Ultrathin Bioelectrode Array with Improved Electrochemical Performance for Electrophysiological Sensing and Modulation

To achieve high accuracy and effectiveness in sensing and modulating neural activity, efficient charge-transfer biointerfaces and a high spatiotemporal resolution are required. Ultrathin bioelectrode arrays exhibiting mechanical compliance with biological tissues offer such biointerfaces. However, t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2024-12, Vol.18 (51), p.34971-34985
Hauptverfasser: Du, Xiaojia, Yang, Leyi, Shi, Xiaohu, Ye, Chujie, Wang, Yunfei, Song, Dekui, Xiong, Wei, Gu, Xiaodan, Lu, Chunming, Liu, Nan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 34985
container_issue 51
container_start_page 34971
container_title ACS nano
container_volume 18
creator Du, Xiaojia
Yang, Leyi
Shi, Xiaohu
Ye, Chujie
Wang, Yunfei
Song, Dekui
Xiong, Wei
Gu, Xiaodan
Lu, Chunming
Liu, Nan
description To achieve high accuracy and effectiveness in sensing and modulating neural activity, efficient charge-transfer biointerfaces and a high spatiotemporal resolution are required. Ultrathin bioelectrode arrays exhibiting mechanical compliance with biological tissues offer such biointerfaces. However, their thinness often leads to a lack of mechano-electrical stability or sufficiently high electrochemical capacitance, thus deteriorating their overall performance. Here, we report ultrathin (∼115 nm) bioelectrode arrays that simultaneously enable ultraconformability, mechano-electrical stability and high electrochemical performance. These arrays show high opto-electrical conductivity (2060 S cm–1@88% transparency), mechanical stretchability (110% strain), and excellent electrochemical properties (24.5 mC cm–2 charge storage capacity and 3.5 times lower interfacial impedance than commercial electrodes). The improved mechano-electrical and electrochemical performance is attributed to the synergistic interactions within the poly­(3,4-ethylenedioxythiophene) sulfonate (PEDOT:PSS)/graphene oxide (GO) interpenetrating network (PGIN), where π–π and hydrogen bonding interactions improve conductive pathways between PEDOT chains and enhance the charge-transfer mobility. This ultrathin bioelectrode is compatible with photolithography processing and provides spatiotemporally precise signal mapping capabilities for sensing and modulating neuromuscular activity. By capturing weak multichannel facial electromyography signals and applying machine learning algorithms, we achieve high accuracy in silent speech recognition. Moreover, the high transparency of the bioelectrode allows simultaneous recording of electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS) signals, facilitating dual-mode brain activity analysis with both high temporal and high spatial resolution.
doi_str_mv 10.1021/acsnano.4c13325
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_3146654260</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3146654260</sourcerecordid><originalsourceid>FETCH-LOGICAL-a177t-8f94c3201ccafb57df291be080b40ac597f1528129215f14bb1d8189bd7737a53</originalsourceid><addsrcrecordid>eNo9kVFLwzAUhYMobk6ffZM8CrKZ2zRN-zjH1MFEQQe-hTRNt4w2mUk72b-3us2ne-B8XO49B6FrICMgEdxLFay0bhQroDRiJ6gPGU2GJE0-T_81gx66CGFNCOMpT85Rj2ZJ0mnWR9tF1XjZrIzFD8bpSqvGu0Ljsfdyh79Ns8KzeuPdVhd4unfVStdGyQq_aV86X0urNO7E0d-sdsG4yi3_oHdtg7FLLG2BX1zRVrIxzl6is1JWQV8d5gAtHqcfk-fh_PVpNhnPhxI4b4ZpmcWKRgSUkmXOeFFGGeSapCSPiVQs4yWwKIUoi4CVEOc5FCmkWV5wTrlkdIBu93u7F75aHRpRm6B0VUmrXRsEhbhLIo4S0qE3B7TNa12IjTe19DtxzKoD7vZAF7pYu9bb7nIBRPw2IQ5NiEMT9AfEiX1F</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3146654260</pqid></control><display><type>article</type><title>Ultrathin Bioelectrode Array with Improved Electrochemical Performance for Electrophysiological Sensing and Modulation</title><source>MEDLINE</source><source>ACS Publications</source><creator>Du, Xiaojia ; Yang, Leyi ; Shi, Xiaohu ; Ye, Chujie ; Wang, Yunfei ; Song, Dekui ; Xiong, Wei ; Gu, Xiaodan ; Lu, Chunming ; Liu, Nan</creator><creatorcontrib>Du, Xiaojia ; Yang, Leyi ; Shi, Xiaohu ; Ye, Chujie ; Wang, Yunfei ; Song, Dekui ; Xiong, Wei ; Gu, Xiaodan ; Lu, Chunming ; Liu, Nan</creatorcontrib><description>To achieve high accuracy and effectiveness in sensing and modulating neural activity, efficient charge-transfer biointerfaces and a high spatiotemporal resolution are required. Ultrathin bioelectrode arrays exhibiting mechanical compliance with biological tissues offer such biointerfaces. However, their thinness often leads to a lack of mechano-electrical stability or sufficiently high electrochemical capacitance, thus deteriorating their overall performance. Here, we report ultrathin (∼115 nm) bioelectrode arrays that simultaneously enable ultraconformability, mechano-electrical stability and high electrochemical performance. These arrays show high opto-electrical conductivity (2060 S cm–1@88% transparency), mechanical stretchability (110% strain), and excellent electrochemical properties (24.5 mC cm–2 charge storage capacity and 3.5 times lower interfacial impedance than commercial electrodes). The improved mechano-electrical and electrochemical performance is attributed to the synergistic interactions within the poly­(3,4-ethylenedioxythiophene) sulfonate (PEDOT:PSS)/graphene oxide (GO) interpenetrating network (PGIN), where π–π and hydrogen bonding interactions improve conductive pathways between PEDOT chains and enhance the charge-transfer mobility. This ultrathin bioelectrode is compatible with photolithography processing and provides spatiotemporally precise signal mapping capabilities for sensing and modulating neuromuscular activity. By capturing weak multichannel facial electromyography signals and applying machine learning algorithms, we achieve high accuracy in silent speech recognition. Moreover, the high transparency of the bioelectrode allows simultaneous recording of electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS) signals, facilitating dual-mode brain activity analysis with both high temporal and high spatial resolution.</description><identifier>ISSN: 1936-0851</identifier><identifier>ISSN: 1936-086X</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.4c13325</identifier><identifier>PMID: 39665785</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Biosensing Techniques - instrumentation ; Bridged Bicyclo Compounds, Heterocyclic - chemistry ; Electric Conductivity ; Electrochemical Techniques - instrumentation ; Electrodes ; Graphite - chemistry ; Humans ; Polymers - chemistry</subject><ispartof>ACS nano, 2024-12, Vol.18 (51), p.34971-34985</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-8394-1671 ; 0009-0002-0011-6209 ; 0000-0001-7555-5308 ; 0000-0002-1123-3673 ; 0000-0002-1793-7372</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsnano.4c13325$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsnano.4c13325$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39665785$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Du, Xiaojia</creatorcontrib><creatorcontrib>Yang, Leyi</creatorcontrib><creatorcontrib>Shi, Xiaohu</creatorcontrib><creatorcontrib>Ye, Chujie</creatorcontrib><creatorcontrib>Wang, Yunfei</creatorcontrib><creatorcontrib>Song, Dekui</creatorcontrib><creatorcontrib>Xiong, Wei</creatorcontrib><creatorcontrib>Gu, Xiaodan</creatorcontrib><creatorcontrib>Lu, Chunming</creatorcontrib><creatorcontrib>Liu, Nan</creatorcontrib><title>Ultrathin Bioelectrode Array with Improved Electrochemical Performance for Electrophysiological Sensing and Modulation</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>To achieve high accuracy and effectiveness in sensing and modulating neural activity, efficient charge-transfer biointerfaces and a high spatiotemporal resolution are required. Ultrathin bioelectrode arrays exhibiting mechanical compliance with biological tissues offer such biointerfaces. However, their thinness often leads to a lack of mechano-electrical stability or sufficiently high electrochemical capacitance, thus deteriorating their overall performance. Here, we report ultrathin (∼115 nm) bioelectrode arrays that simultaneously enable ultraconformability, mechano-electrical stability and high electrochemical