The prevalence of motility-related genes within the human oral microbiota
The human oral and nasal microbiota contains approximately 770 cultivable bacterial species. More than 2,000 genome sequences of these bacteria can be found in the expanded Human Oral Microbiome Database (eHOMD). We developed HOMDscrape, a freely available Python software tool to programmatically re...
Gespeichert in:
Veröffentlicht in: | Microbiology spectrum 2025-01, Vol.13 (1), p.e0126424 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | e0126424 |
container_title | Microbiology spectrum |
container_volume | 13 |
creator | Rocha, Sofia T Shah, Dhara D Zhu, Qiyun Shrivastava, Abhishek |
description | The human oral and nasal microbiota contains approximately 770 cultivable bacterial species. More than 2,000 genome sequences of these bacteria can be found in the expanded Human Oral Microbiome Database (eHOMD). We developed HOMDscrape, a freely available Python software tool to programmatically retrieve and process amino acid sequences and sequence identifiers from BLAST results acquired from the eHOMD website. Using the data obtained through HOMDscrape, the phylogeny of proteins involved in bacterial type 9 secretion system (T9SS)-driven gliding motility, flagellar motility, and type IV pilus-driven twitching motility was constructed. A comprehensive phylogenetic analysis was conducted for all components of the rotary T9SS, a machinery responsible for secreting various enzymes, virulence factors, and enabling bacterial gliding motility. Results revealed that the T9SS outer membrane β-barrel protein SprA of human oral bacteria underwent horizontal evolution. Overall, we catalog motile bacteria that inhabit the human oral microbiota and document their evolutionary connections. These results will serve as a guide for further studies exploring the impact of motility on the shaping of the human oral microbiota.IMPORTANCEThe human oral microbiota has been extensively studied, and many of the isolated bacteria have genome sequences stored on the human oral microbiome database (eHOMD). Spatial distribution and polymicrobial biofilms are observed in the oral microbiota, but little is understood on how they are influenced by motility. To bridge this gap, we developed a software tool to identify motile bacteria from eHOMD. The results enabled the cataloging of motile bacteria present in the oral microbiota but also provided insight into their evolutionary relationships. This information can guide future research to better understand how bacterial motility shapes the human oral microbiota. |
doi_str_mv | 10.1128/spectrum.01264-24 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_3146606856</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3146606856</sourcerecordid><originalsourceid>FETCH-LOGICAL-a278t-30f936eadfb1598e3736765cdee55f3497016a3e1b85f6eb742ec99f1819b1ab3</originalsourceid><addsrcrecordid>eNp9UctOwzAQtBCIVtAP4IJy5JLitWMnOSFU8ZIqcSlny0k3xFUSB9sp6t8TKKBy4bQr7czs7A4hF0DnACy79j2WwQ3tnAKTScySIzJlIEVMkzw9PugnZOb9hlIKQAUT7JRMeC4F5ABT8rSqMeodbnWDXYmRraLWBtOYsIsdNjrgOnrFDn30bkJtuiiM-HpodRdZp5uoNaWzhbFBn5OTSjceZ9_1jLzc360Wj_Hy-eFpcbuMNUuzEHNa5VyiXlcFiDxDnnKZSlGuEYWo-OiXgtQcochEJbFIE4ZlnleQQV6ALvgZudnr9kPR4rrELoxGVO9Mq91OWW3U30lnavVqtwogpSKTclS4-lZw9m1AH1RrfIlNozu0g1ccEimpzMQnFPbQ8UrvHVa_e4CqzxjUTwzqKwbFkpEz33O0b5na2MF14z_-JVweXvS74icl_gEJxpYy</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3146606856</pqid></control><display><type>article</type><title>The prevalence of motility-related genes within the human oral microbiota</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Rocha, Sofia T ; Shah, Dhara D ; Zhu, Qiyun ; Shrivastava, Abhishek</creator><contributor>Rego, Ryan</contributor><creatorcontrib>Rocha, Sofia T ; Shah, Dhara D ; Zhu, Qiyun ; Shrivastava, Abhishek ; Rego, Ryan</creatorcontrib><description>The human oral and nasal microbiota contains approximately 770 cultivable bacterial species. More than 2,000 genome sequences of these bacteria can be found in the expanded Human Oral Microbiome Database (eHOMD). We developed HOMDscrape, a freely available Python