Cation Enrichment Effect Modulated Nafion/Graphene Field-Effect Transistor for Ultrasensitive RNA Detection

The graphene field-effect transistor (GFET) biosensor serves as a foundational platform for detecting biomolecules, offering high conductivity, label-free operation, and easy integration. These features have garnered significant attention in biomarker detection. However, the presence of free cations...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano letters 2024-12, Vol.24 (51), p.16245-16252
Hauptverfasser: Ma, Heqi, Chen, Shuo, Zhang, Xinhao, Sun, Tianyu, Huo, Panpan, Cui, Xiangyong, Man, Baoyuan, Yang, Cheng, Wei, Dongmei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 16252
container_issue 51
container_start_page 16245
container_title Nano letters
container_volume 24
creator Ma, Heqi
Chen, Shuo
Zhang, Xinhao
Sun, Tianyu
Huo, Panpan
Cui, Xiangyong
Man, Baoyuan
Yang, Cheng
Wei, Dongmei
description The graphene field-effect transistor (GFET) biosensor serves as a foundational platform for detecting biomolecules, offering high conductivity, label-free operation, and easy integration. These features have garnered significant attention in biomarker detection. However, the presence of free cations in solution often leads to electrostatic shielding of negatively charged biomolecules, reducing GFET detection sensitivity (LOD ≥ 1 fM). Additionally, the limited capacitance change in GFET restricts its use as a response signal. This study introduces a cation enrichment electric field modulation strategy (CEEFMS) to enhance capacitance and Dirac voltage response during detection. The cation-enriched rough Nafion/graphene FET (CENG-FET) achieves RNA detection at the aM level. Utilizing total capacitance change and Dirac voltage shift as response signals, the CENG-FET demonstrates a wide linear range from 1 aM to 1 pM. These findings advance dual-signal detection strategies, reducing accidental inaccuracies in biomolecular sensing and paving the way for further research.
doi_str_mv 10.1021/acs.nanolett.4c03989
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_3146628982</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3146628982</sourcerecordid><originalsourceid>FETCH-LOGICAL-a182t-a9b6054e2fcbda33942f95478f4b773b946d7cb04d2dbb700d9068167f655ec63</originalsourceid><addsrcrecordid>eNo9kVFLwzAUhYMoOqf_QKSPvnRLkzRpHsecU9AJ4p5D2tywapfOJBX890a2-XC5l8PH4XIOQjcFnhSYFFPdhInTru8gxglrMJWVPEGjoqQ451KS0_-7YhfoMoQPjLGkJT5HF1RyjoUQI_Q517HtXbZwvm02W3AxW1gLTcxeejN0OoLJVtomZLr0ercBB9lDC53JD9i71y60IfY-s2nWXfQ6QJJi-w3Z22qW3UNMYHK4QmdWdwGuD3uM1g-L9_lj_vy6fJrPnnNdVCTmWtYclwyIbWqjKZWMWFkyUVlWC0FrybgRTY2ZIaauBcZGYl4VXFheltBwOkZ3e9-d778GCFFt29BA12kH_RAULRjnpJIVSejtAR3qLRi18-1W-x91DCgBeA-kuNVHP3iXPlcFVn8dqD_x2IE6dEB_AXD2e-s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3146628982</pqid></control><display><type>article</type><title>Cation Enrichment Effect Modulated Nafion/Graphene Field-Effect Transistor for Ultrasensitive RNA Detection</title><source>MEDLINE</source><source>ACS Publications</source><creator>Ma, Heqi ; Chen, Shuo ; Zhang, Xinhao ; Sun, Tianyu ; Huo, Panpan ; Cui, Xiangyong ; Man, Baoyuan ; Yang, Cheng ; Wei, Dongmei</creator><creatorcontrib>Ma, Heqi ; Chen, Shuo ; Zhang, Xinhao ; Sun, Tianyu ; Huo, Panpan ; Cui, Xiangyong ; Man, Baoyuan ; Yang, Cheng ; Wei, Dongmei</creatorcontrib><description>The graphene field-effect transistor (GFET) biosensor serves as a foundational platform for detecting biomolecules, offering high conductivity, label-free operation, and easy integration. These features have garnered significant attention in biomarker detection. However, the presence of free cations in solution often leads to electrostatic shielding of negatively charged biomolecules, reducing GFET detection sensitivity (LOD ≥ 1 fM). Additionally, the limited capacitance change in GFET restricts its use as a response signal. This study introduces a cation enrichment electric field modulation strategy (CEEFMS) to enhance capacitance and Dirac voltage response during detection. The cation-enriched rough Nafion/graphene FET (CENG-FET) achieves RNA detection at the aM level. Utilizing total capacitance change and Dirac voltage shift as response signals, the CENG-FET demonstrates a wide linear range from 1 aM to 1 pM. These findings advance dual-signal detection strategies, reducing accidental inaccuracies in biomolecular sensing and paving the way for further research.