Molecular Insights into Single-Chain Lipid Modulation of Acid-Sensing Ion Channel 3
Polyunsaturated fatty acids (PUFAs) and their analogs play a significant role in modulating the activity of diverse ion channels, and recent studies show that these lipids potentiate acid-sensing ion channels (ASICs), leading to increased activity. The potentiation of the channel stems from multiple...
Gespeichert in:
Veröffentlicht in: | The journal of physical chemistry. B 2024-12, Vol.128 (51), p.12685-12697 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12697 |
---|---|
container_issue | 51 |
container_start_page | 12685 |
container_title | The journal of physical chemistry. B |
container_volume | 128 |
creator | Bandarupalli, Ramya Roth, Rebecca Klipp, Robert C Bankston, John R Li, Jing |
description | Polyunsaturated fatty acids (PUFAs) and their analogs play a significant role in modulating the activity of diverse ion channels, and recent studies show that these lipids potentiate acid-sensing ion channels (ASICs), leading to increased activity. The potentiation of the channel stems from multiple gating changes, but the exact mechanism of these effects remains uncertain. We posit a mechanistic explanation for one of these changes in channel function, the increase in the maximal current, by applying a combination of electrophysiology and all-atom molecular dynamics simulations on open-state hASIC3. Microsecond-scale simulations were performed on open-state hASIC3 in the absence and presence of a PUFA, docosahexaenoic acid (DHA), and a PUFA analogue, N-arachidonyl glycine (AG). Intriguingly, our simulations in the absence of PUFA or PUFA analogs reveal that a tail from the membrane phospholipid POPC inserts itself into the pore of the channel through lateral fenestrations on the sides of the transmembrane segments, obstructing ion permeation through the channel. The binding of either DHA or AG prevented POPC from accessing the pore in our simulations, which relied on the block of ionic conduction by phospholipids. Finally, we use single-channel recording to show that DHA increases the amplitude of the single-channel currents in ASIC3, which is consistent with our hypothesis that PUFAs relieve the pore block of the channel induced by POPCs. Together, these findings offer a potential mechanistic explanation of how PUFAs modulate the ASIC maximal current, revealing a novel mechanism of action for PUFA-induced modulation of ion channels. |
doi_str_mv | 10.1021/acs.jpcb.4c04289 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_3146662883</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3146662883</sourcerecordid><originalsourceid>FETCH-LOGICAL-a220t-63b48d8929bb3301a6b9df2b96dbb7a3cfc629f9e632835d40c1088fdc0fe4043</originalsourceid><addsrcrecordid>eNo1kDtPwzAQgC0EoqWwMyGPDKT4kbr2WFUFKrViKMyWX2ldpXaIk4F_j6FhON3p9N3p7gPgHqMpRgQ_K5Omx8boaWlQSbi4AGM8I6jIMb8caoYRG4GblI4IkRnh7BqMqGCMCTEfg9021s70tWrhOiS_P3QJ-tBFuPNhX7tieVA-wI1vvIXbaDPY-RhgrODCeFvsXB4Ke7jOvYyG4GpIb8FVperk7oY8AZ8vq4_lW7F5f10vF5tCEYK6glFdcssFEVpTirBiWtiKaMGs1nNFTWUYEZVwjBJOZ7ZEBiPOK2tQ5UpU0gl4PO9t2vjVu9TJk0_G1bUKLvZJUlzmNwnnNKMPA9rrk7Oyaf1Jtd_yX0QGns5AViqPsW9DvlxiJH89y79m9iwHz_QHMQ1utg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3146662883</pqid></control><display><type>article</type><title>Molecular Insights into Single-Chain Lipid Modulation of Acid-Sensing Ion Channel 3</title><source>MEDLINE</source><source>ACS Publications</source><creator>Bandarupalli, Ramya ; Roth, Rebecca ; Klipp, Robert C ; Bankston, John R ; Li, Jing</creator><creatorcontrib>Bandarupalli, Ramya ; Roth, Rebecca ; Klipp, Robert C ; Bankston, John R ; Li, Jing</creatorcontrib><description>Polyunsaturated fatty acids (PUFAs) and their analogs play a significant role in modulating the activity of diverse ion channels, and recent studies show that these lipids