrib>Roth, Rebecca</creatorcontrib><creatorcontrib>Klipp, Robert C</creatorcontrib><creatorcontrib>Bankston, John R</creatorcontrib><creatorcontrib>Li, Jing</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>The journal of physical chemistry. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bandarupalli, Ramya</au><au>Roth, Rebecca</au><au>Klipp, Robert C</au><au>Bankston, John R</au><au>Li, Jing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular Insights into Single-Chain Lipid Modulation of Acid-Sensing Ion Channel 3</atitle><jtitle>The journal of physical chemistry. B</jtitle><addtitle>J. Phys. Chem. B</addtitle><date>2024-12-26</date><risdate>2024</risdate><volume>128</volume><issue>51</issue><spage>12685</spage><epage>12697</epage><pages>12685-12697</pages><issn>1520-6106</issn><issn>1520-5207</issn><eissn>1520-5207</eissn><abstract>Polyunsaturated fatty acids (PUFAs) and their analogs play a significant role in modulating the activity of diverse ion channels, and recent studies show that these lipids potentiate acid-sensing ion channels (ASICs), leading to increased activity. The potentiation of the channel stems from multiple gating changes, but the exact mechanism of these effects remains uncertain. We posit a mechanistic explanation for one of these changes in channel function, the increase in the maximal current, by applying a combination of electrophysiology and all-atom molecular dynamics simulations on open-state hASIC3. Microsecond-scale simulations were performed on open-state hASIC3 in the absence and presence of a PUFA, docosahexaenoic acid (DHA), and a PUFA analogue, N-arachidonyl glycine (AG). Intriguingly, our simulations in the absence of PUFA or PUFA analogs reveal that a tail from the membrane phospholipid POPC inserts itself into the pore of the channel through lateral fenestrations on the sides of the transmembrane segments, obstructing ion permeation through the channel. The binding of either DHA or AG prevented POPC from accessing the pore in our simulations, which relied on the block of ionic conduction by phospholipids. Finally, we use single-channel recording to show that DHA increases the amplitude of the single-channel currents in ASIC3, which is consistent with our hypothesis that PUFAs relieve the pore block of the channel induced by POPCs. Together, these findings offer a potential mechanistic explanation of how PUFAs modulate the ASIC maximal current, revealing a novel mechanism of action for PUFA-induced modulation of ion channels.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>39666997</pmid><doi>10.1021/acs.jpcb.4c04289</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-3277-6818</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1520-6106
ispartof The journal of physical chemistry. B, 2024-12, Vol.128 (51), p.12685-12697
issn 1520-6106
1520-5207
1520-5207
language eng
recordid cdi_proquest_miscellaneous_3146662883
source MEDLINE; ACS Publications
subjects Acid Sensing Ion Channels - chemistry
Acid Sensing Ion Channels - metabolism
Animals
B: Biophysical and Biochemical Systems and Processes
Docosahexaenoic Acids - chemistry
Docosahexaenoic Acids - metabolism
Docosahexaenoic Acids - pharmacology
Fatty Acids, Unsaturated - chemistry
Fatty Acids, Unsaturated - metabolism
Fatty Acids, Unsaturated - pharmacology
Glycine - chemistry
Glycine - metabolism
Molecular Dynamics Simulation
Phosphatidylcholines - chemistry
title Molecular Insights into Single-Chain Lipid Modulation of Acid-Sensing Ion Channel 3
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T17%3A54%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20Insights%20into%20Single-Chain%20Lipid%20Modulation%20of%20Acid-Sensing%20Ion%20Channel%203&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20B&rft.au=Bandarupalli,%20Ramya&rft.date=2024-12-26&rft.volume=128&rft.issue=51&rft.spage=12685&rft.epage=12697&rft.pages=12685-12697&rft.issn=1520-6106&rft.eissn=1520-5207&rft_id=info:doi/10.1021/acs.jpcb.4c04289&rft_dat=%3Cproquest_pubme%3E3146662883%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3146662883&rft_id=info:pmid/39666997&rfr_iscdi=true