Validation of the generalized stochastic microdosimetric model (GSM 2 ) over a broad range of LET and particle beam type: a unique model for accurate description of (therapy relevant) radiation qualities
. The present work shows the first extensive validation of the (GSM ). This mechanistic and probabilistic model is trained and tested over cell survival experiments conducted with two cell lines (H460 and H1437), three different types of radiation (protons, helium, and carbon ions), spanning a very...
Gespeichert in:
Veröffentlicht in: | Physics in medicine & biology 2024-12, Vol.70 (1) |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | Physics in medicine & biology |
container_volume | 70 |
creator | Bordieri, Giulio Missiaggia, Marta Cartechini, Giorgio Battestini, Marco Bronk, Lawrence Guan, Fada Grosshans, David Rai, Priyamvada Scifoni, Emanuele La Tessa, Chiara Lattanzi, Gianluca Cordoni, Francesco G |
description | . The present work shows the first extensive validation of the
(GSM
). This mechanistic and probabilistic model is trained and tested over cell survival experiments conducted with two cell lines (H460 and H1437), three different types of radiation (protons, helium, and carbon ions), spanning a very broad LET range from1 keVμm-1up to more than300 keVμm-1. Currently, the existing mechanistic radiation biophysical models show some limitations in describing cell killing without the addition of ad hoc corrections, especially in the high-LET regime, where the overkill effect is observed.
. The experimental irradiation conditions have been accurately reproduced with Monte Carlo simulations using the GEANT4-based TOPAS computational toolkit. We show the main and unique features of GSM2, i.e. how it can predict the biological response by considering the full information on the stochasticity of radiation through the microdosimetric spectrum, which is supposed to be the best descriptor of radiation quality.
. Well-matching results for different biological endpoints with the natural presence of the overkill effect fully display the predictive power of GSM
.
. This study shows the complete generality and flexibility of GSM
and its ability to successfully predict the cell survival probability from very different particle radiation fields. Consequently, we demonstrate the dependence of the relative biological effectiveness on the whole microdosimetric spectrum, which fully includes the stochasticity inherently given by radiation-matter interaction. |
doi_str_mv | 10.1088/1361-6560/ad9dab |
format | Article |
fullrecord | <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_3146651744</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3146651744</sourcerecordid><originalsourceid>FETCH-LOGICAL-i1251-2a8f63fbf6ae709e446c14bc6ec016589ee0c918c9cc9ffcda694610effae4f93</originalsourceid><addsrcrecordid>eNptkcFu1DAQhi0Eokvhzgn5xlZiqZ043rg3VJWCtIgDhas1scetqyRObafS8oq8FI52y4mTNaNvfn_ST8hbzj5y1rbnvJZ8IxvJzsEqC90zsvq3ek5WjNV8o3jTnJBXKd0zxnlbiZfkpFZSVkzwFfnzC3pvIfsw0uBovkN6iyPGsv2NlqYczB2k7A0dvInBhuQHzHGZg8Werq9_fKMVPaPhESMF2sUAlkYYb3HJ213dUBgtnSCWjB5phzDQvJ_wosDz6B9mPCa5UO6NmSNkpBaTiX560loXrwjTnkbs8RHGfFa-sP6g_TAX2ewxvSYvHPQJ3xzfU_Lz89XN5ZfN7vv118tPu43nVcM3FbRO1q5zEnDLFAohDRedkWgYl02rEJlRvDXKGOWcsSCVkJyhc4DCqfqUrA-5UwzFP2U9-GSw72HEMCddcyFlw7dCFPTdEZ27Aa2eoh8g7vVTAQX4cAB8mPR9mONYzDVneulXL2XqpUx96Lfg7_-DT0Ont-VEM94w1ujJuvovh6enqg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3146651744</pqid></control><display><type>article</type><title>Validation of the generalized stochastic microdosimetric model (GSM 2 ) over a broad range of LET and particle beam type: a unique model for accurate description of (therapy relevant) radiation qualities</title><source>MEDLINE</source><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Bordieri, Giulio ; Missiaggia, Marta ; Cartechini, Giorgio ; Battestini, Marco ; Bronk, Lawrence ; Guan, Fada ; Grosshans, David ; Rai, Priyamvada ; Scifoni, Emanuele ; La Tessa, Chiara ; Lattanzi, Gianluca ; Cordoni, Francesco G</creator><creatorcontrib>Bordieri, Giulio ; Missiaggia, Marta ; Cartechini, Giorgio ; Battestini, Marco ; Bronk, Lawrence ; Guan, Fada ; Grosshans, David ; Rai, Priyamvada ; Scifoni, Emanuele ; La Tessa, Chiara ; Lattanzi, Gianluca ; Cordoni, Francesco G</creatorcontrib><description>. The present work shows the first extensive validation of the
(GSM
). This mechanistic and probabilistic model is trained and tested over cell survival experiments conducted with two cell lines (H460 and H1437), three different types of radiation (protons, helium, and carbon ions), spanning a very broad LET range from1 keVμm-1up to more than300 keVμm-1. Currently, the existing mechanistic radiation biophysical models show some limitations in describing cell killing without the addition of ad hoc corrections, especially in the high-LET regime, where the overkill effect is observed.
