Continuous collective analysis of chemical reactions
The automated synthesis of small organic molecules from modular building blocks has the potential to transform our capacity to create medicines and materials 1 , 2 – 3 . Disruptive acceleration of this molecule-building strategy broadly unlocks its functional potential and requires the integration o...
Gespeichert in:
Veröffentlicht in: | Nature (London) 2024-12, Vol.636 (8042), p.374-379 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 379 |
---|---|
container_issue | 8042 |
container_start_page | 374 |
container_title | Nature (London) |
container_volume | 636 |
creator | Hu, Maowei Yang, Lei Twarog, Nathaniel Ochoada, Jason Li, Yong Vrettos, Eirinaios I. Torres-Hernandez, Arnaldo X. Martinez, James B. Bhatia, Jiya Young, Brandon M. Price, Jeanine McGowan, Kevin Nguyen, Theresa H. Shi, Zhe Anyanwu, Matthew Rimmer, Mary Ashley Mercer, Shea Rankovic, Zoran Shelat, Anang A. Blair, Daniel J. |
description | The automated synthesis of small organic molecules from modular building blocks has the potential to transform our capacity to create medicines and materials
1
,
2
–
3
. Disruptive acceleration of this molecule-building strategy broadly unlocks its functional potential and requires the integration of many new assembly chemistries. Although recent advances in high-throughput chemistry
4
,
5
–
6
can speed up the development of appropriate synthetic methods, for example, in selecting appropriate chemical reaction conditions from the vast range of potential options, equivalent high-throughput analytical methods are needed. Here we report a streamlined approach for the rapid, quantitative analysis of chemical reactions by mass spectrometry. The intrinsic fragmentation features of chemical building blocks generalize the analyses of chemical reactions, allowing sub-second readouts of reaction outcomes. Central to this advance was identifying that starting material fragmentation patterns function as universal barcodes for downstream product analysis by mass spectrometry. Combining these features with acoustic droplet ejection mass spectrometry
7
,
8
we could eliminate slow chromatographic steps and continuously evaluate chemical reactions in multiplexed formats. This enabled the assignment of reaction conditions to molecules derived from ultrahigh-throughput chemical synthesis experiments. More generally, these results indicate that fragmentation features inherent to chemical synthesis can empower rapid data-rich experimentation.
Mass spectrometry fragmentation patterns define analytical barcodes for the rapid, quantitative analysis of high-throughput chemical synthesis experiments. |
doi_str_mv | 10.1038/s41586-024-08211-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3146654449</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3146654449</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1434-8f7b6dcedb47c05c7623002f74e1d37d347d1b5c385088d1c491152fac37e0bb3</originalsourceid><addsrcrecordid>eNp9kD1PwzAURS0EoqXwBxhQRpaAX_z8kRFVFJAqscBsOY4DqZK42A1S_z2GFEamN9xzr54OIZdAb4AydRsRuBI5LTCnqgDI8YjMAaXIUSh5TOaUFipFTMzIWYwbSikHiadkxkohGJZiTnDph107jH6MmfVd5-yu_XSZGUy3j23MfJPZd9e31nRZcCalfojn5KQxXXQXh7sgr6v7l-Vjvn5-eFrerXMLyDBXjaxEbV1dobSUWykKll5qJDqomawZyhoqbpniVKkaLJYAvGiMZdLRqmILcj3tboP_GF3c6b6N1nWdGVx6WDNAITgilgktJtQGH2Nwjd6Gtjdhr4Hqb1t6sqWTLf1jS2MqXR32x6p39V_lV08C2ATEFA1vLuiNH0NyE_-b_QKuLXR7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3146654449</pqid></control><display><type>article</type><title>Continuous collective analysis of chemical reactions</title><source>Nature Journals Online</source><source>SpringerLink Journals - AutoHoldings</source><creator>Hu, Maowei ; Yang, Lei ; Twarog, Nathaniel ; Ochoada, Jason ; Li, Yong ; Vrettos, Eirinaios I. ; Torres-Hernandez, Arnaldo X. ; Martinez, James B. ; Bhatia, Jiya ; Young, Brandon M. ; Price, Jeanine ; McGowan, Kevin ; Nguyen, Theresa H. ; Shi, Zhe ; Anyanwu, Matthew ; Rimmer, Mary Ashley ; Mercer, Shea ; Rankovic, Zoran ; Shelat, Anang A. ; Blair, Daniel J.</creator><creatorcontrib>Hu, Maowei ; Yang, Lei ; Twarog, Nathaniel ; Ochoada, Jason ; Li, Yong ; Vrettos, Eirinaios I. ; Torres-Hernandez, Arnaldo X. ; Martinez, James B. ; Bhatia, Jiya ; Young, Brandon M. ; Price, Jeanine ; McGowan, Kevin ; Nguyen, Theresa H. ; Shi, Zhe ; Anyanwu, Matthew ; Rimmer, Mary Ashley ; Mercer, Shea ; Rankovic, Zoran ; Shelat, Anang A. ; Blair, Daniel J.</creatorcontrib><description>The automated synthesis of small organic molecules from modular building blocks has the potential to transform our capacity to create medicines and materials
1
,
2
–
3
. Disruptive acceleration of this molecule-building strategy broadly unlocks its functional potential and requires the integration of many new assembly chemistries. Although recent advances in high-throughput chemistry
4
,
5
–
6
