Validation of the generalized stochastic microdosimetric model (GSM 2 ) over a broad range of LET and particle beam type: a unique model for accurate description of (therapy relevant) radiation qualities

. The present work shows the first extensive validation of the (GSM ). This mechanistic and probabilistic model is trained and tested over cell survival experiments conducted with two cell lines (H460 and H1437), three different types of radiation (protons, helium, and carbon ions), spanning a very...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics in medicine & biology 2024-12, Vol.70 (1)
Hauptverfasser: Bordieri, Giulio, Missiaggia, Marta, Cartechini, Giorgio, Battestini, Marco, Bronk, Lawrence, Guan, Fada, Grosshans, David, Rai, Priyamvada, Scifoni, Emanuele, La Tessa, Chiara, Lattanzi, Gianluca, Cordoni, Francesco G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title Physics in medicine & biology
container_volume 70
creator Bordieri, Giulio
Missiaggia, Marta
Cartechini, Giorgio
Battestini, Marco
Bronk, Lawrence
Guan, Fada
Grosshans, David
Rai, Priyamvada
Scifoni, Emanuele
La Tessa, Chiara
Lattanzi, Gianluca
Cordoni, Francesco G
description . The present work shows the first extensive validation of the (GSM ). This mechanistic and probabilistic model is trained and tested over cell survival experiments conducted with two cell lines (H460 and H1437), three different types of radiation (protons, helium, and carbon ions), spanning a very broad LET range from1 keVμm-1up to more than300 keVμm-1. Currently, the existing mechanistic radiation biophysical models show some limitations in describing cell killing without the addition of ad hoc corrections, especially in the high-LET regime, where the overkill effect is observed. . The experimental irradiation conditions have been accurately reproduced with Monte Carlo simulations using the GEANT4-based TOPAS computational toolkit. We show the main and unique features of GSM2, i.e. how it can predict the biological response by considering the full information on the stochasticity of radiation through the microdosimetric spectrum, which is supposed to be the best descriptor of radiation quality. . Well-matching results for different biological endpoints with the natural presence of the overkill effect fully display the predictive power of GSM . . This study shows the complete generality and flexibility of GSM and its ability to successfully predict the cell survival probability from very different particle radiation fields. Consequently, we demonstrate the dependence of the relative biological effectiveness on the whole microdosimetric spectrum, which fully includes the stochasticity inherently given by radiation-matter interaction.
doi_str_mv 10.1088/1361-6560/ad9dab
format Article
fullrecord <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_3146651744</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3146651744</sourcerecordid><originalsourceid>FETCH-LOGICAL-i1251-2a8f63fbf6ae709e446c14bc6ec016589ee0c918c9cc9ffcda694610effae4f93</originalsourceid><addsrcrecordid>eNptkcFu1DAQhi0Eokvhzgn5xlZiqZ043rg3VJWCtIgDhas1scetqyRObafS8oq8FI52y4mTNaNvfn_ST8hbzj5y1rbnvJZ8IxvJzsEqC90zsvq3ek5WjNV8o3jTnJBXKd0zxnlbiZfkpFZSVkzwFfnzC3pvIfsw0uBovkN6iyPGsv2NlqYczB2k7A0dvInBhuQHzHGZg8Werq9_fKMVPaPhESMF2sUAlkYYb3HJ213dUBgtnSCWjB5phzDQvJ_wosDz6B9mPCa5UO6NmSNkpBaTiX560loXrwjTnkbs8RHGfFa-sP6g_TAX2ewxvSYvHPQJ3xzfU_Lz89XN5ZfN7vv118tPu43nVcM3FbRO1q5zEnDLFAohDRedkWgYl02rEJlRvDXKGOWcsSCVkJyhc4DCqfqUrA-5UwzFP2U9-GSw72HEMCddcyFlw7dCFPTdEZ27Aa2eoh8g7vVTAQX4cAB8mPR9mONYzDVneulXL2XqpUx96Lfg7_-DT0Ont-VEM94w1ujJuvovh6enqg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3146651744</pqid></control><display><type>article</type><title>Validation