A sequential stimuli-responsive hydrogel promotes structural and functional recovery of severe spinal cord injury

Utilizing drug-loaded hydrogels to restore nerve conductivity emerges as a promising strategy in the treatment of spinal cord injury (SCI). However, many of these hydrogels fail to deliver drugs on demand according to the dynamic SCI pathological features, resulting in poor functional recovery. Insp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomaterials 2025-05, Vol.316, p.122995, Article 122995
Hauptverfasser: Chen, Hu, Wang, Wanshun, Yang, Yiming, Zhang, Beichen, Li, Zefeng, Chen, Lingling, Tu, Qiang, Zhang, Tao, Lin, Dingkun, Yi, Honglei, Xia, Hong, Lu, Yao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 122995
container_title Biomaterials
container_volume 316
creator Chen, Hu
Wang, Wanshun
Yang, Yiming
Zhang, Beichen
Li, Zefeng
Chen, Lingling
Tu, Qiang
Zhang, Tao
Lin, Dingkun
Yi, Honglei
Xia, Hong
Lu, Yao
description Utilizing drug-loaded hydrogels to restore nerve conductivity emerges as a promising strategy in the treatment of spinal cord injury (SCI). However, many of these hydrogels fail to deliver drugs on demand according to the dynamic SCI pathological features, resulting in poor functional recovery. Inspired by the post-SCI microenvironments, here we report a time-sequential and controllable drug delivery strategy using an injectable hydrogel responsive to reactive oxygen species (ROS) and matrix metalloproteinases (MMPs). This strategy includes two steps: first, the hydrogel responds to ROS and releases nanodrugs to scavenge ROS, thereby mitigating inflammation and protecting neurons from oxidative stress in the initial SCI stages; second, the accumulation of MMPs triggers the release of vascular endothelial growth factor from nanodrugs to promote angiogenesis and neural stem cell differentiation in the late stage of SCI. In two clinically relevant SCI models, a single injection of the hydrogel led to an efficient structural and functional recovery of SCI 6 weeks after the intervention. We observed less inflammation, fibrosis, and cavities but more angiogenesis and neurons in the hydrogel-treated injured spinal cord region compared with the untreated animals. The hydrogel exhibits mechanical strength and conductivity comparable to natural spinal cord, facilitating its further clinical translation. [Display omitted]
doi_str_mv 10.1016/j.biomaterials.2024.122995
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3146650522</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0142961224005313</els_id><sourcerecordid>3146650522</sourcerecordid><originalsourceid>FETCH-LOGICAL-c253t-6761cf1c322b73f4748e58ffbfd1b0cfa23f0c3880ad8409841a39348db51c933</originalsourceid><addsrcrecordid>eNqNkMlOwzAQQC0EoqXwCyjixCXFWxKHGyqrVIkLnK3EHoOrJC62U6l_j6sWxJGTPZo320PoiuA5waS8Wc1b6_omgrdNF-YUUz4nlNZ1cYSmRFQiL2pcHKMpJpzmdUnoBJ2FsMIpxpyeogmry5LSik_R110W4GuEIaZeWYi2HzubewhrNwS7gexzq737gC5be9e7CCFBflRx9IlvBp2ZcVDRuiGFHpTbgN9mzqSu6QdZWNtdRjmvMzusRr89RycmrQ0Xh3eG3h8f3hbP-fL16WVxt8wVLVjMy6okyhDFKG0rZnjFBRTCmNZo0mJlGsoMVkwI3GjBcS04aVjNuNBtQVTN2Axd7_umxdOBIcreBgVd1wzgxiAZ4WVZ4ILShN7uUeVdCB6MXHvbN34rCZY75XIl_yqXO-VyrzwVXx7mjG0P-rf0x3EC7vcApGs3FrwMysKgQNskLErt7H_mfAMPSJxZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3146650522</pqid></control><display><type>article</type><title>A sequential stimuli-responsive hydrogel promotes structural and functional recovery of severe spinal cord injury</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Chen, Hu ; Wang, Wanshun ; Yang, Yiming ; Zhang, Beichen ; Li, Zefeng ; Chen, Lingling ; Tu, Qiang ; Zhang, Tao ; Lin, Dingkun ; Yi, Honglei ; Xia, Hong ; Lu, Yao</creator><creatorcontrib>Chen, Hu ; Wang, Wanshun ; Yang, Yiming ; Zhang, Beichen ; Li, Zefeng ; Chen, Lingling ; Tu, Qiang ; Zhang, Tao ; Lin, Dingkun ; Yi, Honglei ; Xia, Hong ; Lu, Yao</creatorcontrib><description>Utilizing drug-loaded hydrogels to restore nerve conductivity emerges as a promising strategy in the treatment of spinal cord injury (SCI). However, many of these hydrogels fail to deliver drugs on demand according to the dynamic SCI pathological