A sequential stimuli-responsive hydrogel promotes structural and functional recovery of severe spinal cord injury
Utilizing drug-loaded hydrogels to restore nerve conductivity emerges as a promising strategy in the treatment of spinal cord injury (SCI). However, many of these hydrogels fail to deliver drugs on demand according to the dynamic SCI pathological features, resulting in poor functional recovery. Insp...
Gespeichert in:
Veröffentlicht in: | Biomaterials 2025-05, Vol.316, p.122995, Article 122995 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 122995 |
container_title | Biomaterials |
container_volume | 316 |
creator | Chen, Hu Wang, Wanshun Yang, Yiming Zhang, Beichen Li, Zefeng Chen, Lingling Tu, Qiang Zhang, Tao Lin, Dingkun Yi, Honglei Xia, Hong Lu, Yao |
description | Utilizing drug-loaded hydrogels to restore nerve conductivity emerges as a promising strategy in the treatment of spinal cord injury (SCI). However, many of these hydrogels fail to deliver drugs on demand according to the dynamic SCI pathological features, resulting in poor functional recovery. Inspired by the post-SCI microenvironments, here we report a time-sequential and controllable drug delivery strategy using an injectable hydrogel responsive to reactive oxygen species (ROS) and matrix metalloproteinases (MMPs). This strategy includes two steps: first, the hydrogel responds to ROS and releases nanodrugs to scavenge ROS, thereby mitigating inflammation and protecting neurons from oxidative stress in the initial SCI stages; second, the accumulation of MMPs triggers the release of vascular endothelial growth factor from nanodrugs to promote angiogenesis and neural stem cell differentiation in the late stage of SCI. In two clinically relevant SCI models, a single injection of the hydrogel led to an efficient structural and functional recovery of SCI 6 weeks after the intervention. We observed less inflammation, fibrosis, and cavities but more angiogenesis and neurons in the hydrogel-treated injured spinal cord region compared with the untreated animals. The hydrogel exhibits mechanical strength and conductivity comparable to natural spinal cord, facilitating its further clinical translation.
[Display omitted] |
doi_str_mv | 10.1016/j.biomaterials.2024.122995 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3146650522</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0142961224005313</els_id><sourcerecordid>3146650522</sourcerecordid><originalsourceid>FETCH-LOGICAL-c253t-6761cf1c322b73f4748e58ffbfd1b0cfa23f0c3880ad8409841a39348db51c933</originalsourceid><addsrcrecordid>eNqNkMlOwzAQQC0EoqXwCyjixCXFWxKHGyqrVIkLnK3EHoOrJC62U6l_j6sWxJGTPZo320PoiuA5waS8Wc1b6_omgrdNF-YUUz4nlNZ1cYSmRFQiL2pcHKMpJpzmdUnoBJ2FsMIpxpyeogmry5LSik_R110W4GuEIaZeWYi2HzubewhrNwS7gexzq737gC5be9e7CCFBflRx9IlvBp2ZcVDRuiGFHpTbgN9mzqSu6QdZWNtdRjmvMzusRr89RycmrQ0Xh3eG3h8f3hbP-fL16WVxt8wVLVjMy6okyhDFKG0rZnjFBRTCmNZo0mJlGsoMVkwI3GjBcS04aVjNuNBtQVTN2Axd7_umxdOBIcreBgVd1wzgxiAZ4WVZ4ILShN7uUeVdCB6MXHvbN34rCZY75XIl_yqXO-VyrzwVXx7mjG0P-rf0x3EC7vcApGs3FrwMysKgQNskLErt7H_mfAMPSJxZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3146650522</pqid></control><display><type>article</type><title>A sequential stimuli-responsive hydrogel promotes structural and functional recovery of severe spinal cord injury</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Chen, Hu ; Wang, Wanshun ; Yang, Yiming ; Zhang, Beichen ; Li, Zefeng ; Chen, Lingling ; Tu, Qiang ; Zhang, Tao ; Lin, Dingkun ; Yi, Honglei ; Xia, Hong ; Lu, Yao</creator><creatorcontrib>Chen, Hu ; Wang, Wanshun ; Yang, Yiming ; Zhang, Beichen ; Li, Zefeng ; Chen, Lingling ; Tu, Qiang ; Zhang, Tao ; Lin, Dingkun ; Yi, Honglei ; Xia, Hong ; Lu, Yao</creatorcontrib><description>Utilizing drug-loaded hydrogels to restore nerve conductivity emerges as a promising strategy in the treatment of spinal cord injury (SCI). However, many of these hydrogels fail to deliver drugs on demand according to the dynamic SCI pathological features, resulting in poor functional recovery. Inspired by the post-SCI microenvironments, here we report a time-sequential and controllable drug delivery strategy using an injectable hydrogel responsive to reactive oxygen species (ROS) and matrix metalloproteinases (MMPs). This strategy includes two steps: first, the hydrogel responds to ROS and releases nanodrugs to scavenge ROS, thereby mitigating inflammation and protecting neurons from oxidative stress in the initial SCI stages; second, the accumulation of MMPs triggers the release of vascular endothelial growth factor from nanodrugs to promote angiogenesis and neural stem cell differentiation in the late stage of SCI. In two clinically relevant SCI models, a single injection of the hydrogel led to an efficient structural and functional recovery of SCI 6 weeks after the intervention. We observed less inflammation, fibrosis, and cavities but more angiogenesis and neurons in the hydrogel-treated injured spinal cord region compared with the untreated animals. The hydrogel exhibits mechanical strength and conductivity comparable to natural spinal cord, facilitating its further clinical translation.
