In Situ Transformable Nanoparticle Effectively Suppresses Bladder Cancer by Damaging Mitochondria and Blocking Mitochondrial Autophagy Flux

Tumor therapeutic strategies based on mitochondrial damage have become an emerging trend. However, the low drug delivery efficiency caused by lysosomal sequestration and the activation of protective mitochondrial autophagy severely restricts the therapeutic efficacy. Herein, an in situ transformable...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced science 2024-12, p.e2409425
Hauptverfasser: Lv, Yulin, Song, Benli, Yang, Guang, Wang, Yuting, Wu, Zeyu, Si, Minggui, Yang, Zongzheng, Chen, Huilin, Liu, Chen, Li, Min, Zhang, Yinshi, Qiao, Zengying, Wang, Lu, Xu, Wanhai
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page e2409425
container_title Advanced science
container_volume
creator Lv, Yulin
Song, Benli
Yang, Guang
Wang, Yuting
Wu, Zeyu
Si, Minggui
Yang, Zongzheng
Chen, Huilin
Liu, Chen
Li, Min
Zhang, Yinshi
Qiao, Zengying
Wang, Lu
Xu, Wanhai
description Tumor therapeutic strategies based on mitochondrial damage have become an emerging trend. However, the low drug delivery efficiency caused by lysosomal sequestration and the activation of protective mitochondrial autophagy severely restricts the therapeutic efficacy. Herein, an in situ transformable nanoparticle named KCKT is developed to promote lysosomal escape and directly damage mitochondria while blocking mitochondrial autophagy. KCKT exhibits acid responsiveness for precise self-assembly into nanofibers within the lysosomes of cancer cells. The massive accumulation of nanofibers and excessive production of reactive oxygen species (ROS) under sonodynamic therapy synergistically induce lysosomal damage. This facilitates the escape of nanofibers from lysosomal sequestration, thereby enhancing drug delivery. Subsequently, the escaped nanofibers specifically aggregate around the mitochondria for long-term retention and generate ROS under ultrasound irradiation to induce mitochondrial damage. Notably, due to lysosomal dysfunction, damaged mitochondria cannot be cleared by autophagy, further aggravating oxidative damage. These results reveal that KCKT effectively improves drug delivery and mitochondria-targeted therapy efficiency by blocking protective autophagy. These findings hold significant potential for advancing the field of mitochondria-targeted therapy.
doi_str_mv 10.1002/advs.202409425
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3146606114</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3146606114</sourcerecordid><originalsourceid>FETCH-LOGICAL-c180t-ff792aa876a969b907b91e72e8dfeb0b81062a7bc904954d1e2b8cb32d1bff383</originalsourceid><addsrcrecordid>eNpdkctOwzAQRS0EAlTYskResmmxHSexl1BaQOKxANbR-NUGkjjYSUW_gZ8mFQUhVndGc-ZqNBehE0omlBB2DmYVJ4wwTiRn6Q46ZFSKcSI43_1TH6DjGF8JITRNck7FPjpIZJZSQdJD9Hnb4Key6_FzgCY6H2pQlcUP0PgWQlfqoZk5Z3VXrmy1xk992wYbo434sgJjbMBTaPQgao2voIZF2Szwfdl5vfSNCSVgaMzAev32f1Lhi77z7RIWazyv-o8jtOegivZ4qyP0Mp89T2_Gd4_Xt9OLu7Eebu7GzuWSAYg8A5lJJUmuJLU5s8I4q4gSlGQMcqUl4TLlhlqmhFYJM1Q5l4hkhM6-fdvg33sbu6Iuo7ZVBY31fSwSyrOMZJTyAZ18ozr4GIN1RRvKGsK6oKTYZFBsMih-MxgWTrfevaqt-cV_Pp58AfpxhR4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3146606114</pqid></control><display><type>article</type><title>In Situ Transformable Nanoparticle Effectively Suppresses Bladder Cancer by Damaging Mitochondria and Blocking Mitochondrial Autophagy Flux</title><source>Open Access: Wiley-Blackwell Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Wiley