can speed up the development of appropriate synthetic methods, for example, in selecting appropriate chemical reaction conditions from the vast range of potential options, equivalent high-throughput analytical methods are needed. Here we report a streamlined approach for the rapid, quantitative analysis of chemical reactions by mass spectrometry. The intrinsic fragmentation features of chemical building blocks generalize the analyses of chemical reactions, allowing sub-second readouts of reaction outcomes. Central to this advance was identifying that starting material fragmentation patterns function as universal barcodes for downstream product analysis by mass spectrometry. Combining these features with acoustic droplet ejection mass spectrometry
7
,
8
we could eliminate slow chromatographic steps and continuously evaluate chemical reactions in multiplexed formats. This enabled the assignment of reaction conditions to molecules derived from ultrahigh-throughput chemical synthesis experiments. More generally, these results indicate that fragmentation features inherent to chemical synthesis can empower rapid data-rich experimentation.
Mass spectrometry fragmentation patterns define analytical barcodes for the rapid, quantitative analysis of high-throughput chemical synthesis experiments.</description><identifier>ISSN: 0028-0836</identifier><identifier>ISSN: 1476-4687</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/s41586-024-08211-4</identifier><identifier>PMID: 39663496</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/638/11/296 ; 639/638/549/2132/605 ; 639/638/77/888 ; Humanities and Social Sciences ; multidisciplinary ; Science ; Science (multidisciplinary)</subject><ispartof>Nature (London), 2024-12, Vol.636 (8042), p.374-379</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2024. The Author(s), under exclusive licence to Springer Nature Limited.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1434-8f7b6dcedb47c05c7623002f74e1d37d347d1b5c385088d1c491152fac37e0bb3</cites><orcidid>0000-0001-9881-5555 ; 0000-0002-2279-7538 ; 0000-0003-3268-9714 ; 0000-0002-9317-3749 ; 0009-0009-4791-8891 ; 0000-0002-6266-2910 ; 0000-0003-2973-2072</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41586-024-08211-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41586-024-08211-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39663496$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hu, Maowei</creatorcontrib><creatorcontrib>Yang, Lei</creatorcontrib><creatorcontrib>Twarog, Nathaniel</creatorcontrib><creatorcontrib>Ochoada, Jason</creatorcontrib><creatorcontrib>Li, Yong</creatorcontrib><creatorcontrib>Vrettos, Eirinaios I.</creatorcontrib><creatorcontrib>Torres-Hernandez, Arnaldo X.</creatorcontrib><creatorcontrib>Martinez, James B.</creatorcontrib><creatorcontrib>Bhatia, Jiya</creatorcontrib><creatorcontrib>Young, Brandon M.</creatorcontrib><creatorcontrib>Price, Jeanine</creatorcontrib><creatorcontrib>McGowan, Kevin</creatorcontrib><creatorcontrib>Nguyen, Theresa H.</creatorcontrib><creatorcontrib>Shi, Zhe</creatorcontrib><creatorcontrib>Anyanwu, Matthew</creatorcontrib><creatorcontrib>Rimmer, Mary Ashley</creatorcontrib><creatorcontrib>Mercer, Shea</creatorcontrib><creatorcontrib>Rankovic, Zoran</creatorcontrib><creatorcontrib>Shelat, Anang A.</creatorcontrib><creatorcontrib>Blair, Daniel J.</creatorcontrib><title>Continuous collective analysis of chemical reactions</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>The automated synthesis of small organic molecules from modular building blocks has the potential to transform our capacity to create medicines and materials
1
,
2
–
3
. Disruptive acceleration of this molecule-building strategy broadly unlocks its functional potential and requires the integration of many new assembly chemistries. Although recent advances in high-throughput chemistry
4
,
5
–
6
can speed up the development of appropriate synthetic methods, for example, in selecting appropriate chemical reaction conditions from the vast range of potential options, equivalent high-throughput analytical methods are needed. Here we report a streamlined approach for the rapid, quantitative analysis of chemical reactions by mass spectrometry. The intrinsic fragmentation features of chemical building blocks generalize the analyses of chemical reactions, allowing sub-second readouts of reaction outcomes. Central to this advance was identifying that starting material fragmentation patterns function as universal barcodes for downstream product analysis by mass spectrometry. Combining these features with acoustic droplet ejection mass spectrometry
7
,
8
we could eliminate slow chromatographic steps and continuously evaluate chemical reactions in multiplexed formats. This enabled the assignment of reaction conditions to molecules derived from ultrahigh-throughput chemical synthesis experiments. More generally, these results indicate that fragmentation features inherent to chemical synthesis can empower rapid data-rich experimentation.