[Display omitted]</description><identifier>ISSN: 0142-9612</identifier><identifier>ISSN: 1878-5905</identifier><identifier>EISSN: 1878-5905</identifier><identifier>DOI: 10.1016/j.biomaterials.2024.122995</identifier><identifier>PMID: 39662274</identifier><language>eng</language><publisher>Netherlands: Elsevier Ltd</publisher><subject>Animals ; Female ; Hydrogels - chemistry ; Injectable hydrogel ; Matrix Metalloproteinases - metabolism ; Microenvironment-responsive drug delivery ; Neovascularization, Physiologic - drug effects ; Neural Stem Cells - drug effects ; Neuroregeneration ; Rats ; Rats, Sprague-Dawley ; Reactive Oxygen Species - metabolism ; Recovery of Function - drug effects ; Spinal Cord Injuries - drug therapy ; Spinal Cord Injuries - pathology ; Spinal Cord Injuries - physiopathology ; Spinal cord injury ; Vascular Endothelial Growth Factor A - metabolism</subject><ispartof>Biomaterials, 2025-05, Vol.316, p.122995, Article 122995</ispartof><rights>2024 Elsevier Ltd</rights><rights>Copyright © 2024 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c253t-6761cf1c322b73f4748e58ffbfd1b0cfa23f0c3880ad8409841a39348db51c933</cites><orcidid>0000-0001-7650-4828 ; 0000-0002-7864-0601</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.biomaterials.2024.122995$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,778,782,3539,27911,27912,45982</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39662274$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Hu</creatorcontrib><creatorcontrib>Wang, Wanshun</creatorcontrib><creatorcontrib>Yang, Yiming</creatorcontrib><creatorcontrib>Zhang, Beichen</creatorcontrib><creatorcontrib>Li, Zefeng</creatorcontrib><creatorcontrib>Chen, Lingling</creatorcontrib><creatorcontrib>Tu, Qiang</creatorcontrib><creatorcontrib>Zhang, Tao</creatorcontrib><creatorcontrib>Lin, Dingkun</creatorcontrib><creatorcontrib>Yi, Honglei</creatorcontrib><creatorcontrib>Xia, Hong</creatorcontrib><creatorcontrib>Lu, Yao</creatorcontrib><title>A sequential stimuli-responsive hydrogel promotes structural and functional recovery of severe spinal cord injury</title><title>Biomaterials</title><addtitle>Biomaterials</addtitle><description>Utilizing drug-loaded hydrogels to restore nerve conductivity emerges as a promising strategy in the treatment of spinal cord injury (SCI). However, many of these hydrogels fail to deliver drugs on demand according to the dynamic SCI pathological features, resulting in poor functional recovery. Inspired by the post-SCI microenvironments, here we report a time-sequential and controllable drug delivery strategy using an injectable hydrogel responsive to reactive oxygen species (ROS) and matrix metalloproteinases (MMPs). This strategy includes two steps: first, the hydrogel responds to ROS and releases nanodrugs to scavenge ROS, thereby mitigating inflammation and protecting neurons from oxidative stress in the initial SCI stages; second, the accumulation of MMPs triggers the release of vascular endothelial growth factor from nanodrugs to promote angiogenesis and neural stem cell differentiation in the late stage of SCI. In two clinically relevant SCI models, a single injection of the hydrogel led to an efficient structural and functional recovery of SCI 6 weeks after the intervention. We observed less inflammation, fibrosis, and cavities but more angiogenesis and neurons in the hydrogel-treated injured spinal cord region compared with the untreated animals. The hydrogel exhibits mechanical strength and conductivity comparable to natural spinal cord, facilitating its further clinical translation.