Online Library (Online service)</source><source>PubMed Central</source><source>EZB Electronic Journals Library</source><creator>Lv, Yulin ; Song, Benli ; Yang, Guang ; Wang, Yuting ; Wu, Zeyu ; Si, Minggui ; Yang, Zongzheng ; Chen, Huilin ; Liu, Chen ; Li, Min ; Zhang, Yinshi ; Qiao, Zengying ; Wang, Lu ; Xu, Wanhai</creator><creatorcontrib>Lv, Yulin ; Song, Benli ; Yang, Guang ; Wang, Yuting ; Wu, Zeyu ; Si, Minggui ; Yang, Zongzheng ; Chen, Huilin ; Liu, Chen ; Li, Min ; Zhang, Yinshi ; Qiao, Zengying ; Wang, Lu ; Xu, Wanhai</creatorcontrib><description>Tumor therapeutic strategies based on mitochondrial damage have become an emerging trend. However, the low drug delivery efficiency caused by lysosomal sequestration and the activation of protective mitochondrial autophagy severely restricts the therapeutic efficacy. Herein, an in situ transformable nanoparticle named KCKT is developed to promote lysosomal escape and directly damage mitochondria while blocking mitochondrial autophagy. KCKT exhibits acid responsiveness for precise self-assembly into nanofibers within the lysosomes of cancer cells. The massive accumulation of nanofibers and excessive production of reactive oxygen species (ROS) under sonodynamic therapy synergistically induce lysosomal damage. This facilitates the escape of nanofibers from lysosomal sequestration, thereby enhancing drug delivery. Subsequently, the escaped nanofibers specifically aggregate around the mitochondria for long-term retention and generate ROS under ultrasound irradiation to induce mitochondrial damage. Notably, due to lysosomal dysfunction, damaged mitochondria cannot be cleared by autophagy, further aggravating oxidative damage. These results reveal that KCKT effectively improves drug delivery and mitochondria-targeted therapy efficiency by blocking protective autophagy. These findings hold significant potential for advancing the field of mitochondria-targeted therapy.</description><identifier>ISSN: 2198-3844</identifier><identifier>EISSN: 2198-3844</identifier><identifier>DOI: 10.1002/advs.202409425</identifier><identifier>PMID: 39651805</identifier><language>eng</language><publisher>Germany</publisher><ispartof>Advanced science, 2024-12, p.e2409425</ispartof><rights>2024 The Author(s). Advanced Science published by Wiley‐VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c180t-ff792aa876a969b907b91e72e8dfeb0b81062a7bc904954d1e2b8cb32d1bff383</cites><orcidid>0000-0003-3442-7988</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39651805$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lv, Yulin</creatorcontrib><creatorcontrib>Song, Benli</creatorcontrib><creatorcontrib>Yang, Guang</creatorcontrib><creatorcontrib>Wang, Yuting</creatorcontrib><creatorcontrib>Wu, Zeyu</creatorcontrib><creatorcontrib>Si, Minggui</creatorcontrib><creatorcontrib>Yang, Zongzheng</creatorcontrib><creatorcontrib>Chen, Huilin</creatorcontrib><creatorcontrib>Liu, Chen</creatorcontrib><creatorcontrib>Li, Min</creatorcontrib><creatorcontrib>Zhang, Yinshi</creatorcontrib><creatorcontrib>Qiao, Zengying</creatorcontrib><creatorcontrib>Wang, Lu</creatorcontrib><creatorcontrib>Xu, Wanhai</creatorcontrib><title>In Situ Transformable Nanoparticle Effectively Suppresses Bladder Cancer by Damaging Mitochondria and Blocking Mitochondrial Autophagy Flux</title><title>Advanced science</title><addtitle>Adv Sci (Weinh)</addtitle><description>Tumor therapeutic strategies based on