Metabolic engineering improves transduction efficiency and downstream vector isolation by altering the lipid composition of extracellular vesicle-enclosed AAV
Adeno-associated viruses (AAV) are promising vectors for gene therapy due to their efficacy in vivo. However, there is room for improvement to address key limitations such as the pre-existing immunity to AAV in patients, high-dose toxicity, and relatively low efficiency for some cell types. This stu...
Gespeichert in:
Veröffentlicht in: | Metabolic engineering 2024-12, Vol.88, p.40-49 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 49 |
---|---|
container_issue | |
container_start_page | 40 |
container_title | Metabolic engineering |
container_volume | 88 |
creator | Espinoza, Paula Cheng, Ming Ng, Carrie Cruz, Demitri de la Wasson, Elizabeth D. McCarthy, Deirdre M. Bhide, Pradeep G. Maguire, Casey A. Santoscoy, Miguel C. |
description | Adeno-associated viruses (AAV) are promising vectors for gene therapy due to their efficacy in vivo. However, there is room for improvement to address key limitations such as the pre-existing immunity to AAV in patients, high-dose toxicity, and relatively low efficiency for some cell types. This study introduces a metabolic engineering approach, using knockout of the enzyme phosphatidylserine synthase 1 (PTDSS1) to increase the abundance of extracellular vesicle-enclosed AAV (EV-AAV) relative to free AAV in the supernatant of producer cells, simplifying downstream purification processes. The lipid-engineered HEK293T-ΔPTDSS1 cell line achieved a 42.7-fold enrichment of EV-AAV9 compared to free AAV9 in the supernatant. The rational genetic strategy also led to a 300-fold decrease of free AAV in supernatant compared to wild-type HEK293T. The membrane-engineered EV-AAV9 (mEV-AAV9) showed unique envelope composition alterations, including cholesterol enrichment and improved transduction efficiency in human AC16 cardiomyocytes by 1.5-fold compared to conventional EV-AAV9 and by 11-fold compared to non-enveloped AAV9. Robust in-vivo transduction four weeks after intraparenchymal administration of mEV-AAV9 was observed in the murine brain. This study shows promise in the potential of lipid metabolic engineering strategies to improve the efficiency and process development of enveloped gene delivery vectors.
•Metabolic engineering improved the bio-manufacture and delivery properties of gene therapy vectors.•Lipid engineering of enveloped AAV vectors was performed for the first time.•Lipid-modified vectors transduce human cardiomyocytes and the murine brain. |
doi_str_mv | 10.1016/j.ymben.2024.12.003 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_3146609410</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1096717624001721</els_id><sourcerecordid>3146609410</sourcerecordid><originalsourceid>FETCH-LOGICAL-e1553-948f4c6818c9656a4dc4ad57a1166e606ed49017a10222cbe2810e6595f960553</originalsourceid><addsrcrecordid>eNo9kU2P0zAQhi0EYpeFX4CEfOSSMJM4bnLgUK34khZxAa6WY08WV45d7KTQP8NvxW0XTh5Ljx7NvC9jLxFqBJRvdvVxHinUDTSixqYGaB-xa4RBVhvsxeP_80ZesWc57wAQuwGfsqt2kF0LG7hmfz7TosfoneEU7l0gSi7cczfvUzxQ5kvSIdvVLC4GTtPkjKNgjlwHy238FfKSSM_8QGaJibscvT6jY0H8cpEtP4h7t3eWmzjvY3ZnIk6cfhe9Ie9Xr1NxZGc8VcXvYybLt9vvz9mTSftMLx7eG_bt_buvtx-ruy8fPt1u7yrCrmurQfSTMLLH3pTLpBbWCG27jUaUkiRIsmIALH9omsaM1PQIJLuhmwYJxXDDXl-85eyfK-VFzS6fNtOB4ppVi0JKGARCQV89oOs4k1X75GadjupfpgV4ewGoLHxwlFQ-h0bWpRKTstEpBHXqUO3UuUN16lBho0qH7V93jpKZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3146609410</pqid></control><display><type>article</type><title>Metabolic engineering improves transduction efficiency and downstream vector isolation by altering the lipid composition of extracellular vesicle-enclosed AAV</title><source>Access via ScienceDirect (Elsevier)</source><creator>Espinoza, Paula ; Cheng, Ming ; Ng, Carrie ; Cruz, Demitri de la ; Wasson, Elizabeth D. ; McCarthy, Deirdre M. ; Bhide, Pradeep G. ; Maguire, Casey A. ; Santoscoy, Miguel C.</creator><creatorcontrib>Espinoza, Paula ; Cheng, Ming ; Ng, Carrie ; Cruz, Demitri de la ; Wasson, Elizabeth D. ; McCarthy, Deirdre M. ; Bhide, Pradeep G. ; Maguire, Casey A. ; Santoscoy, Miguel C.