[Display omitted]</description><subject>Animals</subject><subject>Female</subject><subject>Hydrogels - chemistry</subject><subject>Injectable hydrogel</subject><subject>Matrix Metalloproteinases - metabolism</subject><subject>Microenvironment-responsive drug delivery</subject><subject>Neovascularization, Physiologic - drug effects</subject><subject>Neural Stem Cells - drug effects</subject><subject>Neuroregeneration</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>Recovery of Function - drug effects</subject><subject>Spinal Cord Injuries - drug therapy</subject><subject>Spinal Cord Injuries - pathology</subject><subject>Spinal Cord Injuries - physiopathology</subject><subject>Spinal cord injury</subject><subject>Vascular Endothelial Growth Factor A - metabolism</subject><issn>0142-9612</issn><issn>1878-5905</issn><issn>1878-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkMlOwzAQQC0EoqXwCyjixCXFWxKHGyqrVIkLnK3EHoOrJC62U6l_j6sWxJGTPZo320PoiuA5waS8Wc1b6_omgrdNF-YUUz4nlNZ1cYSmRFQiL2pcHKMpJpzmdUnoBJ2FsMIpxpyeogmry5LSik_R110W4GuEIaZeWYi2HzubewhrNwS7gexzq737gC5be9e7CCFBflRx9IlvBp2ZcVDRuiGFHpTbgN9mzqSu6QdZWNtdRjmvMzusRr89RycmrQ0Xh3eG3h8f3hbP-fL16WVxt8wVLVjMy6okyhDFKG0rZnjFBRTCmNZo0mJlGsoMVkwI3GjBcS04aVjNuNBtQVTN2Axd7_umxdOBIcreBgVd1wzgxiAZ4WVZ4ILShN7uUeVdCB6MXHvbN34rCZY75XIl_yqXO-VyrzwVXx7mjG0P-rf0x3EC7vcApGs3FrwMysKgQNskLErt7H_mfAMPSJxZ</recordid><startdate>202505</startdate><enddate>202505</enddate><creator>Chen, Hu</creator><creator>Wang, Wanshun</creator><creator>Yang, Yiming</creator><creator>Zhang, Beichen</creator><creator>Li, Zefeng</creator><creator>Chen, Lingling</creator><creator>Tu, Qiang</creator><creator>Zhang, Tao</creator><creator>Lin, Dingkun</creator><creator>Yi, Honglei</creator><creator>Xia, Hong</creator><creator>Lu, Yao</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7650-4828</orcidid><orcidid>https://orcid.org/0000-0002-7864-0601</orcidid></search><sort><creationdate>202505</creationdate><title>A sequential stimuli-responsive hydrogel promotes structural and functional recovery of severe spinal cord injury</title><author>Chen, Hu ; Wang, Wanshun ; Yang, Yiming ; Zhang, Beichen ; Li, Zefeng ; Chen, Lingling ; Tu, Qiang ; Zhang, Tao ; Lin, Dingkun ; Yi, Honglei ; Xia, Hong ; Lu, Yao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c253t-6761cf1c322b73f4748e58ffbfd1b0cfa23f0c3880ad8409841a39348db51c933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Animals</topic><topic>Female</topic><topic>Hydrogels - chemistry</topic><topic>Injectable hydrogel</topic><topic>Matrix Metalloproteinases - metabolism</topic><topic>Microenvironment-responsive drug delivery</topic><topic>Neovascularization, Physiologic - drug effects</topic><topic>Neural Stem Cells - drug effects</topic><topic>Neuroregeneration</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>Recovery of Function - drug effects</topic><topic>Spinal Cord Injuries - drug therapy</topic><topic>Spinal Cord Injuries - pathology</topic><topic>Spinal Cord Injuries - physiopathology</topic><topic>Spinal cord injury</topic><topic>Vascular Endothelial Growth Factor A - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Hu</creatorcontrib><creatorcontrib>Wang, Wanshun</creatorcontrib><creatorcontrib>Yang, Yiming</creatorcontrib><creatorcontrib>Zhang, Beichen</creatorcontrib><creatorcontrib>Li, Zefeng</creatorcontrib><creatorcontrib>Chen, Lingling</creatorcontrib><creatorcontrib>Tu, Qiang</creatorcontrib><creatorcontrib>Zhang, Tao</creatorcontrib><creatorcontrib>Lin, Dingkun</creatorcontrib><creatorcontrib>Yi, Honglei</creatorcontrib><creatorcontrib>Xia, Hong</creatorcontrib><creatorcontrib>Lu, Yao</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Biomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Hu</au><au>Wang, Wanshun</au><au>Yang, Yiming</au><au>Zhang, Beichen</au><au>Li, Zefeng</au><au>Chen, Lingling</au><au>Tu, Qiang</au><au>Zhang, Tao</au><au>Lin, Dingkun</au><au>Yi, Honglei</au><au>Xia, Hong</au><au>Lu, Yao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A