of the generalized stochastic microdosimetric model (GSM 2 ) over a broad range of LET and particle beam type: a unique model for accurate description of (therapy relevant) radiation qualities</title><source>MEDLINE</source><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Bordieri, Giulio ; Missiaggia, Marta ; Cartechini, Giorgio ; Battestini, Marco ; Bronk, Lawrence ; Guan, Fada ; Grosshans, David ; Rai, Priyamvada ; Scifoni, Emanuele ; La Tessa, Chiara ; Lattanzi, Gianluca ; Cordoni, Francesco G</creator><creatorcontrib>Bordieri, Giulio ; Missiaggia, Marta ; Cartechini, Giorgio ; Battestini, Marco ; Bronk, Lawrence ; Guan, Fada ; Grosshans, David ; Rai, Priyamvada ; Scifoni, Emanuele ; La Tessa, Chiara ; Lattanzi, Gianluca ; Cordoni, Francesco G</creatorcontrib><description>. The present work shows the first extensive validation of the (GSM ). This mechanistic and probabilistic model is trained and tested over cell survival experiments conducted with two cell lines (H460 and H1437), three different types of radiation (protons, helium, and carbon ions), spanning a very broad LET range from1 keVμm-1up to more than300 keVμm-1. Currently, the existing mechanistic radiation biophysical models show some limitations in describing cell killing without the addition of ad hoc corrections, especially in the high-LET regime, where the overkill effect is observed. . The experimental irradiation conditions have been accurately reproduced with Monte Carlo simulations using the GEANT4-based TOPAS computational toolkit. We show the main and unique features of GSM2, i.e. how it can predict the biological response by considering the full information on the stochasticity of radiation through the microdosimetric spectrum, which is supposed to be the best descriptor of radiation quality. . Well-matching results for different biological endpoints with the natural presence of the overkill effect fully display the predictive power of GSM . . This study shows the complete generality and flexibility of GSM and its ability to successfully predict the cell survival probability from very different particle radiation fields. Consequently, we demonstrate the dependence of the relative biological effectiveness on the whole microdosimetric spectrum, which fully includes the stochasticity inherently given by radiation-matter interaction.</description><identifier>ISSN: 0031-9155</identifier><identifier>ISSN: 1361-6560</identifier><identifier>EISSN: 1361-6560</identifier><identifier>DOI: 10.1088/1361-6560/ad9dab</identifier><identifier>PMID: 39662041</identifier><identifier>CODEN: PHMBA7</identifier><language>eng</language><publisher>England: IOP Publishing</publisher><subject>Cell Line, Tumor ; Cell Survival - radiation effects ; generalized ; GSM2 ; Humans ; Linear Energy Transfer ; microdosimetric ; microdosimetry ; Models, Biological ; Monte Carlo Method ; radiation ; Radiometry ; stochastic ; Stochastic Processes</subject><ispartof>Physics in medicine &amp; biology, 2024-12, Vol.70 (1)</ispartof><rights>2024 The Author(s). Published on behalf of Institute of Physics and Engineering in Medicine by IOP Publishing Ltd</rights><rights>Creative Commons Attribution license.