software tool to programmatically retrieve and process amino acid sequences and sequence identifiers from BLAST results acquired from the eHOMD website. Using the data obtained through HOMDscrape, the phylogeny of proteins involved in bacterial type 9 secretion system (T9SS)-driven gliding motility, flagellar motility, and type IV pilus-driven twitching motility was constructed. A comprehensive phylogenetic analysis was conducted for all components of the rotary T9SS, a machinery responsible for secreting various enzymes, virulence factors, and enabling bacterial gliding motility. Results revealed that the T9SS outer membrane β-barrel protein SprA of human oral bacteria underwent horizontal evolution. Overall, we catalog motile bacteria that inhabit the human oral microbiota and document their evolutionary connections. These results will serve as a guide for further studies exploring the impact of motility on the shaping of the human oral microbiota.IMPORTANCEThe human oral microbiota has been extensively studied, and many of the isolated bacteria have genome sequences stored on the human oral microbiome database (eHOMD). Spatial distribution and polymicrobial biofilms are observed in the oral microbiota, but little is understood on how they are influenced by motility. To bridge this gap, we developed a software tool to identify motile bacteria from eHOMD. The results enabled the cataloging of motile bacteria present in the oral microbiota but also provided insight into their evolutionary relationships. This information can guide future research to better understand how bacterial motility shapes the human oral microbiota.</description><identifier>ISSN: 2165-0497</identifier><identifier>EISSN: 2165-0497</identifier><identifier>DOI: 10.1128/spectrum.01264-24</identifier><identifier>PMID: 39651911</identifier><language>eng</language><publisher>United States: American Society for Microbiology</publisher><subject>Bacteria - classification ; Bacteria - genetics ; Bacteria - isolation & purification ; Bacterial Physiological Phenomena ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; Bacterial Secretion Systems - genetics ; Computational Biology ; Fimbriae, Bacterial - genetics ; Fimbriae, Bacterial - metabolism ; Humans ; Microbiota - genetics ; Mouth - microbiology ; Phylogeny ; Research Article ; Software ; Virulence Factors - genetics</subject><ispartof>Microbiology spectrum, 2025-01, Vol.13 (1), p.e0126424</ispartof><rights>Copyright © 2024 Rocha et al.</rights><rights>Copyright © 2024 Rocha et al. 2024 Rocha et al.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a278t-30f936eadfb1598e3736765cdee55f3497016a3e1b85f6eb742ec99f1819b1ab3</cites><orcidid>0000-0002-3568-6271 ; 0000-0003-1598-7509</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11705866/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11705866/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,725,778,782,862,883,27911,27912,53778,53780</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39651911$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Rego, Ryan</contributor><creatorcontrib>Rocha, Sofia T</creatorcontrib><creatorcontrib>Shah, Dhara D</creatorcontrib><creatorcontrib>Zhu, Qiyun</creatorcontrib><creatorcontrib>Shrivastava, Abhishek</creatorcontrib><title>The prevalence of motility-related genes within the human oral microbiota</title><title>Microbiology spectrum</title><addtitle>Spectrum</addtitle><addtitle>Microbiol Spectr</addtitle><description>The human oral and nasal microbiota contains approximately 770 cultivable bacterial species. More than 2,000 genome sequences of these bacteria can be found in the expanded Human Oral Microbiome Database (eHOMD). We developed HOMDscrape, a freely available Python software tool to programmatically retrieve and process amino acid sequences and sequence identifiers from BLAST results acquired from the eHOMD website. Using the data obtained through HOMDscrape, the phylogeny of proteins involved in bacterial type 9 secretion system (T9SS)-driven gliding motility, flagellar motility, and type IV pilus-driven twitching motility