The prevalence of motility-related genes within the human oral microbiota

The human oral and nasal microbiota contains approximately 770 cultivable bacterial species. More than 2,000 genome sequences of these bacteria can be found in the expanded Human Oral Microbiome Database (eHOMD). We developed HOMDscrape, a freely available Python software tool to programmatically re...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Microbiology spectrum 2025-01, Vol.13 (1), p.e0126424
Hauptverfasser: Rocha, Sofia T, Shah, Dhara D, Zhu, Qiyun, Shrivastava, Abhishek
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page e0126424
container_title Microbiology spectrum
container_volume 13
creator Rocha, Sofia T
Shah, Dhara D
Zhu, Qiyun
Shrivastava, Abhishek
description The human oral and nasal microbiota contains approximately 770 cultivable bacterial species. More than 2,000 genome sequences of these bacteria can be found in the expanded Human Oral Microbiome Database (eHOMD). We developed HOMDscrape, a freely available Python software tool to programmatically retrieve and process amino acid sequences and sequence identifiers from BLAST results acquired from the eHOMD website. Using the data obtained through HOMDscrape, the phylogeny of proteins involved in bacterial type 9 secretion system (T9SS)-driven gliding motility, flagellar motility, and type IV pilus-driven twitching motility was constructed. A comprehensive phylogenetic analysis was conducted for all components of the rotary T9SS, a machinery responsible for secreting various enzymes, virulence factors, and enabling bacterial gliding motility. Results revealed that the T9SS outer membrane β-barrel protein SprA of human oral bacteria underwent horizontal evolution. Overall, we catalog motile bacteria that inhabit the human oral microbiota and document their evolutionary connections. These results will serve as a guide for further studies exploring the impact of motility on the shaping of the human oral microbiota.IMPORTANCEThe human oral microbiota has been extensively studied, and many of the isolated bacteria have genome sequences stored on the human oral microbiome database (eHOMD). Spatial distribution and polymicrobial biofilms are observed in the oral microbiota, but little is understood on how they are influenced by motility. To bridge this gap, we developed a software tool to identify motile bacteria from eHOMD. The results enabled the cataloging of motile bacteria present in the oral microbiota but also provided insight into their evolutionary relationships. This information can guide future research to better understand how bacterial motility shapes the human oral microbiota.
doi_str_mv 10.1128/spectrum.01264-24
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_3146606856</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3146606856</sourcerecordid><originalsourceid>FETCH-LOGICAL-a278t-30f936eadfb1598e3736765cdee55f3497016a3e1b85f6eb742ec99f1819b1ab3</originalsourceid><addsrcrecordid>eNp9UctOwzAQtBCIVtAP4IJy5JLitWMnOSFU8ZIqcSlny0k3xFUSB9sp6t8TKKBy4bQr7czs7A4hF0DnACy79j2WwQ3tnAKTScySIzJlIEVMkzw9PugnZOb9hlIKQAUT7JRMeC4F5ABT8rSqMeodbnWDXYmRraLWBtOYsIsdNjrgOnrFDn30bkJtuiiM-HpodRdZp5uoNaWzhbFBn5OTSjceZ9_1jLzc360Wj_Hy-eFpcbuMNUuzEHNa5VyiXlcFiDxDnnKZSlGuEYWo-OiXgtQcochEJbFIE4ZlnleQQV6ALvgZudnr9kPR4rrELoxGVO9Mq91OWW3U30lnavVqtwogpSKTclS4-lZw9m1AH1RrfIlNozu0g1ccEimpzMQnFPbQ8UrvHVa_e4CqzxjUTwzqKwbFkpEz33O0b5na2MF14z_-JVweXvS74icl_gEJxpYy</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3146606856</pqid></control><display><type>article</type><title>The prevalence of motility-related genes within the human oral microbiota</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Rocha, Sofia T ; Shah, Dhara D ; Zhu, Qiyun ; Shrivastava, Abhishek</creator><contributor>Rego, Ryan</contributor><creatorcontrib>Rocha, Sofia T ; Shah, Dhara D ; Zhu, Qiyun ; Shrivastava, Abhishek ; Rego, Ryan</creatorcontrib><description>The human oral and nasal microbiota contains approximately 770 cultivable bacterial species. More than 2,000 genome sequences of these bacteria can be found in the expanded Human Oral Microbiome