</description><identifier>ISSN: 1530-6984</identifier><identifier>ISSN: 1530-6992</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/acs.nanolett.4c03989</identifier><identifier>PMID: 39660777</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Biosensing Techniques - instrumentation ; Biosensing Techniques - methods ; Cations - analysis ; Fluorocarbon Polymers - chemistry ; Graphite - chemistry ; Limit of Detection ; RNA - analysis ; Transistors, Electronic</subject><ispartof>Nano letters, 2024-12, Vol.24 (51), p.16245-16252</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-7428-1819 ; 0009-0002-2657-4320</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.nanolett.4c03989$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.nanolett.4c03989$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39660777$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ma, Heqi</creatorcontrib><creatorcontrib>Chen, Shuo</creatorcontrib><creatorcontrib>Zhang, Xinhao</creatorcontrib><creatorcontrib>Sun, Tianyu</creatorcontrib><creatorcontrib>Huo, Panpan</creatorcontrib><creatorcontrib>Cui, Xiangyong</creatorcontrib><creatorcontrib>Man, Baoyuan</creatorcontrib><creatorcontrib>Yang, Cheng</creatorcontrib><creatorcontrib>Wei, Dongmei</creatorcontrib><title>Cation Enrichment Effect Modulated Nafion/Graphene Field-Effect Transistor for Ultrasensitive RNA Detection</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>The graphene field-effect transistor (GFET) biosensor serves as a foundational platform for detecting biomolecules, offering high conductivity, label-free operation, and easy integration. These features have garnered significant attention in biomarker detection. However, the presence of free cations in solution often leads to electrostatic shielding of negatively charged biomolecules, reducing GFET detection sensitivity (LOD ≥ 1 fM). Additionally, the limited capacitance change in GFET restricts its use as a response signal. This study introduces a cation enrichment electric field modulation strategy (CEEFMS) to enhance capacitance and Dirac voltage response during detection. The cation-enriched rough Nafion/graphene FET (CENG-FET) achieves RNA detection at the aM level. Utilizing total capacitance change and Dirac voltage shift as response signals, the CENG-FET demonstrates a wide linear range from 1 aM to 1 pM. These findings advance dual-signal detection strategies, reducing accidental inaccuracies in biomolecular sensing and paving the way for further research.</description><subject>Biosensing Techniques - instrumentation</subject><subject>Biosensing Techniques - methods</subject><subject>Cations - analysis</subject><subject>Fluorocarbon Polymers - chemistry</subject><subject>Graphite - chemistry</subject><subject>Limit of Detection</subject><subject>RNA - analysis</subject><subject>Transistors, Electronic</subject><issn>1530-6984</issn><issn>1530-6992</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo9kVFLwzAUhYMoOqf_QKSPvnRLkzRpHsecU9AJ4p5D2tywapfOJBX890a2-XC5l8PH4XIOQjcFnhSYFFPdhInTru8gxglrMJWVPEGjoqQ451KS0_-7YhfoMoQPjLGkJT5HF1RyjoUQI_Q517HtXbZwvm02W3AxW1gLTcxeejN0OoLJVtomZLr0ercBB9lDC53JD9i71y60IfY-s2nWXfQ6QJJi-w3Z22qW3UNMYHK4QmdWdwGuD3uM1g-L9_lj_vy6fJrPnnNdVCTmWtYclwyIbWqjKZWMWFkyUVlWC0FrybgRTY2ZIaauBcZGYl4VXFheltBwOkZ3e9-d778GCFFt29BA12kH_RAULRjnpJIVSejtAR3qLRi18-1W-x91DCgBeA-kuNVHP3iXPlcFVn8dqD_x2IE6dEB_AXD2e-s</recordid><startdate>20241225</startdate><enddate>20241225</enddate><creator>Ma, Heqi</creator><creator>Chen, Shuo</creator><creator>Zhang, Xinhao</creator><creator>Sun, Tianyu</creator><creator>Huo, Panpan</creator><creator>Cui, Xiangyong</creator><creator>Man, Baoyuan</creator><creator>Yang, Cheng</creator><creator>Wei, Dongmei</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7428-1819</orcidid><orcidid>https://orcid.org/0009-0002-2657-4320</orcidid></search><sort><creationdate>20241225</creationdate><title>Cation Enrichment Effect Modulated Nafion/Graphene Field-Effect Transistor