mitochondrial damage have become an emerging trend. However, the low drug delivery efficiency caused by lysosomal sequestration and the activation of protective mitochondrial autophagy severely restricts the therapeutic efficacy. Herein, an in situ transformable nanoparticle named KCKT is developed to promote lysosomal escape and directly damage mitochondria while blocking mitochondrial autophagy. KCKT exhibits acid responsiveness for precise self-assembly into nanofibers within the lysosomes of cancer cells. The massive accumulation of nanofibers and excessive production of reactive oxygen species (ROS) under sonodynamic therapy synergistically induce lysosomal damage. This facilitates the escape of nanofibers from lysosomal sequestration, thereby enhancing drug delivery. Subsequently, the escaped nanofibers specifically aggregate around the mitochondria for long-term retention and generate ROS under ultrasound irradiation to induce mitochondrial damage. Notably, due to lysosomal dysfunction, damaged mitochondria cannot be cleared by autophagy, further aggravating oxidative damage. These results reveal that KCKT effectively improves drug delivery and mitochondria-targeted therapy efficiency by blocking protective autophagy. These findings hold significant potential for advancing the field of mitochondria-targeted therapy.</description><issn>2198-3844</issn><issn>2198-3844</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpdkctOwzAQRS0EAlTYskResmmxHSexl1BaQOKxANbR-NUGkjjYSUW_gZ8mFQUhVndGc-ZqNBehE0omlBB2DmYVJ4wwTiRn6Q46ZFSKcSI43_1TH6DjGF8JITRNck7FPjpIZJZSQdJD9Hnb4Key6_FzgCY6H2pQlcUP0PgWQlfqoZk5Z3VXrmy1xk992wYbo434sgJjbMBTaPQgao2voIZF2Szwfdl5vfSNCSVgaMzAev32f1Lhi77z7RIWazyv-o8jtOegivZ4qyP0Mp89T2_Gd4_Xt9OLu7Eebu7GzuWSAYg8A5lJJUmuJLU5s8I4q4gSlGQMcqUl4TLlhlqmhFYJM1Q5l4hkhM6-fdvg33sbu6Iuo7ZVBY31fSwSyrOMZJTyAZ18ozr4GIN1RRvKGsK6oKTYZFBsMih-MxgWTrfevaqt-cV_Pp58AfpxhR4</recordid><startdate>20241209</startdate><enddate>20241209</enddate><creator>Lv, Yulin</creator><creator>Song, Benli</creator><creator>Yang, Guang</creator><creator>Wang, Yuting</creator><creator>Wu, Zeyu</creator><creator>Si, Minggui</creator><creator>Yang, Zongzheng</creator><creator>Chen, Huilin</creator><creator>Liu, Chen</creator><creator>Li, Min</creator><creator>Zhang, Yinshi</creator><creator>Qiao, Zengying</creator><creator>Wang, Lu</creator><creator>Xu, Wanhai</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3442-7988</orcidid></search><sort><creationdate>20241209</creationdate><title>In Situ Transformable Nanoparticle Effectively Suppresses Bladder Cancer by Damaging Mitochondria and Blocking Mitochondrial Autophagy Flux</title><author>Lv, Yulin ; Song, Benli ; Yang, Guang ; Wang, Yuting ; Wu, Zeyu ; Si, Minggui ; Yang, Zongzheng ; Chen, Huilin ; Liu, Chen ; Li, Min ; Zhang, Yinshi ; Qiao, Zengying ; Wang, Lu ; Xu, Wanhai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c180t-ff792aa876a969b907b91e72e8dfeb0b81062a7bc904954d1e2b8cb32d1bff383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lv, Yulin</creatorcontrib><creatorcontrib>Song, Benli</creatorcontrib><creatorcontrib>Yang, Guang</creatorcontrib><creatorcontrib>Wang, Yuting</creatorcontrib><creatorcontrib>Wu, Zeyu</creatorcontrib><creatorcontrib>Si, Minggui</creatorcontrib><creatorcontrib>Yang, Zongzheng</creatorcontrib><creatorcontrib>Chen, Huilin</creatorcontrib><creatorcontrib>Liu, Chen</creatorcontrib><creatorcontrib>Li, Min</creatorcontrib><creatorcontrib>Zhang, Yinshi</creatorcontrib><creatorcontrib>Qiao, Zengying</creatorcontrib><creatorcontrib>Wang, Lu</creatorcontrib><creatorcontrib>Xu, Wanhai</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lv, Yulin</au><au>Song, Benli</au><au>Yang, Guang</au><au>Wang, Yuting</au><au>Wu, Zeyu</au><au>Si, Minggui</au><au>Yang, Zongzheng</au><au>Chen, Huilin</au><au>Liu, Chen</au><au>Li, Min</au><au>Zhang, Yinshi</au><au>Qiao, Zengying</au><au>Wang, Lu</au><au>Xu, Wanhai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In