Database (eHOMD). We developed HOMDscrape, a freely available Python software tool to programmatically retrieve and process amino acid sequences and sequence identifiers from BLAST results acquired from the eHOMD website. Using the data obtained through HOMDscrape, the phylogeny of proteins involved in bacterial type 9 secretion system (T9SS)-driven gliding motility, flagellar motility, and type IV pilus-driven twitching motility was constructed. A comprehensive phylogenetic analysis was conducted for all components of the rotary T9SS, a machinery responsible for secreting various enzymes, virulence factors, and enabling bacterial gliding motility. Results revealed that the T9SS outer membrane β-barrel protein SprA of human oral bacteria underwent horizontal evolution. Overall, we catalog motile bacteria that inhabit the human oral microbiota and document their evolutionary connections. These results will serve as a guide for further studies exploring the impact of motility on the shaping of the human oral microbiota.IMPORTANCEThe human oral microbiota has been extensively studied, and many of the isolated bacteria have genome sequences stored on the human oral microbiome database (eHOMD). Spatial distribution and polymicrobial biofilms are observed in the oral microbiota, but little is understood on how they are influenced by motility. To bridge this gap, we developed a software tool to identify motile bacteria from eHOMD. The results enabled the cataloging of motile bacteria present in the oral microbiota but also provided insight into their evolutionary relationships. This information can guide future research to better understand how bacterial motility shapes the human oral microbiota.</description><identifier>ISSN: 2165-0497</identifier><identifier>EISSN: 2165-0497</identifier><identifier>DOI: 10.1128/spectrum.01264-24</identifier><identifier>PMID: 39651911</identifier><language>eng</language><publisher>United States: American Society for Microbiology</publisher><subject>Bacteria - classification ; Bacteria - genetics ; Bacteria - isolation &amp; purification ; Bacterial Physiological Phenomena ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; Bacterial Secretion Systems - genetics ; Computational Biology ; Fimbriae, Bacterial - genetics ; Fimbriae, Bacterial - metabolism ; Humans ; Microbiota - genetics ; Mouth - microbiology ; Phylogeny ; Research Article ; Software ; Virulence Factors - genetics</subject><ispartof>Microbiology spectrum, 2025-01, Vol.13 (1), p.e0126424</ispartof><rights>Copyright © 2024 Rocha et al.</rights><rights>Copyright © 2024 Rocha et al. 2024 Rocha et al.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a278t-30f936eadfb1598e3736765cdee55f3497016a3e1b85f6eb742ec99f1819b1ab3</cites><orcidid>0000-0002-3568-6271 ; 0000-0003-1598-7509</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11705866/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11705866/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,725,778,782,862,883,27911,27912,53778,53780</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39651911$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Rego, Ryan</contributor><creatorcontrib>Rocha, Sofia T</creatorcontrib><creatorcontrib>Shah, Dhara D</creatorcontrib><creatorcontrib>Zhu, Qiyun</creatorcontrib><creatorcontrib>Shrivastava, Abhishek</creatorcontrib><title>The prevalence of motility-related genes within the human oral microbiota</title><title>Microbiology spectrum</title><addtitle>Spectrum</addtitle><addtitle>Microbiol Spectr</addtitle><description>The human oral and nasal microbiota contains approximately 770 cultivable bacterial species. More than 2,000 genome sequences of these bacteria can be found in the expanded Human Oral Microbiome Database (eHOMD). We developed HOMDscrape, a freely available Python software tool to programmatically retrieve and process amino acid sequences and sequence identifiers from BLAST results acquired from the eHOMD website. Using the data obtained through HOMDscrape, the phylogeny of proteins involved in bacterial type 9 secretion system (T9SS)-driven gliding motility, flagellar