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-0808-6457 ; 0000-0002-2896-0981 ; 0009-0003-3065-5112 ; 0000-0001-8477-7391 ; 0000-0002-1295-7884 ; 0000-0003-2092-7279 ; 0000-0003-1851-5152 ; 0000-0001-5742-6772 ; 0009-0001-0412-5228</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-6560/ad9dab/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,780,784,27924,27925,53846,53893</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39662041$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bordieri, Giulio</creatorcontrib><creatorcontrib>Missiaggia, Marta</creatorcontrib><creatorcontrib>Cartechini, Giorgio</creatorcontrib><creatorcontrib>Battestini, Marco</creatorcontrib><creatorcontrib>Bronk, Lawrence</creatorcontrib><creatorcontrib>Guan, Fada</creatorcontrib><creatorcontrib>Grosshans, David</creatorcontrib><creatorcontrib>Rai, Priyamvada</creatorcontrib><creatorcontrib>Scifoni, Emanuele</creatorcontrib><creatorcontrib>La Tessa, Chiara</creatorcontrib><creatorcontrib>Lattanzi, Gianluca</creatorcontrib><creatorcontrib>Cordoni, Francesco G</creatorcontrib><title>Validation of the generalized stochastic microdosimetric model (GSM 2 ) over a broad range of LET and particle beam type: a unique model for accurate description of (therapy relevant) radiation qualities</title><title>Physics in medicine &amp; biology</title><addtitle>PMB</addtitle><addtitle>Phys. Med. Biol</addtitle><description>. The present work shows the first extensive validation of the (GSM ). This mechanistic and probabilistic model is trained and tested over cell survival experiments conducted with two cell lines (H460 and H1437), three different types of radiation (protons, helium, and carbon ions), spanning a very broad LET range from1 keVμm-1up to more than300 keVμm-1. Currently, the existing mechanistic radiation biophysical models show some limitations in describing cell killing without the addition of ad hoc corrections, especially in the high-LET regime, where the overkill effect is observed. . The experimental irradiation conditions have been accurately reproduced with Monte Carlo simulations using the GEANT4-based TOPAS computational toolkit. We show the main and unique features of GSM2, i.e. how it can predict the biological response by considering the full information on the stochasticity of radiation through the microdosimetric spectrum, which is supposed to be the best descriptor of radiation quality. . Well-matching results for different biological endpoints with the natural presence of the overkill effect fully display the predictive power of GSM . . This study shows the complete generality and flexibility of GSM and its ability to successfully predict the cell survival probability from very different particle radiation fields. Consequently, we demonstrate the dependence of the relative biological effectiveness on the whole microdosimetric spectrum, which fully includes the stochasticity inherently given by radiation-matter interaction.</description><subject>Cell Line, Tumor</subject><subject>Cell Survival - radiation effects</subject><subject>generalized</subject><subject>GSM2</subject><subject>Humans</subject><subject>Linear Energy Transfer</subject><subject>microdosimetric</subject><subject>microdosimetry</subject><subject>Models, Biological</subject><subject>Monte Carlo Method</subject><subject>radiation</subject><subject>Radiometry</subject><subject>stochastic</subject><subject>Stochastic Processes</subject><issn>0031-9155</issn><issn>1361-6560</issn><issn>1361-6560</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>EIF</sourceid><recordid>eNptkcFu1DAQhi0Eokvhzgn5xlZiqZ043rg3VJWCtIgDhas1scetqyRObafS8oq8FI52y4mTNaNvfn_ST8hbzj5y1rbnvJZ8IxvJzsEqC90zsvq3ek5WjNV8o3jTnJBXKd0zxnlbiZfkpFZSVkzwFfnzC3pvIfsw0uBovkN6iyPGsv2NlqYczB2k7A0dvInBhuQHzHGZg8Werq9_fKMVPaPhESMF2sUAlkYYb3HJ213dUBgtnSCWjB5phzDQvJ_wosDz6B9mPCa5UO6NmSNkpBaTiX560loXrwjTnkbs8RHGfFa-sP6g_TAX2ewxvSYvHPQJ3xzfU_Lz89XN5ZfN7vv118tPu43nVcM3FbRO1q5zEnDLFAohDRedkWgYl02rEJlRvDXKGOWcsSCVkJyhc4DCqfqUrA-5UwzFP2U9-GSw72HEMCddcyFlw7dCFPTdEZ27Aa2eoh8g7vVTAQX4cAB8mPR9mONYzDVneulXL2XqpUx96Lfg7_-DT0Ont-VEM94w1ujJuvovh6enqg</recordid><startdate>20241224</startdate><enddate>20241224</enddate><creator>Bordieri, Giulio</creator><creator>Missiaggia, Marta</creator><creator>Cartechini, Giorgio</creator><creator>Battestini, Marco</creator><creator>Bronk, Lawrence</creator><creator>Guan, Fada</creator><creator>Grosshans, David</creator><creator>Rai, Priyamvada</creator><creator>Scifoni, Emanuele</creator><creator>La