</creatorcontrib><description>Adeno-associated viruses (AAV) are promising vectors for gene therapy due to their efficacy in vivo. However, there is room for improvement to address key limitations such as the pre-existing immunity to AAV in patients, high-dose toxicity, and relatively low efficiency for some cell types. This study introduces a metabolic engineering approach, using knockout of the enzyme phosphatidylserine synthase 1 (PTDSS1) to increase the abundance of extracellular vesicle-enclosed AAV (EV-AAV) relative to free AAV in the supernatant of producer cells, simplifying downstream purification processes. The lipid-engineered HEK293T-ΔPTDSS1 cell line achieved a 42.7-fold enrichment of EV-AAV9 compared to free AAV9 in the supernatant. The rational genetic strategy also led to a 300-fold decrease of free AAV in supernatant compared to wild-type HEK293T. The membrane-engineered EV-AAV9 (mEV-AAV9) showed unique envelope composition alterations, including cholesterol enrichment and improved transduction efficiency in human AC16 cardiomyocytes by 1.5-fold compared to conventional EV-AAV9 and by 11-fold compared to non-enveloped AAV9. Robust in-vivo transduction four weeks after intraparenchymal administration of mEV-AAV9 was observed in the murine brain. This study shows promise in the potential of lipid metabolic engineering strategies to improve the efficiency and process development of enveloped gene delivery vectors.
•Metabolic engineering improved the bio-manufacture and delivery properties of gene therapy vectors.•Lipid engineering of enveloped AAV vectors was performed for the first time.•Lipid-modified vectors transduce human cardiomyocytes and the murine brain.</description><identifier>ISSN: 1096-7176</identifier><identifier>ISSN: 1096-7184</identifier><identifier>EISSN: 1096-7184</identifier><identifier>DOI: 10.1016/j.ymben.2024.12.003</identifier><identifier>PMID: 39653070</identifier><language>eng</language><publisher>Belgium: Elsevier Inc</publisher><subject>Downstream ; EV-AAV ; Membrane engineering ; Upstream</subject><ispartof>Metabolic engineering, 2024-12, Vol.88, p.40-49</ispartof><rights>2024</rights><rights>Published by Elsevier Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-0249-4529</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ymben.2024.12.003$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39653070$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Espinoza, Paula</creatorcontrib><creatorcontrib>Cheng, Ming</creatorcontrib><creatorcontrib>Ng, Carrie</creatorcontrib><creatorcontrib>Cruz, Demitri de la</creatorcontrib><creatorcontrib>Wasson, Elizabeth D.</creatorcontrib><creatorcontrib>McCarthy, Deirdre M.</creatorcontrib><creatorcontrib>Bhide, Pradeep G.</creatorcontrib><creatorcontrib>Maguire, Casey A.</creatorcontrib><creatorcontrib>Santoscoy, Miguel C.</creatorcontrib><title>Metabolic engineering improves transduction efficiency and downstream vector isolation by altering the lipid composition of extracellular vesicle-enclosed AAV</title><title>Metabolic engineering</title><addtitle>Metab Eng</addtitle><description>Adeno-associated viruses (AAV) are promising vectors for gene therapy due to their efficacy in vivo. However, there is room for improvement to address key limitations such as the pre-existing immunity to AAV in patients, high-dose toxicity, and relatively low efficiency for some cell types. This study introduces a metabolic engineering approach, using knockout of the enzyme phosphatidylserine synthase 1 (PTDSS1) to increase the abundance of extracellular vesicle-enclosed AAV (EV-AAV) relative to free AAV in the supernatant of producer cells, simplifying downstream purification processes. The lipid-engineered HEK293T-ΔPTDSS1 cell line achieved a 42.7-fold enrichment of EV-AAV9 compared to free AAV9 in the supernatant. The rational genetic strategy also led to a 300-fold decrease of free AAV in supernatant compared to wild-type HEK293T. The membrane-engineered EV-AAV9 (mEV-AAV9) showed unique envelope composition alterations, including cholesterol enrichment and improved transduction efficiency in human AC16 cardiomyocytes by 1.5-fold compared to conventional EV-AAV9 and by 11-fold compared to non-enveloped AAV9. Robust in-vivo transduction four weeks after intraparenchymal administration of mEV-AAV9 was observed in the murine brain. This study shows promise in the potential of lipid metabolic engineering strategies to improve the efficiency and process development of enveloped gene delivery vectors.