was constructed. A comprehensive phylogenetic analysis was conducted for all components of the rotary T9SS, a machinery responsible for secreting various enzymes, virulence factors, and enabling bacterial gliding motility. Results revealed that the T9SS outer membrane β-barrel protein SprA of human oral bacteria underwent horizontal evolution. Overall, we catalog motile bacteria that inhabit the human oral microbiota and document their evolutionary connections. These results will serve as a guide for further studies exploring the impact of motility on the shaping of the human oral microbiota.IMPORTANCEThe human oral microbiota has been extensively studied, and many of the isolated bacteria have genome sequences stored on the human oral microbiome database (eHOMD). Spatial distribution and polymicrobial biofilms are observed in the oral microbiota, but little is understood on how they are influenced by motility. To bridge this gap, we developed a software tool to identify motile bacteria from eHOMD. The results enabled the cataloging of motile bacteria present in the oral microbiota but also provided insight into their evolutionary relationships. This information can guide future research to better understand how bacterial motility shapes the human oral microbiota.</description><subject>Bacteria - classification</subject><subject>Bacteria - genetics</subject><subject>Bacteria - isolation & purification</subject><subject>Bacterial Physiological Phenomena</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>Bacterial Secretion Systems - genetics</subject><subject>Computational Biology</subject><subject>Fimbriae, Bacterial - genetics</subject><subject>Fimbriae, Bacterial - metabolism</subject><subject>Humans</subject><subject>Microbiota - genetics</subject><subject>Mouth - microbiology</subject><subject>Phylogeny</subject><subject>Research Article</subject><subject>Software</subject><subject>Virulence Factors - genetics</subject><issn>2165-0497</issn><issn>2165-0497</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9UctOwzAQtBCIVtAP4IJy5JLitWMnOSFU8ZIqcSlny0k3xFUSB9sp6t8TKKBy4bQr7czs7A4hF0DnACy79j2WwQ3tnAKTScySIzJlIEVMkzw9PugnZOb9hlIKQAUT7JRMeC4F5ABT8rSqMeodbnWDXYmRraLWBtOYsIsdNjrgOnrFDn30bkJtuiiM-HpodRdZp5uoNaWzhbFBn5OTSjceZ9_1jLzc360Wj_Hy-eFpcbuMNUuzEHNa5VyiXlcFiDxDnnKZSlGuEYWo-OiXgtQcochEJbFIE4ZlnleQQV6ALvgZudnr9kPR4rrELoxGVO9Mq91OWW3U30lnavVqtwogpSKTclS4-lZw9m1AH1RrfIlNozu0g1ccEimpzMQnFPbQ8UrvHVa_e4CqzxjUTwzqKwbFkpEz33O0b5na2MF14z_-JVweXvS74icl_gEJxpYy</recordid><startdate>20250107</startdate><enddate>20250107</enddate><creator>Rocha, Sofia T</creator><creator>Shah, Dhara D</creator><creator>Zhu, Qiyun</creator><creator>Shrivastava, Abhishek</creator><general>American Society for Microbiology</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3568-6271</orcidid><orcidid>https://orcid.org/0000-0003-1598-7509</orcidid></search><sort><creationdate>20250107</creationdate><title>The prevalence of motility-related genes within the human oral microbiota</title><author>Rocha, Sofia T ; Shah, Dhara D ; Zhu, Qiyun ; Shrivastava, Abhishek</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a278t-30f936eadfb1598e3736765cdee55f3497016a3e1b85f6eb742ec99f1819b1ab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Bacteria - classification</topic><topic>Bacteria - genetics</topic><topic>Bacteria - isolation & purification</topic><topic>Bacterial Physiological Phenomena</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>Bacterial Secretion Systems - genetics</topic><topic>Computational Biology</topic><topic>Fimbriae, Bacterial - genetics</topic><topic>Fimbriae, Bacterial - metabolism</topic><topic>Humans</topic><topic>Microbiota - genetics</topic><topic>Mouth - microbiology</topic><topic>Phylogeny</topic><topic>Research Article</topic><topic>Software</topic><topic>Virulence Factors - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rocha, Sofia T</creatorcontrib><creatorcontrib>Shah, Dhara D</creatorcontrib><creatorcontrib>Zhu, Qiyun</creatorcontrib><creatorcontrib>Shrivastava, Abhishek</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Microbiology