Tessa, Chiara</creator><creator>Lattanzi, Gianluca</creator><creator>Cordoni, Francesco G</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0808-6457</orcidid><orcidid>https://orcid.org/0000-0002-2896-0981</orcidid><orcidid>https://orcid.org/0009-0003-3065-5112</orcidid><orcidid>https://orcid.org/0000-0001-8477-7391</orcidid><orcidid>https://orcid.org/0000-0002-1295-7884</orcidid><orcidid>https://orcid.org/0000-0003-2092-7279</orcidid><orcidid>https://orcid.org/0000-0003-1851-5152</orcidid><orcidid>https://orcid.org/0000-0001-5742-6772</orcidid><orcidid>https://orcid.org/0009-0001-0412-5228</orcidid></search><sort><creationdate>20241224</creationdate><title>Validation of the generalized stochastic microdosimetric model (GSM 2 ) over a broad range of LET and particle beam type: a unique model for accurate description of (therapy relevant) radiation qualities</title><author>Bordieri, Giulio ; Missiaggia, Marta ; Cartechini, Giorgio ; Battestini, Marco ; Bronk, Lawrence ; Guan, Fada ; Grosshans, David ; Rai, Priyamvada ; Scifoni, Emanuele ; La Tessa, Chiara ; Lattanzi, Gianluca ; Cordoni, Francesco G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i1251-2a8f63fbf6ae709e446c14bc6ec016589ee0c918c9cc9ffcda694610effae4f93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Cell Line, Tumor</topic><topic>Cell Survival - radiation effects</topic><topic>generalized</topic><topic>GSM2</topic><topic>Humans</topic><topic>Linear Energy Transfer</topic><topic>microdosimetric</topic><topic>microdosimetry</topic><topic>Models, Biological</topic><topic>Monte Carlo Method</topic><topic>radiation</topic><topic>Radiometry</topic><topic>stochastic</topic><topic>Stochastic Processes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bordieri, Giulio</creatorcontrib><creatorcontrib>Missiaggia, Marta</creatorcontrib><creatorcontrib>Cartechini, Giorgio</creatorcontrib><creatorcontrib>Battestini, Marco</creatorcontrib><creatorcontrib>Bronk, Lawrence</creatorcontrib><creatorcontrib>Guan, Fada</creatorcontrib><creatorcontrib>Grosshans, David</creatorcontrib><creatorcontrib>Rai, Priyamvada</creatorcontrib><creatorcontrib>Scifoni, Emanuele</creatorcontrib><creatorcontrib>La Tessa, Chiara</creatorcontrib><creatorcontrib>Lattanzi, Gianluca</creatorcontrib><creatorcontrib>Cordoni, Francesco G</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>Physics in medicine &amp; biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bordieri, Giulio</au><au>Missiaggia, Marta</au><au>Cartechini, Giorgio</au><au>Battestini, Marco</au><au>Bronk, Lawrence</au><au>Guan, Fada</au><au>Grosshans, David</au><au>Rai, Priyamvada</au><au>Scifoni, Emanuele</au><au>La Tessa, Chiara</au><au>Lattanzi, Gianluca</au><au>Cordoni, Francesco G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Validation of the generalized stochastic microdosimetric model (GSM 2 ) over a broad range of LET and particle beam type: a unique model for accurate description of (therapy relevant) radiation qualities</atitle><jtitle>Physics in medicine &amp; biology</jtitle><stitle>PMB</stitle><addtitle>Phys. Med. Biol</addtitle><date>2024-12-24</date><risdate>2024</risdate><volume>70</volume><issue>1</issue><issn>0031-9155</issn><issn>1361-6560</issn><eissn>1361-6560</eissn><coden>PHMBA7</coden><abstract>. The