Situ Transformable Nanoparticle Effectively Suppresses Bladder Cancer by Damaging Mitochondria and Blocking Mitochondrial Autophagy Flux</atitle><jtitle>Advanced science</jtitle><addtitle>Adv Sci (Weinh)</addtitle><date>2024-12-09</date><risdate>2024</risdate><spage>e2409425</spage><pages>e2409425-</pages><issn>2198-3844</issn><eissn>2198-3844</eissn><abstract>Tumor therapeutic strategies based on mitochondrial damage have become an emerging trend. However, the low drug delivery efficiency caused by lysosomal sequestration and the activation of protective mitochondrial autophagy severely restricts the therapeutic efficacy. Herein, an in situ transformable nanoparticle named KCKT is developed to promote lysosomal escape and directly damage mitochondria while blocking mitochondrial autophagy. KCKT exhibits acid responsiveness for precise self-assembly into nanofibers within the lysosomes of cancer cells. The massive accumulation of nanofibers and excessive production of reactive oxygen species (ROS) under sonodynamic therapy synergistically induce lysosomal damage. This facilitates the escape of nanofibers from lysosomal sequestration, thereby enhancing drug delivery. Subsequently, the escaped nanofibers specifically aggregate around the mitochondria for long-term retention and generate ROS under ultrasound irradiation to induce mitochondrial damage. Notably, due to lysosomal dysfunction, damaged mitochondria cannot be cleared by autophagy, further aggravating oxidative damage. These results reveal that KCKT effectively improves drug delivery and mitochondria-targeted therapy efficiency by blocking protective autophagy. These findings hold significant potential for advancing the field of mitochondria-targeted therapy.</abstract><cop>Germany</cop><pmid>39651805</pmid><doi>10.1002/advs.202409425</doi><orcidid>https://orcid.org/0000-0003-3442-7988</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2198-3844
ispartof Advanced science, 2024-12, p.e2409425
issn 2198-3844
2198-3844
language eng
recordid cdi_proquest_miscellaneous_3146606114
source Open Access: Wiley-Blackwell Open Access Journals; DOAJ Directory of Open Access Journals; Wiley Online Library (Online service); PubMed Central; EZB Electronic Journals Library
title In Situ Transformable Nanoparticle Effectively Suppresses Bladder Cancer by Damaging Mitochondria and Blocking Mitochondrial Autophagy Flux
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T14%3A37%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20Situ%20Transformable%20Nanoparticle%20Effectively%20Suppresses%20Bladder%20Cancer%20by%20Damaging%20Mitochondria%20and%20Blocking%20Mitochondrial%20Autophagy%20Flux&rft.jtitle=Advanced%20science&rft.au=Lv,%20Yulin&rft.date=2024-12-09&rft.spage=e2409425&rft.pages=e2409425-&rft.issn=2198-3844&rft.eissn=2198-3844&rft_id=info:doi/10.1002/advs.202409425&rft_dat=%3Cproquest_cross%3E3146606114%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3146606114&rft_id=info:pmid/39651805&rfr_iscdi=true