sequential stimuli-responsive hydrogel promotes structural and functional recovery of severe spinal cord injury</atitle><jtitle>Biomaterials</jtitle><addtitle>Biomaterials</addtitle><date>2025-05</date><risdate>2025</risdate><volume>316</volume><spage>122995</spage><pages>122995-</pages><artnum>122995</artnum><issn>0142-9612</issn><issn>1878-5905</issn><eissn>1878-5905</eissn><abstract>Utilizing drug-loaded hydrogels to restore nerve conductivity emerges as a promising strategy in the treatment of spinal cord injury (SCI). However, many of these hydrogels fail to deliver drugs on demand according to the dynamic SCI pathological features, resulting in poor functional recovery. Inspired by the post-SCI microenvironments, here we report a time-sequential and controllable drug delivery strategy using an injectable hydrogel responsive to reactive oxygen species (ROS) and matrix metalloproteinases (MMPs). This strategy includes two steps: first, the hydrogel responds to ROS and releases nanodrugs to scavenge ROS, thereby mitigating inflammation and protecting neurons from oxidative stress in the initial SCI stages; second, the accumulation of MMPs triggers the release of vascular endothelial growth factor from nanodrugs to promote angiogenesis and neural stem cell differentiation in the late stage of SCI. In two clinically relevant SCI models, a single injection of the hydrogel led to an efficient structural and functional recovery of SCI 6 weeks after the intervention. We observed less inflammation, fibrosis, and cavities but more angiogenesis and neurons in the hydrogel-treated injured spinal cord region compared with the untreated animals. The hydrogel exhibits mechanical strength and conductivity comparable to natural spinal cord, facilitating its further clinical translation.
[Display omitted]</abstract><cop>Netherlands</cop><pub>Elsevier Ltd</pub><pmid>39662274</pmid><doi>10.1016/j.biomaterials.2024.122995</doi><orcidid>https://orcid.org/0000-0001-7650-4828</orcidid><orcidid>https://orcid.org/0000-0002-7864-0601</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0142-9612 |
ispartof | Biomaterials, 2025-05, Vol.316, p.122995, Article 122995 |
issn | 0142-9612 1878-5905 1878-5905 |
language | eng |
recordid | cdi_proquest_miscellaneous_3146650522 |
source | MEDLINE; ScienceDirect Journals (5 years ago - present) |
subjects | Animals Female Hydrogels - chemistry Injectable hydrogel Matrix Metalloproteinases - metabolism Microenvironment-responsive drug delivery Neovascularization, Physiologic - drug effects Neural Stem Cells - drug effects Neuroregeneration Rats Rats, Sprague-Dawley Reactive Oxygen Species - metabolism Recovery of Function - drug effects Spinal Cord Injuries - drug therapy Spinal Cord Injuries - pathology Spinal Cord Injuries - physiopathology Spinal cord injury Vascular Endothelial Growth Factor A - metabolism |
title | A sequential stimuli-responsive hydrogel promotes structural and functional recovery of severe spinal cord injury |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T01%3A26%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20sequential%20stimuli-responsive%20hydrogel%20promotes%20structural%20and%20functional%20recovery%20of%20severe%20spinal%20cord%20injury&rft.jtitle=Biomaterials&rft.au=Chen,%20Hu&rft.date=2025-05&rft.volume=316&rft.spage=122995&rft.pages=122995-&rft.artnum=122995&rft.issn=0142-9612&rft.eissn=1878-5905&rft_id=info:doi/10.1016/j.biomaterials.2024.122995&rft_dat=%3Cproquest_cross%3E3146650522%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3146650522&rft_id=info:pmid/39662274&rft_els_id=S0142961224005313&rfr_iscdi=true |