Mass spectrometry fragmentation patterns define analytical barcodes for the rapid, quantitative analysis of high-throughput chemical synthesis experiments.</description><subject>639/638/11/296</subject><subject>639/638/549/2132/605</subject><subject>639/638/77/888</subject><subject>Humanities and Social Sciences</subject><subject>multidisciplinary</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><issn>0028-0836</issn><issn>1476-4687</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAURS0EoqXwBxhQRpaAX_z8kRFVFJAqscBsOY4DqZK42A1S_z2GFEamN9xzr54OIZdAb4AydRsRuBI5LTCnqgDI8YjMAaXIUSh5TOaUFipFTMzIWYwbSikHiadkxkohGJZiTnDph107jH6MmfVd5-yu_XSZGUy3j23MfJPZd9e31nRZcCalfojn5KQxXXQXh7sgr6v7l-Vjvn5-eFrerXMLyDBXjaxEbV1dobSUWykKll5qJDqomawZyhoqbpniVKkaLJYAvGiMZdLRqmILcj3tboP_GF3c6b6N1nWdGVx6WDNAITgilgktJtQGH2Nwjd6Gtjdhr4Hqb1t6sqWTLf1jS2MqXR32x6p39V_lV08C2ATEFA1vLuiNH0NyE_-b_QKuLXR7</recordid><startdate>20241212</startdate><enddate>20241212</enddate><creator>Hu, Maowei</creator><creator>Yang, Lei</creator><creator>Twarog, Nathaniel</creator><creator>Ochoada, Jason</creator><creator>Li, Yong</creator><creator>Vrettos, Eirinaios I.</creator><creator>Torres-Hernandez, Arnaldo X.</creator><creator>Martinez, James B.</creator><creator>Bhatia, Jiya</creator><creator>Young, Brandon M.</creator><creator>Price, Jeanine</creator><creator>McGowan, Kevin</creator><creator>Nguyen, Theresa H.</creator><creator>Shi, Zhe</creator><creator>Anyanwu, Matthew</creator><creator>Rimmer, Mary Ashley</creator><creator>Mercer, Shea</creator><creator>Rankovic, Zoran</creator><creator>Shelat, Anang A.</creator><creator>Blair, Daniel J.</creator><general>Nature Publishing Group UK</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9881-5555</orcidid><orcidid>https://orcid.org/0000-0002-2279-7538</orcidid><orcidid>https://orcid.org/0000-0003-3268-9714</orcidid><orcidid>https://orcid.org/0000-0002-9317-3749</orcidid><orcidid>https://orcid.org/0009-0009-4791-8891</orcidid><orcidid>https://orcid.org/0000-0002-6266-2910</orcidid><orcidid>https://orcid.org/0000-0003-2973-2072</orcidid></search><sort><creationdate>20241212</creationdate><title>Continuous collective analysis of chemical reactions</title><author>Hu, Maowei ; Yang, Lei ; Twarog, Nathaniel ; Ochoada, Jason ; Li, Yong ; Vrettos, Eirinaios I. ; Torres-Hernandez, Arnaldo X. ; Martinez, James B. ; Bhatia, Jiya ; Young, Brandon M. ; Price, Jeanine ; McGowan, Kevin ; Nguyen, Theresa H. ; Shi, Zhe ; Anyanwu, Matthew ; Rimmer, Mary Ashley ; Mercer, Shea ; Rankovic, Zoran ; Shelat, Anang A. ; Blair, Daniel J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1434-8f7b6dcedb47c05c7623002f74e1d37d347d1b5c385088d1c491152fac37e0bb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>639/638/11/296</topic><topic>639/638/549/2132/605</topic><topic>639/638/77/888</topic><topic>Humanities and Social Sciences</topic><topic>multidisciplinary</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Maowei</creatorcontrib><creatorcontrib>Yang, Lei</creatorcontrib><creatorcontrib>Twarog, Nathaniel</creatorcontrib><creatorcontrib>Ochoada, Jason</creatorcontrib><creatorcontrib>Li, Yong</creatorcontrib><creatorcontrib>Vrettos, Eirinaios I.</creatorcontrib><creatorcontrib>Torres-Hernandez, Arnaldo X.</creatorcontrib><creatorcontrib>Martinez, James B.</creatorcontrib><creatorcontrib>Bhatia, Jiya</creatorcontrib><creatorcontrib>Young, Brandon M.</creatorcontrib><creatorcontrib>Price, Jeanine</creatorcontrib><creatorcontrib>McGowan, Kevin</creatorcontrib><creatorcontrib>Nguyen, Theresa H.</creatorcontrib><creatorcontrib>Shi, Zhe</creatorcontrib><creatorcontrib>Anyanwu, Matthew</creatorcontrib><creatorcontrib>Rimmer, Mary Ashley</creatorcontrib><creatorcontrib>Mercer, Shea</creatorcontrib><creatorcontrib>Rankovic, Zoran</creatorcontrib><creatorcontrib>Shelat, Anang A.</creatorcontrib><creatorcontrib>Blair, Daniel J.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Maowei</au><au>Yang, Lei</au><au>Twarog, Nathaniel</au><au>Ochoada, Jason</au><au>Li, Yong</au><au>Vrettos, Eirinaios I.