spectrum</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rocha, Sofia T</au><au>Shah, Dhara D</au><au>Zhu, Qiyun</au><au>Shrivastava, Abhishek</au><au>Rego, Ryan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The prevalence of motility-related genes within the human oral microbiota</atitle><jtitle>Microbiology spectrum</jtitle><stitle>Spectrum</stitle><addtitle>Microbiol Spectr</addtitle><date>2025-01-07</date><risdate>2025</risdate><volume>13</volume><issue>1</issue><spage>e0126424</spage><pages>e0126424-</pages><issn>2165-0497</issn><eissn>2165-0497</eissn><abstract>The human oral and nasal microbiota contains approximately 770 cultivable bacterial species. More than 2,000 genome sequences of these bacteria can be found in the expanded Human Oral Microbiome Database (eHOMD). We developed HOMDscrape, a freely available Python software tool to programmatically retrieve and process amino acid sequences and sequence identifiers from BLAST results acquired from the eHOMD website. Using the data obtained through HOMDscrape, the phylogeny of proteins involved in bacterial type 9 secretion system (T9SS)-driven gliding motility, flagellar motility, and type IV pilus-driven twitching motility was constructed. A comprehensive phylogenetic analysis was conducted for all components of the rotary T9SS, a machinery responsible for secreting various enzymes, virulence factors, and enabling bacterial gliding motility. Results revealed that the T9SS outer membrane β-barrel protein SprA of human oral bacteria underwent horizontal evolution. Overall, we catalog motile bacteria that inhabit the human oral microbiota and document their evolutionary connections. These results will serve as a guide for further studies exploring the impact of motility on the shaping of the human oral microbiota.IMPORTANCEThe human oral microbiota has been extensively studied, and many of the isolated bacteria have genome sequences stored on the human oral microbiome database (eHOMD). Spatial distribution and polymicrobial biofilms are observed in the oral microbiota, but little is understood on how they are influenced by motility. To bridge this gap, we developed a software tool to identify motile bacteria from eHOMD. The results enabled the cataloging of motile bacteria present in the oral microbiota but also provided insight into their evolutionary relationships. This information can guide future research to better understand how bacterial motility shapes the human oral microbiota.</abstract><cop>United States</cop><pub>American Society for Microbiology</pub><pmid>39651911</pmid><doi>10.1128/spectrum.01264-24</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-3568-6271</orcidid><orcidid>https://orcid.org/0000-0003-1598-7509</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2165-0497 |
ispartof | Microbiology spectrum, 2025-01, Vol.13 (1), p.e0126424 |
issn | 2165-0497 2165-0497 |
language | eng |
recordid | cdi_proquest_miscellaneous_3146606856 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central |
subjects | Bacteria - classification Bacteria - genetics Bacteria - isolation & purification Bacterial Physiological Phenomena Bacterial Proteins - genetics Bacterial Proteins - metabolism Bacterial Secretion Systems - genetics Computational Biology Fimbriae, Bacterial - genetics Fimbriae, Bacterial - metabolism Humans Microbiota - genetics Mouth - microbiology Phylogeny Research Article Software Virulence Factors - genetics |
title | The prevalence of motility-related genes within the human oral microbiota |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T20%3A18%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20prevalence%20of%20motility-related%20genes%20within%20the%20human%20oral%20microbiota&rft.jtitle=Microbiology%20spectrum&rft.au=Rocha,%20Sofia%20T&rft.date=2025-01-07&rft.volume=13&rft.issue=1&rft.spage=e0126424&rft.pages=e0126424-&rft.issn=2165-0497&rft.eissn=2165-0497&rft_id=info:doi/10.1128/spectrum.01264-24&rft_dat=%3Cproquest_pubme%3E3146606856%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3146606856&rft_id=info:pmid/39651911&rfr_iscdi=true |