. The experimental irradiation conditions have been accurately reproduced with Monte Carlo simulations using the GEANT4-based TOPAS computational toolkit. We show the main and unique features of GSM2, i.e. how it can predict the biological response by considering the full information on the stochasticity of radiation through the microdosimetric spectrum, which is supposed to be the best descriptor of radiation quality.
. Well-matching results for different biological endpoints with the natural presence of the overkill effect fully display the predictive power of GSM
.
. This study shows the complete generality and flexibility of GSM
and its ability to successfully predict the cell survival probability from very different particle radiation fields. Consequently, we demonstrate the dependence of the relative biological effectiveness on the whole microdosimetric spectrum, which fully includes the stochasticity inherently given by radiation-matter interaction.</description><identifier>ISSN: 0031-9155</identifier><identifier>ISSN: 1361-6560</identifier><identifier>EISSN: 1361-6560</identifier><identifier>DOI: 10.1088/1361-6560/ad9dab</identifier><identifier>PMID: 39662041</identifier><identifier>CODEN: PHMBA7</identifier><language>eng</language><publisher>England: IOP Publishing</publisher><subject>Cell Line, Tumor ; Cell Survival - radiation effects ; generalized ; GSM2 ; Humans ; Linear Energy Transfer ; microdosimetric ; microdosimetry ; Models, Biological ; Monte Carlo Method ; radiation ; Radiometry ; stochastic ; Stochastic Processes</subject><ispartof>Physics in medicine & biology, 2024-12, Vol.70 (1)</ispartof><rights>2024 The Author(s). Published on behalf of Institute of Physics and Engineering in Medicine by IOP Publishing Ltd</rights><rights>Creative Commons Attribution license.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-0808-6457 ; 0000-0002-2896-0981 ; 0009-0003-3065-5112 ; 0000-0001-8477-7391 ; 0000-0002-1295-7884 ; 0000-0003-2092-7279 ; 0000-0003-1851-5152 ; 0000-0001-5742-6772 ; 0009-0001-0412-5228</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-6560/ad9dab/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,780,784,27924,27925,53846,53893</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39662041$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bordieri, Giulio</creatorcontrib><creatorcontrib>Missiaggia, Marta</creatorcontrib><creatorcontrib>Cartechini, Giorgio</creatorcontrib><creatorcontrib>Battestini, Marco</creatorcontrib><creatorcontrib>Bronk, Lawrence</creatorcontrib><creatorcontrib>Guan, Fada</creatorcontrib><creatorcontrib>Grosshans, David</creatorcontrib><creatorcontrib>Rai, Priyamvada</creatorcontrib><creatorcontrib>Scifoni, Emanuele</creatorcontrib><creatorcontrib>La Tessa, Chiara</creatorcontrib><creatorcontrib>Lattanzi, Gianluca</creatorcontrib><creatorcontrib>Cordoni, Francesco G</creatorcontrib><title>Validation of the generalized stochastic microdosimetric model (GSM 2 ) over a broad range of LET and particle beam type: a unique model for accurate description of (therapy relevant) radiation qualities</title><title>Physics in medicine & biology</title><addtitle>PMB</addtitle><addtitle>Phys. Med. Biol</addtitle><description>. The present work shows the first extensive validation of the
(GSM
). This mechanistic and probabilistic model is trained and tested over cell survival experiments conducted with two cell lines (H460 and H1437), three different types of radiation (protons, helium, and carbon ions), spanning a very broad LET range from1 keVμm-1up to more than300 keVμm-1. Currently, the existing mechanistic radiation biophysical models show some limitations in describing cell killing without the addition of ad hoc corrections, especially in the high-LET regime, where the overkill effect is observed.
. The experimental irradiation conditions have been accurately reproduced with Monte Carlo simulations using the GEANT4-based TOPAS computational toolkit. We show the main and unique features of GSM2, i.e. how it can predict the biological response by considering the full information on the stochasticity of radiation through the microdosimetric spectrum, which is supposed to be the best descriptor of radiation quality.
. Well-matching results for different biological endpoints with the natural presence of the overkill effect fully display the predictive power of GSM
.