</au><au>Torres-Hernandez, Arnaldo X.</au><au>Martinez, James B.</au><au>Bhatia, Jiya</au><au>Young, Brandon M.</au><au>Price, Jeanine</au><au>McGowan, Kevin</au><au>Nguyen, Theresa H.</au><au>Shi, Zhe</au><au>Anyanwu, Matthew</au><au>Rimmer, Mary Ashley</au><au>Mercer, Shea</au><au>Rankovic, Zoran</au><au>Shelat, Anang A.</au><au>Blair, Daniel J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Continuous collective analysis of chemical reactions</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2024-12-12</date><risdate>2024</risdate><volume>636</volume><issue>8042</issue><spage>374</spage><epage>379</epage><pages>374-379</pages><issn>0028-0836</issn><issn>1476-4687</issn><eissn>1476-4687</eissn><abstract>The automated synthesis of small organic molecules from modular building blocks has the potential to transform our capacity to create medicines and materials
1
,
2
–
3
. Disruptive acceleration of this molecule-building strategy broadly unlocks its functional potential and requires the integration of many new assembly chemistries. Although recent advances in high-throughput chemistry
4
,
5
–
6
can speed up the development of appropriate synthetic methods, for example, in selecting appropriate chemical reaction conditions from the vast range of potential options, equivalent high-throughput analytical methods are needed. Here we report a streamlined approach for the rapid, quantitative analysis of chemical reactions by mass spectrometry. The intrinsic fragmentation features of chemical building blocks generalize the analyses of chemical reactions, allowing sub-second readouts of reaction outcomes. Central to this advance was identifying that starting material fragmentation patterns function as universal barcodes for downstream product analysis by mass spectrometry. Combining these features with acoustic droplet ejection mass spectrometry
7
,
8
we could eliminate slow chromatographic steps and continuously evaluate chemical reactions in multiplexed formats. This enabled the assignment of reaction conditions to molecules derived from ultrahigh-throughput chemical synthesis experiments. More generally, these results indicate that fragmentation features inherent to chemical synthesis can empower rapid data-rich experimentation.
Mass spectrometry fragmentation patterns define analytical barcodes for the rapid, quantitative analysis of high-throughput chemical synthesis experiments.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>39663496</pmid><doi>10.1038/s41586-024-08211-4</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-9881-5555</orcidid><orcidid>https://orcid.org/0000-0002-2279-7538</orcidid><orcidid>https://orcid.org/0000-0003-3268-9714</orcidid><orcidid>https://orcid.org/0000-0002-9317-3749</orcidid><orcidid>https://orcid.org/0009-0009-4791-8891</orcidid><orcidid>https://orcid.org/0000-0002-6266-2910</orcidid><orcidid>https://orcid.org/0000-0003-2973-2072</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-0836 |
ispartof | Nature (London), 2024-12, Vol.636 (8042), p.374-379 |
issn | 0028-0836 1476-4687 1476-4687 |
language | eng |
recordid | cdi_proquest_miscellaneous_3146654449 |
source | Nature Journals Online; SpringerLink Journals - AutoHoldings |
subjects | 639/638/11/296 639/638/549/2132/605 639/638/77/888 Humanities and Social Sciences multidisciplinary Science Science (multidisciplinary) |
title | Continuous collective analysis of chemical reactions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T15%3A26%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Continuous%20collective%20analysis%20of%20chemical%20reactions&rft.jtitle=Nature%20(London)&rft.au=Hu,%20Maowei&rft.date=2024-12-12&rft.volume=636&rft.issue=8042&rft.spage=374&rft.epage=379&rft.pages=374-379&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/s41586-024-08211-4&rft_dat=%3Cproquest_cross%3E3146654449%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3146654449&rft_id=info:pmid/39663496&rfr_iscdi=true |