•Metabolic engineering improved the bio-manufacture and delivery properties of gene therapy vectors.•Lipid engineering of enveloped AAV vectors was performed for the first time.•Lipid-modified vectors transduce human cardiomyocytes and the murine brain.</description><subject>Downstream</subject><subject>EV-AAV</subject><subject>Membrane engineering</subject><subject>Upstream</subject><issn>1096-7176</issn><issn>1096-7184</issn><issn>1096-7184</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9kU2P0zAQhi0EYpeFX4CEfOSSMJM4bnLgUK34khZxAa6WY08WV45d7KTQP8NvxW0XTh5Ljx7NvC9jLxFqBJRvdvVxHinUDTSixqYGaB-xa4RBVhvsxeP_80ZesWc57wAQuwGfsqt2kF0LG7hmfz7TosfoneEU7l0gSi7cczfvUzxQ5kvSIdvVLC4GTtPkjKNgjlwHy238FfKSSM_8QGaJibscvT6jY0H8cpEtP4h7t3eWmzjvY3ZnIk6cfhe9Ie9Xr1NxZGc8VcXvYybLt9vvz9mTSftMLx7eG_bt_buvtx-ruy8fPt1u7yrCrmurQfSTMLLH3pTLpBbWCG27jUaUkiRIsmIALH9omsaM1PQIJLuhmwYJxXDDXl-85eyfK-VFzS6fNtOB4ppVi0JKGARCQV89oOs4k1X75GadjupfpgV4ewGoLHxwlFQ-h0bWpRKTstEpBHXqUO3UuUN16lBho0qH7V93jpKZ</recordid><startdate>20241207</startdate><enddate>20241207</enddate><creator>Espinoza, Paula</creator><creator>Cheng, Ming</creator><creator>Ng, Carrie</creator><creator>Cruz, Demitri de la</creator><creator>Wasson, Elizabeth D.</creator><creator>McCarthy, Deirdre M.</creator><creator>Bhide, Pradeep G.</creator><creator>Maguire, Casey A.</creator><creator>Santoscoy, Miguel C.</creator><general>Elsevier Inc</general><scope>NPM</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0249-4529</orcidid></search><sort><creationdate>20241207</creationdate><title>Metabolic engineering improves transduction efficiency and downstream vector isolation by altering the lipid composition of extracellular vesicle-enclosed AAV</title><author>Espinoza, Paula ; Cheng, Ming ; Ng, Carrie ; Cruz, Demitri de la ; Wasson, Elizabeth D. ; McCarthy, Deirdre M. ; Bhide, Pradeep G. ; Maguire, Casey A. ; Santoscoy, Miguel C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-e1553-948f4c6818c9656a4dc4ad57a1166e606ed49017a10222cbe2810e6595f960553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Downstream</topic><topic>EV-AAV</topic><topic>Membrane engineering</topic><topic>Upstream</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Espinoza, Paula</creatorcontrib><creatorcontrib>Cheng, Ming</creatorcontrib><creatorcontrib>Ng, Carrie</creatorcontrib><creatorcontrib>Cruz, Demitri de la</creatorcontrib><creatorcontrib>Wasson, Elizabeth D.</creatorcontrib><creatorcontrib>McCarthy, Deirdre M.</creatorcontrib><creatorcontrib>Bhide, Pradeep G.</creatorcontrib><creatorcontrib>Maguire, Casey A.</creatorcontrib><creatorcontrib>Santoscoy, Miguel C.</creatorcontrib><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>Metabolic engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Espinoza, Paula</au><au>Cheng, Ming</au><au>Ng, Carrie</au><au>Cruz, Demitri de la</au><au>Wasson, Elizabeth D.</au><au>McCarthy, Deirdre M.</au><au>Bhide, Pradeep G.</au><au>Maguire, Casey A.