potentiate acid-sensing ion channels (ASICs), leading to increased activity. The potentiation of the channel stems from multiple gating changes, but the exact mechanism of these effects remains uncertain. We posit a mechanistic explanation for one of these changes in channel function, the increase in the maximal current, by applying a combination of electrophysiology and all-atom molecular dynamics simulations on open-state hASIC3. Microsecond-scale simulations were performed on open-state hASIC3 in the absence and presence of a PUFA, docosahexaenoic acid (DHA), and a PUFA analogue, N-arachidonyl glycine (AG). Intriguingly, our simulations in the absence of PUFA or PUFA analogs reveal that a tail from the membrane phospholipid POPC inserts itself into the pore of the channel through lateral fenestrations on the sides of the transmembrane segments, obstructing ion permeation through the channel. The binding of either DHA or AG prevented POPC from accessing the pore in our simulations, which relied on the block of ionic conduction by phospholipids. Finally, we use single-channel recording to show that DHA increases the amplitude of the single-channel currents in ASIC3, which is consistent with our hypothesis that PUFAs relieve the pore block of the channel induced by POPCs. Together, these findings offer a potential mechanistic explanation of how PUFAs modulate the ASIC maximal current, revealing a novel mechanism of action for PUFA-induced modulation of ion channels.</description><identifier>ISSN: 1520-6106</identifier><identifier>ISSN: 1520-5207</identifier><identifier>EISSN: 1520-5207</identifier><identifier>DOI: 10.1021/acs.jpcb.4c04289</identifier><identifier>PMID: 39666997</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Acid Sensing Ion Channels - chemistry ; Acid Sensing Ion Channels - metabolism ; Animals ; B: Biophysical and Biochemical Systems and Processes ; Docosahexaenoic Acids - chemistry ; Docosahexaenoic Acids - metabolism ; Docosahexaenoic Acids - pharmacology ; Fatty Acids, Unsaturated - chemistry ; Fatty Acids, Unsaturated - metabolism ; Fatty Acids, Unsaturated - pharmacology ; Glycine - chemistry ; Glycine - metabolism ; Molecular Dynamics Simulation ; Phosphatidylcholines - chemistry</subject><ispartof>The journal of physical chemistry. B, 2024-12, Vol.128 (51), p.12685-12697</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-3277-6818</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpcb.4c04289$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpcb.4c04289$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39666997$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bandarupalli, Ramya</creatorcontrib><creatorcontrib>Roth, Rebecca</creatorcontrib><creatorcontrib>Klipp, Robert C</creatorcontrib><creatorcontrib>Bankston, John R</creatorcontrib><creatorcontrib>Li, Jing</creatorcontrib><title>Molecular Insights into Single-Chain Lipid Modulation of Acid-Sensing Ion Channel 3</title><title>The journal of physical chemistry. B</title><addtitle>J. Phys. Chem. B</addtitle><description>Polyunsaturated fatty acids (PUFAs) and their analogs play a significant role in modulating the activity of diverse ion channels, and recent studies show that these lipids potentiate acid-sensing ion channels (ASICs), leading to increased activity. The potentiation of the channel stems from multiple gating changes, but the exact mechanism of these effects remains uncertain. We posit a mechanistic explanation for one of these changes in channel function, the increase in the maximal current, by applying a combination of electrophysiology and all-atom molecular dynamics simulations on open-state hASIC3. Microsecond-scale simulations were performed on open-state hASIC3 in the absence and presence of a PUFA, docosahexaenoic acid (DHA), and a PUFA analogue, N-arachidonyl glycine (AG). Intriguingly, our