present work shows the first extensive validation of the (GSM ). This mechanistic and probabilistic model is trained and tested over cell survival experiments conducted with two cell lines (H460 and H1437), three different types of radiation (protons, helium, and carbon ions), spanning a very broad LET range from1 keVμm-1up to more than300 keVμm-1. Currently, the existing mechanistic radiation biophysical models show some limitations in describing cell killing without the addition of ad hoc corrections, especially in the high-LET regime, where the overkill effect is observed. . The experimental irradiation conditions have been accurately reproduced with Monte Carlo simulations using the GEANT4-based TOPAS computational toolkit. We show the main and unique features of GSM2, i.e. how it can predict the biological response by considering the full information on the stochasticity of radiation through the microdosimetric spectrum, which is supposed to be the best descriptor of radiation quality. . Well-matching results for different biological endpoints with the natural presence of the overkill effect fully display the predictive power of GSM . . This study shows the complete generality and flexibility of GSM and its ability to successfully predict the cell survival probability from very different particle radiation fields. Consequently, we demonstrate the dependence of the relative biological effectiveness on the whole microdosimetric spectrum, which fully includes the stochasticity inherently given by radiation-matter interaction.</abstract><cop>England</cop><pub>IOP Publishing</pub><pmid>39662041</pmid><doi>10.1088/1361-6560/ad9dab</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-0808-6457</orcidid><orcidid>https://orcid.org/0000-0002-2896-0981</orcidid><orcidid>https://orcid.org/0009-0003-3065-5112</orcidid><orcidid>https://orcid.org/0000-0001-8477-7391</orcidid><orcidid>https://orcid.org/0000-0002-1295-7884</orcidid><orcidid>https://orcid.org/0000-0003-2092-7279</orcidid><orcidid>https://orcid.org/0000-0003-1851-5152</orcidid><orcidid>https://orcid.org/0000-0001-5742-6772</orcidid><orcidid>https://orcid.org/0009-0001-0412-5228</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0031-9155
ispartof Physics in medicine & biology, 2024-12, Vol.70 (1)
issn 0031-9155
1361-6560
1361-6560
language eng
recordid cdi_proquest_miscellaneous_3146651744
source MEDLINE; IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects Cell Line, Tumor
Cell Survival - radiation effects
generalized
GSM2
Humans
Linear Energy Transfer
microdosimetric
microdosimetry
Models, Biological
Monte Carlo Method
radiation
Radiometry
stochastic
Stochastic Processes
title Validation of the generalized stochastic microdosimetric model (GSM 2 ) over a broad range of LET and particle beam type: a unique model for accurate description of (therapy relevant) radiation qualities
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T13%3A55%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Validation%20of%20the%20generalized%20stochastic%20microdosimetric%20model%20(GSM%202%20)%20over%20a%20broad%20range%20of%20LET%20and%20particle%20beam%20type:%20a%20unique%20model%20for%20accurate%20description%20of%20(therapy%20relevant)%20radiation%20qualities&rft.jtitle=Physics%20in%20medicine%20&%20biology&rft.au=Bordieri,%20Giulio&rft.date=2024-12-24&rft.volume=70&rft.issue=1&rft.issn=0031-9155&rft.eissn=1361-6560&rft.coden=PHMBA7&rft_id=info:doi/10.1088/1361-6560/ad9dab&rft_dat=%3Cproquest_iop_j%3E3146651744%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3146651744&rft_id=info:pmid/39662041&rfr_iscdi=true