</au><au>Santoscoy, Miguel C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Metabolic engineering improves transduction efficiency and downstream vector isolation by altering the lipid composition of extracellular vesicle-enclosed AAV</atitle><jtitle>Metabolic engineering</jtitle><addtitle>Metab Eng</addtitle><date>2024-12-07</date><risdate>2024</risdate><volume>88</volume><spage>40</spage><epage>49</epage><pages>40-49</pages><issn>1096-7176</issn><issn>1096-7184</issn><eissn>1096-7184</eissn><abstract>Adeno-associated viruses (AAV) are promising vectors for gene therapy due to their efficacy in vivo. However, there is room for improvement to address key limitations such as the pre-existing immunity to AAV in patients, high-dose toxicity, and relatively low efficiency for some cell types. This study introduces a metabolic engineering approach, using knockout of the enzyme phosphatidylserine synthase 1 (PTDSS1) to increase the abundance of extracellular vesicle-enclosed AAV (EV-AAV) relative to free AAV in the supernatant of producer cells, simplifying downstream purification processes. The lipid-engineered HEK293T-ΔPTDSS1 cell line achieved a 42.7-fold enrichment of EV-AAV9 compared to free AAV9 in the supernatant. The rational genetic strategy also led to a 300-fold decrease of free AAV in supernatant compared to wild-type HEK293T. The membrane-engineered EV-AAV9 (mEV-AAV9) showed unique envelope composition alterations, including cholesterol enrichment and improved transduction efficiency in human AC16 cardiomyocytes by 1.5-fold compared to conventional EV-AAV9 and by 11-fold compared to non-enveloped AAV9. Robust in-vivo transduction four weeks after intraparenchymal administration of mEV-AAV9 was observed in the murine brain. This study shows promise in the potential of lipid metabolic engineering strategies to improve the efficiency and process development of enveloped gene delivery vectors.
•Metabolic engineering improved the bio-manufacture and delivery properties of gene therapy vectors.•Lipid engineering of enveloped AAV vectors was performed for the first time.•Lipid-modified vectors transduce human cardiomyocytes and the murine brain.</abstract><cop>Belgium</cop><pub>Elsevier Inc</pub><pmid>39653070</pmid><doi>10.1016/j.ymben.2024.12.003</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-0249-4529</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1096-7176 |
ispartof | Metabolic engineering, 2024-12, Vol.88, p.40-49 |
issn | 1096-7176 1096-7184 1096-7184 |
language | eng |
recordid | cdi_proquest_miscellaneous_3146609410 |
source | Access via ScienceDirect (Elsevier) |
subjects | Downstream EV-AAV Membrane engineering Upstream |
title | Metabolic engineering improves transduction efficiency and downstream vector isolation by altering the lipid composition of extracellular vesicle-enclosed AAV |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T20%3A08%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Metabolic%20engineering%20improves%20transduction%20efficiency%20and%20downstream%20vector%20isolation%20by%20altering%20the%20lipid%20composition%20of%20extracellular%20vesicle-enclosed%20AAV&rft.jtitle=Metabolic%20engineering&rft.au=Espinoza,%20Paula&rft.date=2024-12-07&rft.volume=88&rft.spage=40&rft.epage=49&rft.pages=40-49&rft.issn=1096-7176&rft.eissn=1096-7184&rft_id=info:doi/10.1016/j.ymben.2024.12.003&rft_dat=%3Cproquest_pubme%3E3146609410%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3146609410&rft_id=info:pmid/39653070&rft_els_id=S1096717624001721&rfr_iscdi=true |