features, resulting in poor functional recovery. Inspired by the post-SCI microenvironments, here we report a time-sequential and controllable drug delivery strategy using an injectable hydrogel responsive to reactive oxygen species (ROS) and matrix metalloproteinases (MMPs). This strategy includes two steps: first, the hydrogel responds to ROS and releases nanodrugs to scavenge ROS, thereby mitigating inflammation and protecting neurons from oxidative stress in the initial SCI stages; second, the accumulation of MMPs triggers the release of vascular endothelial growth factor from nanodrugs to promote angiogenesis and neural stem cell differentiation in the late stage of SCI. In two clinically relevant SCI models, a single injection of the hydrogel led to an efficient structural and functional recovery of SCI 6 weeks after the intervention. We observed less inflammation, fibrosis, and cavities but more angiogenesis and neurons in the hydrogel-treated injured spinal cord region compared with the untreated animals. The hydrogel exhibits mechanical strength and conductivity comparable to natural spinal cord, facilitating its further clinical translation. [Display omitted]</description><identifier>ISSN: 0142-9612</identifier><identifier>ISSN: 1878-5905</identifier><identifier>EISSN: 1878-5905</identifier><identifier>DOI: 10.1016/j.biomaterials.2024.122995</identifier><identifier>PMID: 39662274</identifier><language>eng</language><publisher>Netherlands: Elsevier Ltd</publisher><subject>Animals ; Female ; Hydrogels - chemistry ; Injectable hydrogel ; Matrix Metalloproteinases - metabolism ; Microenvironment-responsive drug delivery ; Neovascularization, Physiologic - drug effects ; Neural Stem Cells - drug effects ; Neuroregeneration ; Rats ; Rats, Sprague-Dawley ; Reactive Oxygen Species - metabolism ; Recovery of Function - drug effects ; Spinal Cord Injuries - drug therapy ; Spinal Cord Injuries - pathology ; Spinal Cord Injuries - physiopathology ; Spinal cord injury ; Vascular Endothelial Growth Factor A - metabolism</subject><ispartof>Biomaterials, 2025-05, Vol.316, p.122995, Article 122995</ispartof><rights>2024 Elsevier Ltd</rights><rights>Copyright © 2024 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c253t-6761cf1c322b73f4748e58ffbfd1b0cfa23f0c3880ad8409841a39348db51c933</cites><orcidid>0000-0001-7650-4828 ; 0000-0002-7864-0601</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.biomaterials.2024.122995$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,778,782,3539,27911,27912,45982</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39662274$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Hu</creatorcontrib><creatorcontrib>Wang, Wanshun</creatorcontrib><creatorcontrib>Yang, Yiming</creatorcontrib><creatorcontrib>Zhang, Beichen</creatorcontrib><creatorcontrib>Li, Zefeng</creatorcontrib><creatorcontrib>Chen, Lingling</creatorcontrib><creatorcontrib>Tu, Qiang</creatorcontrib><creatorcontrib>Zhang, Tao</creatorcontrib><creatorcontrib>Lin, Dingkun</creatorcontrib><creatorcontrib>Yi, Honglei</creatorcontrib><creatorcontrib>Xia, Hong</creatorcontrib><creatorcontrib>Lu, Yao</creatorcontrib><title>A sequential stimuli-responsive hydrogel promotes structural and functional recovery of severe spinal cord injury</title><title>Biomaterials</title><addtitle>Biomaterials</addtitle><description>Utilizing drug-loaded hydrogels to restore nerve conductivity emerges as a promising strategy in the treatment of spinal cord injury (SCI). However, many of these hydrogels fail to deliver drugs on demand according to the dynamic SCI pathological features, resulting in poor functional recovery. Inspired by the post-SCI microenvironments, here we report a time-sequential and controllable drug delivery strategy using an injectable hydrogel responsive to reactive oxygen species (ROS) and matrix metalloproteinases (MMPs). This strategy includes two steps: first, the hydrogel responds to ROS and releases nanodrugs to scavenge ROS, thereby mitigating inflammation and protecting neurons from oxidative stress in the initial SCI stages; second, the accumulation of MMPs triggers