performance. These arrays show high opto-electrical conductivity (2060 S cm–1@88% transparency), mechanical stretchability (110% strain), and excellent electrochemical properties (24.5 mC cm–2 charge storage capacity and 3.5 times lower interfacial impedance than commercial electrodes). The improved mechano-electrical and electrochemical performance is attributed to the synergistic interactions within the poly­(3,4-ethylenedioxythiophene) sulfonate (PEDOT:PSS)/graphene oxide (GO) interpenetrating network (PGIN), where π–π and hydrogen bonding interactions improve conductive pathways between PEDOT chains and enhance the charge-transfer mobility. This ultrathin bioelectrode is compatible with photolithography processing and provides spatiotemporally precise signal mapping capabilities for sensing and modulating neuromuscular activity. By capturing weak multichannel facial electromyography signals and applying machine learning algorithms, we achieve high accuracy in silent speech recognition. Moreover, the high transparency of the bioelectrode allows simultaneous recording of electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS) signals, facilitating dual-mode brain activity analysis with both high temporal and high spatial resolution.</description><subject>Biosensing Techniques - instrumentation</subject><subject>Bridged Bicyclo Compounds, Heterocyclic - chemistry</subject><subject>Electric Conductivity</subject><subject>Electrochemical Techniques - instrumentation</subject><subject>Electrodes</subject><subject>Graphite - chemistry</subject><subject>Humans</subject><subject>Polymers - chemistry</subject><issn>1936-0851</issn><issn>1936-086X</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo9kVFLwzAUhYMobk6ffZM8CrKZ2zRN-zjH1MFEQQe-hTRNt4w2mUk72b-3us2ne-B8XO49B6FrICMgEdxLFay0bhQroDRiJ6gPGU2GJE0-T_81gx66CGFNCOMpT85Rj2ZJ0mnWR9tF1XjZrIzFD8bpSqvGu0Ljsfdyh79Ns8KzeuPdVhd4unfVStdGyQq_aV86X0urNO7E0d-sdsG4yi3_oHdtg7FLLG2BX1zRVrIxzl6is1JWQV8d5gAtHqcfk-fh_PVpNhnPhxI4b4ZpmcWKRgSUkmXOeFFGGeSapCSPiVQs4yWwKIUoi4CVEOc5FCmkWV5wTrlkdIBu93u7F75aHRpRm6B0VUmrXRsEhbhLIo4S0qE3B7TNa12IjTe19DtxzKoD7vZAF7pYu9bb7nIBRPw2IQ5NiEMT9AfEiX1F</recordid><startdate>20241224</startdate><enddate>20241224</enddate><creator>Du, Xiaojia</creator><creator>Yang, Leyi</creator><creator>Shi, Xiaohu</creator><creator>Ye, Chujie</creator><creator>Wang, Yunfei</creator><creator>Song, Dekui</creator><creator>Xiong, Wei</creator><creator>Gu, Xiaodan</creator><creator>Lu, Chunming</creator><creator>Liu, Nan</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8394-1671</orcidid><orcidid>https://orcid.org/0009-0002-0011-6209</orcidid><orcidid>https://orcid.org/0000-0001-7555-5308</orcidid><orcidid>https://orcid.org/0000-0002-1123-3673</orcidid><orcidid>https://orcid.org/0000-0002-1793-7372</orcidid></search><sort><creationdate>20241224</creationdate><title>Ultrathin Bioelectrode Array with Improved Electrochemical Performance for Electrophysiological Sensing and Modulation</title><author>Du, Xiaojia ; Yang, Leyi ; Shi, Xiaohu ; Ye, Chujie ; Wang, Yunfei ; Song, Dekui ; Xiong, Wei ; Gu, Xiaodan ; Lu, Chunming ; Liu, Nan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a177t-8f94c3201ccafb57df291be080b40ac597f1528129215f14bb1d8189bd7737a53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Biosensing Techniques - instrumentation</topic><topic>Bridged Bicyclo Compounds, Heterocyclic - chemistry</topic><topic>Electric Conductivity</topic><topic>Electrochemical Techniques - instrumentation</topic><topic>Electrodes</topic><topic>Graphite - chemistry</topic><topic>Humans</topic><topic>Polymers - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Du, Xiaojia</creatorcontrib><creatorcontrib>Yang, Leyi</creatorcontrib><creatorcontrib>Shi, Xiaohu</creatorcontrib><creatorcontrib>Ye, Chujie</creatorcontrib><creatorcontrib>Wang, Yunfei</creatorcontrib><creatorcontrib>Song, Dekui</creatorcontrib><creatorcontrib>Xiong, Wei</creatorcontrib><creatorcontrib>Gu, Xiaodan</creatorcontrib><creatorcontrib>Lu, Chunming</creatorcontrib><creatorcontrib>Liu, Nan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Du, Xiaojia</au><au>Yang, Leyi</au><au>Shi, Xiaohu</au><au>Ye, Chujie</au><au>Wang, Yunfei</au><au>Song, Dekui</au><au>Xiong, Wei</au><au>Gu, Xiaodan</au><au>Lu, Chunming</au><au>Liu, Nan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultrathin Bioelectrode Array with Improved Electrochemical Performance for Electrophysiological Sensing and Modulation</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2024-12-24</date><risdate>2024</risdate><volume>18</volume><issue>51</issue><spage>34971</spage><epage>34985</epage><pages>34971-34985</pages><issn>1936-0851</issn><issn>1936-086X</issn><eissn>1936-086X</eissn><abstract>To achieve high accuracy and effectiveness in sensing and modulating neural activity, efficient charge-transfer biointerfaces and a high spatiotemporal resolution are required. Ultrathin bioelectrode arrays exhibiting mechanical compliance with biological tissues offer such biointerfaces. However, their thinness often leads to a lack of mechano-electrical stability or sufficiently high electrochemical capacitance, thus deteriorating their overall performance. Here, we report ultrathin (∼115 nm) bioelectrode arrays that simultaneously enable ultraconformability, mechano-electrical stability and high electrochemical performance. These arrays show high opto-electrical conductivity (2060 S cm–1@88% transparency), mechanical stretchability (110% strain), and excellent electrochemical properties (24.5 mC cm–2 charge storage capacity and 3.5 times lower interfacial impedance than commercial electrodes). The improved mechano-electrical and electrochemical performance is attributed to the synergistic interactions within the poly­(3,4-ethylenedioxythiophene) sulfonate (PEDOT:PSS)/graphene oxide (GO) interpenetrating network (PGIN), where π–π and hydrogen bonding interactions improve conductive pathways between PEDOT chains and enhance the charge-transfer mobility. This ultrathin bioelectrode is compatible with photolithography processing and provides spatiotemporally precise signal mapping capabilities for sensing and modulating neuromuscular activity. By capturing weak multichannel facial electromyography signals and applying machine learning algorithms, we achieve high accuracy in silent speech recognition. Moreover, the high transparency of the bioelectrode allows simultaneous recording of electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS) signals, facilitating dual-mode brain activity analysis with both high temporal and high spatial resolution.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>39665785</pmid><doi>10.1021/acsnano.4c13325</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-8394-1671</orcidid><orcidid>https://orcid.org/0009-0002-0011-6209</orcidid><orcidid>https://orcid.org/0000-0001-7555-5308</orcidid><orcidid>https://orcid.org/0000-0002-1123-3673</orcidid><orcidid>https://orcid.org/0000-0002-1793-7372</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1936-0851
ispartof ACS nano, 2024-12, Vol.18 (51), p.34971-34985
issn 1936-0851
1936-086X
1936-086X
language eng
recordid cdi_proquest_miscellaneous_3146654260
source MEDLINE; ACS Publications
subjects Biosensing Techniques - instrumentation
Bridged Bicyclo Compounds, Heterocyclic - chemistry
Electric Conductivity
Electrochemical Techniques - instrumentation
Electrodes
Graphite - chemistry
Humans
Polymers - chemistry
title Ultrathin Bioelectrode Array with Improved Electrochemical Performance for Electrophysiological Sensing and Modulation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T16%3A19%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultrathin%20Bioelectrode%20Array%20with%20Improved%20Electrochemical%20Performance%20for%20Electrophysiological%20Sensing%20and%20Modulation&rft.jtitle=ACS%20nano&rft.au=Du,%20Xiaojia&rft.date=2024-12-24&rft.volume=18&rft.issue=51&rft.spage=34971&rft.epage=34985&rft.pages=34971-34985&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.4c13325&rft_dat=%3Cproquest_pubme%3E3146654260%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3146654260&rft_id=info:pmid/39665785&rfr_iscdi=true