motility, and type IV pilus-driven twitching motility was constructed. A comprehensive phylogenetic analysis was conducted for all components of the rotary T9SS, a machinery responsible for secreting various enzymes, virulence factors, and enabling bacterial gliding motility. Results revealed that the T9SS outer membrane β-barrel protein SprA of human oral bacteria underwent horizontal evolution. Overall, we catalog motile bacteria that inhabit the human oral microbiota and document their evolutionary connections. These results will serve as a guide for further studies exploring the impact of motility on the shaping of the human oral microbiota.IMPORTANCEThe human oral microbiota has been extensively studied, and many of the isolated bacteria have genome sequences stored on the human oral microbiome database (eHOMD). Spatial distribution and polymicrobial biofilms are observed in the oral microbiota, but little is understood on how they are influenced by motility. To bridge this gap, we developed a software tool to identify motile bacteria from eHOMD. The results enabled the cataloging of motile bacteria present in the oral microbiota but also provided insight into their evolutionary relationships. This information can guide future research to better understand how bacterial motility shapes the human oral microbiota.</description><subject>Bacteria - classification</subject><subject>Bacteria - genetics</subject><subject>Bacteria - isolation &amp; purification</subject><subject>Bacterial Physiological Phenomena</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>Bacterial Secretion Systems - genetics</subject><subject>Computational Biology</subject><subject>Fimbriae, Bacterial - genetics</subject><subject>Fimbriae, Bacterial - metabolism</subject><subject>Humans</subject><subject>Microbiota - genetics</subject><subject>Mouth - microbiology</subject><subject>Phylogeny</subject><subject>Research Article</subject><subject>Software</subject><subject>Virulence Factors - genetics</subject><issn>2165-0497</issn><issn>2165-0497</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9UctOwzAQtBCIVtAP4IJy5JLitWMnOSFU8ZIqcSlny0k3xFUSB9sp6t8TKKBy4bQr7czs7A4hF0DnACy79j2WwQ3tnAKTScySIzJlIEVMkzw9PugnZOb9hlIKQAUT7JRMeC4F5ABT8rSqMeodbnWDXYmRraLWBtOYsIsdNjrgOnrFDn30bkJtuiiM-HpodRdZp5uoNaWzhbFBn5OTSjceZ9_1jLzc360Wj_Hy-eFpcbuMNUuzEHNa5VyiXlcFiDxDnnKZSlGuEYWo-OiXgtQcochEJbFIE4ZlnleQQV6ALvgZudnr9kPR4rrELoxGVO9Mq91OWW3U30lnavVqtwogpSKTclS4-lZw9m1AH1RrfIlNozu0g1ccEimpzMQnFPbQ8UrvHVa_e4CqzxjUTwzqKwbFkpEz33O0b5na2MF14z_-JVweXvS74icl_gEJxpYy</recordid><startdate>20250107</startdate><enddate>20250107</enddate><creator>Rocha, Sofia T</creator><creator>Shah, Dhara D</creator><creator>Zhu, Qiyun</creator><creator>Shrivastava, Abhishek</creator><general>American Society for Microbiology</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3568-6271</orcidid><orcidid>https://orcid.org/0000-0003-1598-7509</orcidid></search><sort><creationdate>20250107</creationdate><title>The prevalence of motility-related genes within the human oral microbiota</title><author>Rocha, Sofia T ; Shah, Dhara D ; Zhu, Qiyun ; Shrivastava, Abhishek</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a278t-30f936eadfb1598e3736765cdee55f3497016a3e1b85f6eb742ec99f1819b1ab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Bacteria - classification</topic><topic>Bacteria - genetics</topic><topic>Bacteria - isolation &amp; purification</topic><topic>Bacterial Physiological Phenomena</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>Bacterial Secretion Systems - genetics</topic><topic>Computational Biology</topic><topic>Fimbriae, Bacterial - genetics</topic><topic>Fimbriae, Bacterial - metabolism</topic><topic>Humans</topic><topic>Microbiota - genetics</topic><topic>Mouth - microbiology</topic><topic>Phylogeny</topic><topic>Research Article</topic><topic>Software</topic><topic>Virulence Factors - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rocha, Sofia T</creatorcontrib><creatorcontrib>Shah, Dhara D</creatorcontrib><creatorcontrib>Zhu, Qiyun</creatorcontrib><creatorcontrib>Shrivastava, Abhishek</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Microbiology