for Ultrasensitive RNA Detection</title><author>Ma, Heqi ; Chen, Shuo ; Zhang, Xinhao ; Sun, Tianyu ; Huo, Panpan ; Cui, Xiangyong ; Man, Baoyuan ; Yang, Cheng ; Wei, Dongmei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a182t-a9b6054e2fcbda33942f95478f4b773b946d7cb04d2dbb700d9068167f655ec63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Biosensing Techniques - instrumentation</topic><topic>Biosensing Techniques - methods</topic><topic>Cations - analysis</topic><topic>Fluorocarbon Polymers - chemistry</topic><topic>Graphite - chemistry</topic><topic>Limit of Detection</topic><topic>RNA - analysis</topic><topic>Transistors, Electronic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ma, Heqi</creatorcontrib><creatorcontrib>Chen, Shuo</creatorcontrib><creatorcontrib>Zhang, Xinhao</creatorcontrib><creatorcontrib>Sun, Tianyu</creatorcontrib><creatorcontrib>Huo, Panpan</creatorcontrib><creatorcontrib>Cui, Xiangyong</creatorcontrib><creatorcontrib>Man, Baoyuan</creatorcontrib><creatorcontrib>Yang, Cheng</creatorcontrib><creatorcontrib>Wei, Dongmei</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ma, Heqi</au><au>Chen, Shuo</au><au>Zhang, Xinhao</au><au>Sun, Tianyu</au><au>Huo, Panpan</au><au>Cui, Xiangyong</au><au>Man, Baoyuan</au><au>Yang, Cheng</au><au>Wei, Dongmei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cation Enrichment Effect Modulated Nafion/Graphene Field-Effect Transistor for Ultrasensitive RNA Detection</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2024-12-25</date><risdate>2024</risdate><volume>24</volume><issue>51</issue><spage>16245</spage><epage>16252</epage><pages>16245-16252</pages><issn>1530-6984</issn><issn>1530-6992</issn><eissn>1530-6992</eissn><abstract>The graphene field-effect transistor (GFET) biosensor serves as a foundational platform for detecting biomolecules, offering high conductivity, label-free operation, and easy integration. These features have garnered significant attention in biomarker detection. However, the presence of free cations in solution often leads to electrostatic shielding of negatively charged biomolecules, reducing GFET detection sensitivity (LOD ≥ 1 fM). Additionally, the limited capacitance change in GFET restricts its use as a response signal. This study introduces a cation enrichment electric field modulation strategy (CEEFMS) to enhance capacitance and Dirac voltage response during detection. The cation-enriched rough Nafion/graphene FET (CENG-FET) achieves RNA detection at the aM level. Utilizing total capacitance change and Dirac voltage shift as response signals, the CENG-FET demonstrates a wide linear range from 1 aM to 1 pM. These findings advance dual-signal detection strategies, reducing accidental inaccuracies in biomolecular sensing and paving the way for further research.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>39660777</pmid><doi>10.1021/acs.nanolett.4c03989</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-7428-1819</orcidid><orcidid>https://orcid.org/0009-0002-2657-4320</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1530-6984
ispartof Nano letters, 2024-12, Vol.24 (51), p.16245-16252
issn 1530-6984
1530-6992
1530-6992
language eng
recordid cdi_proquest_miscellaneous_3146628982
source MEDLINE; ACS Publications
subjects Biosensing Techniques - instrumentation
Biosensing Techniques - methods
Cations - analysis
Fluorocarbon Polymers - chemistry
Graphite - chemistry
Limit of Detection
RNA - analysis
Transistors, Electronic
title Cation Enrichment Effect Modulated Nafion/Graphene Field-Effect Transistor for Ultrasensitive RNA Detection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T13%3A31%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cation%20Enrichment%20Effect%20Modulated%20Nafion/Graphene%20Field-Effect%20Transistor%20for%20Ultrasensitive%20RNA%20Detection&rft.jtitle=Nano%20letters&rft.au=Ma,%20Heqi&rft.date=2024-12-25&rft.volume=24&rft.issue=51&rft.spage=16245&rft.epage=16252&rft.pages=16245-16252&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/acs.nanolett.4c03989&rft_dat=%3Cproquest_pubme%3E3146628982%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3146628982&rft_id=info:pmid/39660777&rfr_iscdi=true