. This study shows the complete generality and flexibility of GSM
and its ability to successfully predict the cell survival probability from very different particle radiation fields. Consequently, we demonstrate the dependence of the relative biological effectiveness on the whole microdosimetric spectrum, which fully includes the stochasticity inherently given by radiation-matter interaction.</description><subject>Cell Line, Tumor</subject><subject>Cell Survival - radiation effects</subject><subject>generalized</subject><subject>GSM2</subject><subject>Humans</subject><subject>Linear Energy Transfer</subject><subject>microdosimetric</subject><subject>microdosimetry</subject><subject>Models, Biological</subject><subject>Monte Carlo Method</subject><subject>radiation</subject><subject>Radiometry</subject><subject>stochastic</subject><subject>Stochastic Processes</subject><issn>0031-9155</issn><issn>1361-6560</issn><issn>1361-6560</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>EIF</sourceid><recordid>eNptkcFu1DAQhi0Eokvhzgn5xlZiqZ043rg3VJWCtIgDhas1scetqyRObafS8oq8FI52y4mTNaNvfn_ST8hbzj5y1rbnvJZ8IxvJzsEqC90zsvq3ek5WjNV8o3jTnJBXKd0zxnlbiZfkpFZSVkzwFfnzC3pvIfsw0uBovkN6iyPGsv2NlqYczB2k7A0dvInBhuQHzHGZg8Werq9_fKMVPaPhESMF2sUAlkYYb3HJ213dUBgtnSCWjB5phzDQvJ_wosDz6B9mPCa5UO6NmSNkpBaTiX560loXrwjTnkbs8RHGfFa-sP6g_TAX2ewxvSYvHPQJ3xzfU_Lz89XN5ZfN7vv118tPu43nVcM3FbRO1q5zEnDLFAohDRedkWgYl02rEJlRvDXKGOWcsSCVkJyhc4DCqfqUrA-5UwzFP2U9-GSw72HEMCddcyFlw7dCFPTdEZ27Aa2eoh8g7vVTAQX4cAB8mPR9mONYzDVneulXL2XqpUx96Lfg7_-DT0Ont-VEM94w1ujJuvovh6enqg</recordid><startdate>20241224</startdate><enddate>20241224</enddate><creator>Bordieri, Giulio</creator><creator>Missiaggia, Marta</creator><creator>Cartechini, Giorgio</creator><creator>Battestini, Marco</creator><creator>Bronk, Lawrence</creator><creator>Guan, Fada</creator><creator>Grosshans, David</creator><creator>Rai, Priyamvada</creator><creator>Scifoni, Emanuele</creator><creator>La Tessa, Chiara</creator><creator>Lattanzi, Gianluca</creator><creator>Cordoni, Francesco G</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0808-6457</orcidid><orcidid>https://orcid.org/0000-0002-2896-0981</orcidid><orcidid>https://orcid.org/0009-0003-3065-5112</orcidid><orcidid>https://orcid.org/0000-0001-8477-7391</orcidid><orcidid>https://orcid.org/0000-0002-1295-7884</orcidid><orcidid>https://orcid.org/0000-0003-2092-7279</orcidid><orcidid>https://orcid.org/0000-0003-1851-5152</orcidid><orcidid>https://orcid.org/0000-0001-5742-6772</orcidid><orcidid>https://orcid.org/0009-0001-0412-5228</orcidid></search><sort><creationdate>20241224</creationdate><title>Validation of the generalized stochastic microdosimetric model (GSM 2 ) over a broad range of LET and particle beam type: a unique model for accurate description of (therapy relevant) radiation qualities</title><author>Bordieri, Giulio ; Missiaggia, Marta ; Cartechini, Giorgio ; Battestini, Marco ; Bronk, Lawrence ; Guan, Fada ; Grosshans, David ; Rai, Priyamvada ; Scifoni, Emanuele ; La Tessa, Chiara ; Lattanzi, Gianluca ; Cordoni, Francesco G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i1251-2a8f63fbf6ae709e446c14bc6ec016589ee0c918c9cc9ffcda694610effae4f93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Cell Line, Tumor</topic><topic>Cell Survival - radiation effects</topic><topic>generalized</topic><topic>GSM2</topic><topic>Humans</topic><topic>Linear Energy Transfer</topic><topic>microdosimetric</topic><topic>microdosimetry</topic><topic>Models, Biological</topic><topic>Monte Carlo Method</topic><topic>radiation</topic><topic>Radiometry</topic><topic>stochastic</topic><topic>Stochastic Processes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bordieri, Giulio</creatorcontrib><creatorcontrib>Missiaggia, Marta</creatorcontrib><creatorcontrib>Cartechini, Giorgio</creatorcontrib><creatorcontrib>Battestini, Marco</creatorcontrib><creatorcontrib>Bronk, Lawrence</creatorcontrib><creatorcontrib>Guan, Fada</creatorcontrib><creatorcontrib>Grosshans, David</creatorcontrib><creatorcontrib>Rai, Priyamvada</creatorcontrib><creatorcontrib>Scifoni, Emanuele</creatorcontrib><creatorcontrib>La Tessa, Chiara</creatorcontrib><creatorcontrib>Lattanzi, Gianluca</creatorcontrib><creatorcontrib>Cordoni, Francesco G</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>Physics in medicine & biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bordieri, Giulio</au><au>Missiaggia, Marta</au><au>Cartechini, Giorgio</au><au>Battestini, Marco</au><au>Bronk, Lawrence</au><au>Guan, Fada</au><au>Grosshans, David</au><au>Rai, Priyamvada</au><au>Scifoni, Emanuele</au><au>La Tessa, Chiara</au><au>Lattanzi, Gianluca</au><au>Cordoni, Francesco G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Validation of the generalized stochastic microdosimetric model (GSM 2 ) over a broad range of LET and particle beam type: a unique model for accurate description of (therapy relevant) radiation qualities</atitle><jtitle>Physics in medicine & biology</jtitle><stitle>PMB</stitle><addtitle>Phys. Med. Biol</addtitle><date>2024-12-24</date><risdate>2024</risdate><volume>70</volume><issue>1</issue><issn>0031-9155</issn><issn>1361-6560</issn><eissn>1361-6560</eissn><coden>PHMBA7</coden><abstract>. The present work shows the first extensive validation of the
(GSM
). This mechanistic and probabilistic model is trained and tested over cell survival experiments conducted with two cell lines (H460 and H1437), three different types of radiation (protons, helium, and carbon ions), spanning a very broad LET range from1 keVμm-1up to more than300 keVμm-1. Currently, the existing mechanistic radiation biophysical models show some limitations in describing cell killing without the addition of ad hoc corrections, especially in the high-LET regime, where the overkill effect is observed.
. The experimental irradiation conditions have been accurately reproduced with Monte Carlo simulations using the GEANT4-based TOPAS computational toolkit. We show the main and unique features of GSM2, i.e. how it can predict the biological response by considering the full information on the stochasticity of radiation through the microdosimetric spectrum, which is supposed to be the best descriptor of radiation quality.
. Well-matching results for different biological endpoints with the natural presence of the overkill effect fully display the predictive power of GSM
.
. This study shows the complete generality and flexibility of GSM
and its ability to successfully predict the cell survival probability from very different particle radiation fields. Consequently, we demonstrate the dependence of the relative biological effectiveness on the whole microdosimetric spectrum, which fully includes the stochasticity inherently given by radiation-matter interaction.</abstract><cop>England</cop><pub>IOP Publishing</pub><pmid>39662041</pmid><doi>10.1088/1361-6560/ad9dab</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-0808-6457</orcidid><orcidid>https://orcid.org/0000-0002-2896-0981</orcidid><orcidid>https://orcid.org/0009-0003-3065-5112</orcidid><orcidid>https://orcid.org/0000-0001-8477-7391</orcidid><orcidid>https://orcid.org/0000-0002-1295-7884</orcidid><orcidid>https://orcid.org/0000-0003-2092-7279</orcidid><orcidid>https://orcid.org/0000-0003-1851-5152</orcidid><orcidid>https://orcid.org/0000-0001-5742-6772</orcidid><orcidid>https://orcid.org/0009-0001-0412-5228</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-9155 |
ispartof | Physics in medicine & biology, 2024-12, Vol.70 (1) |
issn | 0031-9155 1361-6560 1361-6560 |
language | eng |
recordid | cdi_proquest_miscellaneous_3146651744 |
source | MEDLINE; IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | Cell Line, Tumor Cell Survival - radiation effects generalized GSM2 Humans Linear Energy Transfer microdosimetric microdosimetry Models, Biological Monte Carlo Method radiation Radiometry stochastic Stochastic Processes |
title | Validation of the generalized stochastic microdosimetric model (GSM 2 ) over a broad range of LET and particle beam type: a unique model for accurate description of (therapy relevant) radiation qualities |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T13%3A55%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Validation%20of%20the%20generalized%20stochastic%20microdosimetric%20model%20(GSM%202%20)%20over%20a%20broad%20range%20of%20LET%20and%20particle%20beam%20type:%20a%20unique%20model%20for%20accurate%20description%20of%20(therapy%20relevant)%20radiation%20qualities&rft.jtitle=Physics%20in%20medicine%20&%20biology&rft.au=Bordieri,%20Giulio&rft.date=2024-12-24&rft.volume=70&rft.issue=1&rft.issn=0031-9155&rft.eissn=1361-6560&rft.coden=PHMBA7&rft_id=info:doi/10.1088/1361-6560/ad9dab&rft_dat=%3Cproquest_iop_j%3E3146651744%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3146651744&rft_id=info:pmid/39662041&rfr_iscdi=true |