spectrum</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rocha, Sofia T</au><au>Shah, Dhara D</au><au>Zhu, Qiyun</au><au>Shrivastava, Abhishek</au><au>Rego, Ryan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The prevalence of motility-related genes within the human oral microbiota</atitle><jtitle>Microbiology spectrum</jtitle><stitle>Spectrum</stitle><addtitle>Microbiol Spectr</addtitle><date>2025-01-07</date><risdate>2025</risdate><volume>13</volume><issue>1</issue><spage>e0126424</spage><pages>e0126424-</pages><issn>2165-0497</issn><eissn>2165-0497</eissn><abstract>The human oral and nasal microbiota contains approximately 770 cultivable bacterial species. More than 2,000 genome sequences of these bacteria can be found in the expanded Human Oral Microbiome Database (eHOMD). We developed HOMDscrape, a freely available Python software tool to programmatically retrieve and process amino acid sequences and sequence identifiers from BLAST results acquired from the eHOMD website. Using the data obtained through HOMDscrape, the phylogeny of proteins involved in bacterial type 9 secretion system (T9SS)-driven gliding motility, flagellar motility, and type IV pilus-driven twitching motility was constructed. A comprehensive phylogenetic analysis was conducted for all components of the rotary T9SS, a machinery responsible for secreting various enzymes, virulence factors, and enabling bacterial gliding motility. Results revealed that the T9SS outer membrane β-barrel protein SprA of human oral bacteria underwent horizontal evolution. Overall, we catalog motile bacteria that inhabit the human oral microbiota and document their evolutionary connections. These results will serve as a guide for further studies exploring the impact of motility on the shaping of the human oral microbiota.IMPORTANCEThe human oral microbiota has been extensively studied, and many of the isolated bacteria have genome sequences stored on the human oral microbiome database (eHOMD). Spatial distribution and polymicrobial biofilms are observed in the oral microbiota, but little is understood on how they are influenced by motility. To bridge this gap, we developed a software tool to identify motile bacteria from eHOMD. The results enabled the cataloging of motile bacteria present in the oral microbiota but also provided insight into their evolutionary relationships. This information can guide future research to better understand how bacterial motility shapes the human oral microbiota.</abstract><cop>United States</cop><pub>American Society for Microbiology</pub><pmid>39651911</pmid><doi>10.1128/spectrum.01264-24</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-3568-6271</orcidid><orcidid>https://orcid.org/0000-0003-1598-7509</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2165-0497
ispartof Microbiology spectrum, 2025-01, Vol.13 (1), p.e0126424
issn 2165-0497
2165-0497
language eng
recordid cdi_proquest_miscellaneous_3146606856
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects Bacteria - classification
Bacteria - genetics
Bacteria - isolation & purification
Bacterial Physiological Phenomena
Bacterial Proteins - genetics
Bacterial Proteins - metabolism
Bacterial Secretion Systems - genetics
Computational Biology
Fimbriae, Bacterial - genetics
Fimbriae, Bacterial - metabolism
Humans
Microbiota - genetics
Mouth - microbiology
Phylogeny
Research Article
Software
Virulence Factors - genetics
title The prevalence of motility-related genes within the human oral microbiota
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T20%3A18%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20prevalence%20of%20motility-related%20genes%20within%20the%20human%20oral%20microbiota&rft.jtitle=Microbiology%20spectrum&rft.au=Rocha,%20Sofia%20T&rft.date=2025-01-07&rft.volume=13&rft.issue=1&rft.spage=e0126424&rft.pages=e0126424-&rft.issn=2165-0497&rft.eissn=2165-0497&rft_id=info:doi/10.1128/spectrum.01264-24&rft_dat=%3Cproquest_pubme%3E3146606856%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3146606856&rft_id=info:pmid/39651911&rfr_iscdi=true