the release of vascular endothelial growth factor from nanodrugs to promote angiogenesis and neural stem cell differentiation in the late stage of SCI. In two clinically relevant SCI models, a single injection of the hydrogel led to an efficient structural and functional recovery of SCI 6 weeks after the intervention. We observed less inflammation, fibrosis, and cavities but more angiogenesis and neurons in the hydrogel-treated injured spinal cord region compared with the untreated animals. The hydrogel exhibits mechanical strength and conductivity comparable to natural spinal cord, facilitating its further clinical translation. [Display omitted]</description><subject>Animals</subject><subject>Female</subject><subject>Hydrogels - chemistry</subject><subject>Injectable hydrogel</subject><subject>Matrix Metalloproteinases - metabolism</subject><subject>Microenvironment-responsive drug delivery</subject><subject>Neovascularization, Physiologic - drug effects</subject><subject>Neural Stem Cells - drug effects</subject><subject>Neuroregeneration</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>Recovery of Function - drug effects</subject><subject>Spinal Cord Injuries - drug therapy</subject><subject>Spinal Cord Injuries - pathology</subject><subject>Spinal Cord Injuries - physiopathology</subject><subject>Spinal cord injury</subject><subject>Vascular Endothelial Growth Factor A - metabolism</subject><issn>0142-9612</issn><issn>1878-5905</issn><issn>1878-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkMlOwzAQQC0EoqXwCyjixCXFWxKHGyqrVIkLnK3EHoOrJC62U6l_j6sWxJGTPZo320PoiuA5waS8Wc1b6_omgrdNF-YUUz4nlNZ1cYSmRFQiL2pcHKMpJpzmdUnoBJ2FsMIpxpyeogmry5LSik_R110W4GuEIaZeWYi2HzubewhrNwS7gexzq737gC5be9e7CCFBflRx9IlvBp2ZcVDRuiGFHpTbgN9mzqSu6QdZWNtdRjmvMzusRr89RycmrQ0Xh3eG3h8f3hbP-fL16WVxt8wVLVjMy6okyhDFKG0rZnjFBRTCmNZo0mJlGsoMVkwI3GjBcS04aVjNuNBtQVTN2Axd7_umxdOBIcreBgVd1wzgxiAZ4WVZ4ILShN7uUeVdCB6MXHvbN34rCZY75XIl_yqXO-VyrzwVXx7mjG0P-rf0x3EC7vcApGs3FrwMysKgQNskLErt7H_mfAMPSJxZ</recordid><startdate>202505</startdate><enddate>202505</enddate><creator>Chen, Hu</creator><creator>Wang, Wanshun</creator><creator>Yang, Yiming</creator><creator>Zhang, Beichen</creator><creator>Li, Zefeng</creator><creator>Chen, Lingling</creator><creator>Tu, Qiang</creator><creator>Zhang, Tao</creator><creator>Lin, Dingkun</creator><creator>Yi, Honglei</creator><creator>Xia, Hong</creator><creator>Lu, Yao</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7650-4828</orcidid><orcidid>https://orcid.org/0000-0002-7864-0601</orcidid></search><sort><creationdate>202505</creationdate><title>A sequential stimuli-responsive hydrogel promotes structural and functional recovery of severe spinal cord injury</title><author>Chen, Hu ; Wang, Wanshun ; Yang, Yiming ; Zhang, Beichen ; Li, Zefeng ; Chen, Lingling ; Tu, Qiang ; Zhang, Tao ; Lin, Dingkun ; Yi, Honglei ; Xia, Hong ; Lu, Yao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c253t-6761cf1c322b73f4748e58ffbfd1b0cfa23f0c3880ad8409841a39348db51c933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Animals</topic><topic>Female</topic><topic>Hydrogels - chemistry</topic><topic>Injectable hydrogel</topic><topic>Matrix Metalloproteinases - metabolism</topic><topic>Microenvironment-responsive drug delivery</topic><topic>Neovascularization, Physiologic - drug effects</topic><topic>Neural Stem Cells - drug effects</topic><topic>Neuroregeneration</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>Recovery of Function - drug effects</topic><topic>Spinal Cord Injuries - drug therapy</topic><topic>Spinal Cord Injuries - pathology</topic><topic>Spinal Cord Injuries - physiopathology</topic><topic>Spinal cord injury</topic><topic>Vascular Endothelial Growth Factor A - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Hu</creatorcontrib><creatorcontrib>Wang, Wanshun</creatorcontrib><creatorcontrib>Yang, Yiming</creatorcontrib><creatorcontrib>Zhang, Beichen</creatorcontrib><creatorcontrib>Li, Zefeng</creatorcontrib><creatorcontrib>Chen, Lingling</creatorcontrib><creatorcontrib>Tu, Qiang</creatorcontrib><creatorcontrib>Zhang, Tao</creatorcontrib><creatorcontrib>Lin, Dingkun</creatorcontrib><creatorcontrib>Yi, Honglei</creatorcontrib><creatorcontrib>Xia, Hong</creatorcontrib><creatorcontrib>Lu, Yao</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Biomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Hu</au><au>Wang, Wanshun</au><au>Yang, Yiming</au><au>Zhang, Beichen</au><au>Li, Zefeng</au><au>Chen, Lingling</au><au>Tu, Qiang</au><au>Zhang, Tao</au><au>Lin, Dingkun</au><au>Yi, Honglei</au><au>Xia, Hong</au><au>Lu, Yao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A sequential stimuli-responsive hydrogel promotes structural and functional recovery of severe spinal cord injury</atitle><jtitle>Biomaterials</jtitle><addtitle>Biomaterials</addtitle><date>2025-05</date><risdate>2025</risdate><volume>316</volume><spage>122995</spage><pages>122995-</pages><artnum>122995</artnum><issn>0142-9612</issn><issn>1878-5905</issn><eissn>1878-5905</eissn><abstract>Utilizing drug-loaded hydrogels to restore nerve conductivity emerges as a promising strategy in the treatment of spinal cord injury (SCI). However, many of these hydrogels fail to deliver drugs on demand according to the dynamic SCI pathological features, resulting in poor functional recovery. Inspired by the post-SCI microenvironments, here we report a time-sequential and controllable drug delivery strategy using an injectable hydrogel responsive to reactive oxygen species (ROS) and matrix metalloproteinases (MMPs). This strategy includes two steps: first, the hydrogel responds to ROS and releases nanodrugs to scavenge ROS, thereby mitigating inflammation and protecting neurons from oxidative stress in the initial SCI stages; second, the accumulation of MMPs triggers the release of vascular endothelial growth factor from nanodrugs to promote angiogenesis and neural stem cell differentiation in the late stage of SCI. In two clinically relevant SCI models, a single injection of the hydrogel led to an efficient structural and functional recovery of SCI 6 weeks after the intervention. We observed less inflammation, fibrosis, and cavities but more angiogenesis and neurons in the hydrogel-treated injured spinal cord region compared with the untreated animals. The hydrogel exhibits mechanical strength and conductivity comparable to natural spinal cord, facilitating its further clinical translation. [Display omitted]</abstract><cop>Netherlands</cop><pub>Elsevier Ltd</pub><pmid>39662274</pmid><doi>10.1016/j.biomaterials.2024.122995</doi><orcidid>https://orcid.org/0000-0001-7650-4828</orcidid><orcidid>https://orcid.org/0000-0002-7864-0601</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0142-9612
ispartof Biomaterials, 2025-05, Vol.316, p.122995, Article 122995
issn 0142-9612
1878-5905
1878-5905
language eng
recordid cdi_proquest_miscellaneous_3146650522
source MEDLINE; ScienceDirect Journals (5 years ago - present)
subjects Animals
Female
Hydrogels - chemistry
Injectable hydrogel
Matrix Metalloproteinases - metabolism
Microenvironment-responsive drug delivery
Neovascularization, Physiologic - drug effects
Neural Stem Cells - drug effects
Neuroregeneration
Rats
Rats, Sprague-Dawley
Reactive Oxygen Species - metabolism
Recovery of Function - drug effects
Spinal Cord Injuries - drug therapy
Spinal Cord Injuries - pathology
Spinal Cord Injuries - physiopathology
Spinal cord injury
Vascular Endothelial Growth Factor A - metabolism
title A sequential stimuli-responsive hydrogel promotes structural and functional recovery of severe spinal cord injury
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T01%3A26%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20sequential%20stimuli-responsive%20hydrogel%20promotes%20structural%20and%20functional%20recovery%20of%20severe%20spinal%20cord%20injury&rft.jtitle=Biomaterials&rft.au=Chen,%20Hu&rft.date=2025-05&rft.volume=316&rft.spage=122995&rft.pages=122995-&rft.artnum=122995&rft.issn=0142-9612&rft.eissn=1878-5905&rft_id=info:doi/10.1016/j.biomaterials.2024.122995&rft_dat=%3Cproquest_cross%3E3146650522%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3146650522&rft_id=info:pmid/39662274&rft_els_id=S0142961224005313&rfr_iscdi=true