simulations in the absence of PUFA or PUFA analogs reveal that a tail from the membrane phospholipid POPC inserts itself into the pore of the channel through lateral fenestrations on the sides of the transmembrane segments, obstructing ion permeation through the channel. The binding of either DHA or AG prevented POPC from accessing the pore in our simulations, which relied on the block of ionic conduction by phospholipids. Finally, we use single-channel recording to show that DHA increases the amplitude of the single-channel currents in ASIC3, which is consistent with our hypothesis that PUFAs relieve the pore block of the channel induced by POPCs. Together, these findings offer a potential mechanistic explanation of how PUFAs modulate the ASIC maximal current, revealing a novel mechanism of action for PUFA-induced modulation of ion channels.</description><subject>Acid Sensing Ion Channels - chemistry</subject><subject>Acid Sensing Ion Channels - metabolism</subject><subject>Animals</subject><subject>B: Biophysical and Biochemical Systems and Processes</subject><subject>Docosahexaenoic Acids - chemistry</subject><subject>Docosahexaenoic Acids - metabolism</subject><subject>Docosahexaenoic Acids - pharmacology</subject><subject>Fatty Acids, Unsaturated - chemistry</subject><subject>Fatty Acids, Unsaturated - metabolism</subject><subject>Fatty Acids, Unsaturated - pharmacology</subject><subject>Glycine - chemistry</subject><subject>Glycine - metabolism</subject><subject>Molecular Dynamics Simulation</subject><subject>Phosphatidylcholines - chemistry</subject><issn>1520-6106</issn><issn>1520-5207</issn><issn>1520-5207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo1kDtPwzAQgC0EoqWwMyGPDKT4kbr2WFUFKrViKMyWX2ldpXaIk4F_j6FhON3p9N3p7gPgHqMpRgQ_K5Omx8boaWlQSbi4AGM8I6jIMb8caoYRG4GblI4IkRnh7BqMqGCMCTEfg9021s70tWrhOiS_P3QJ-tBFuPNhX7tieVA-wI1vvIXbaDPY-RhgrODCeFvsXB4Ke7jOvYyG4GpIb8FVperk7oY8AZ8vq4_lW7F5f10vF5tCEYK6glFdcssFEVpTirBiWtiKaMGs1nNFTWUYEZVwjBJOZ7ZEBiPOK2tQ5UpU0gl4PO9t2vjVu9TJk0_G1bUKLvZJUlzmNwnnNKMPA9rrk7Oyaf1Jtd_yX0QGns5AViqPsW9DvlxiJH89y79m9iwHz_QHMQ1utg</recordid><startdate>20241226</startdate><enddate>20241226</enddate><creator>Bandarupalli, Ramya</creator><creator>Roth, Rebecca</creator><creator>Klipp, Robert C</creator><creator>Bankston, John R</creator><creator>Li, Jing</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3277-6818</orcidid></search><sort><creationdate>20241226</creationdate><title>Molecular Insights into Single-Chain Lipid Modulation of Acid-Sensing Ion Channel 3</title><author>Bandarupalli, Ramya ; Roth, Rebecca ; Klipp, Robert C ; Bankston, John R ; Li, Jing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a220t-63b48d8929bb3301a6b9df2b96dbb7a3cfc629f9e632835d40c1088fdc0fe4043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Acid Sensing Ion Channels - chemistry</topic><topic>Acid Sensing Ion Channels - metabolism</topic><topic>Animals</topic><topic>B: Biophysical and Biochemical Systems and Processes</topic><topic>Docosahexaenoic Acids - chemistry</topic><topic>Docosahexaenoic Acids - metabolism</topic><topic>Docosahexaenoic Acids - pharmacology</topic><topic>Fatty Acids, Unsaturated - chemistry</topic><topic>Fatty Acids, Unsaturated - metabolism</topic><topic>Fatty Acids, Unsaturated - pharmacology</topic><topic>Glycine - chemistry</topic><topic>Glycine - metabolism</topic><topic>Molecular Dynamics Simulation</topic><topic>Phosphatidylcholines - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bandarupalli, Ramya</creatorcontrib><creatorcontrib>Roth, Rebecca</creatorcontrib><creatorcontrib>Klipp, Robert C</creatorcontrib><creatorcontrib>Bankston, John R</creatorcontrib><creatorcontrib>Li, Jing</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>The journal of physical chemistry. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bandarupalli, Ramya</au><au>Roth, Rebecca</au><au>Klipp, Robert C</au><au>Bankston, John R</au><au>Li, Jing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular Insights into Single-Chain Lipid Modulation of Acid-Sensing Ion Channel 3</atitle><jtitle>The journal of physical chemistry. B</jtitle><addtitle>J. Phys. Chem. B</addtitle><date>2024-12-26</date><risdate>2024</risdate><volume>128</volume><issue>51</issue><spage>12685</spage><epage>12697</epage><pages>12685-12697</pages><issn>1520-6106</issn><issn>1520-5207</issn><eissn>1520-5207</eissn><abstract>Polyunsaturated fatty acids (PUFAs) and their analogs play a significant role in modulating the activity of diverse ion channels, and recent studies show that these lipids potentiate acid-sensing ion channels (ASICs), leading to increased activity. The potentiation of the channel stems from multiple gating changes, but the exact mechanism of these effects remains uncertain. We posit a mechanistic explanation for one of these changes in channel function, the increase in the maximal current, by applying a combination of electrophysiology and all-atom molecular dynamics simulations on open-state hASIC3. Microsecond-scale simulations were performed on open-state hASIC3 in the absence and presence of a PUFA, docosahexaenoic acid (DHA), and a PUFA analogue, N-arachidonyl glycine (AG). Intriguingly, our simulations in the absence of PUFA or PUFA analogs reveal that a tail from the membrane phospholipid POPC inserts itself into the pore of the channel through lateral fenestrations on the sides of the transmembrane segments, obstructing ion permeation through the channel. The binding of either DHA or AG prevented POPC from accessing the pore in our simulations, which relied on the block of ionic conduction by phospholipids. Finally, we use single-channel recording to show that DHA increases the amplitude of the single-channel currents in ASIC3, which is consistent with our hypothesis that PUFAs relieve the pore block of the channel induced by POPCs. Together, these findings offer a potential mechanistic explanation of how PUFAs modulate the ASIC maximal current, revealing a novel mechanism of action for PUFA-induced modulation of ion channels.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>39666997</pmid><doi>10.1021/acs.jpcb.4c04289</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-3277-6818</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1520-6106 |
ispartof | The journal of physical chemistry. B, 2024-12, Vol.128 (51), p.12685-12697 |
issn | 1520-6106 1520-5207 1520-5207 |
language | eng |
recordid | cdi_proquest_miscellaneous_3146662883 |
source | MEDLINE; ACS Publications |
subjects | Acid Sensing Ion Channels - chemistry Acid Sensing Ion Channels - metabolism Animals B: Biophysical and Biochemical Systems and Processes Docosahexaenoic Acids - chemistry Docosahexaenoic Acids - metabolism Docosahexaenoic Acids - pharmacology Fatty Acids, Unsaturated - chemistry Fatty Acids, Unsaturated - metabolism Fatty Acids, Unsaturated - pharmacology Glycine - chemistry Glycine - metabolism Molecular Dynamics Simulation Phosphatidylcholines - chemistry |
title | Molecular Insights into Single-Chain Lipid Modulation of Acid-Sensing Ion Channel 3 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T17%3A54%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20Insights%20into%20Single-Chain%20Lipid%20Modulation%20of%20Acid-Sensing%20Ion%20Channel%203&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20B&rft.au=Bandarupalli,%20Ramya&rft.date=2024-12-26&rft.volume=128&rft.issue=51&rft.spage=12685&rft.epage=12697&rft.pages=12685-12697&rft.issn=1520-6106&rft.eissn=1520-5207&rft_id=info:doi/10.1021/acs.jpcb.4c04289&rft_dat=%3Cproquest_pubme%3E3146662883%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3146662883&rft_id=info:pmid/39666997&rfr_iscdi=true |