VaxOptiML: leveraging machine learning for accurate prediction of MHC-I and II epitopes for optimized cancer immunotherapy

Cancer immunotherapy hinges on accurate epitope prediction for advancing vaccine development. VaxOptiML (available at https://vaxoptiml.streamlit.app/ ) is an integrated pipeline designed to enhance epitope prediction and prioritization. This study aims to develop and deploy a robust tool for accura...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Immunogenetics (New York) 2025-12, Vol.77 (1), p.8, Article 8
Hauptverfasser: T, Dhanushkumar, G, Sunila B, Hebbar, Sripad Rama, Selvam, Prasanna Kumar, Vasudevan, Karthick
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 8
container_title Immunogenetics (New York)
container_volume 77
creator T, Dhanushkumar
G, Sunila B
Hebbar, Sripad Rama
Selvam, Prasanna Kumar
Vasudevan, Karthick
description Cancer immunotherapy hinges on accurate epitope prediction for advancing vaccine development. VaxOptiML (available at https://vaxoptiml.streamlit.app/ ) is an integrated pipeline designed to enhance epitope prediction and prioritization. This study aims to develop and deploy a robust tool for accurate prediction and prioritization of highly immunogenic and optimized MHC-I and MHC-II T-cell epitopes for cancer vaccine development and immunotherapy. Utilizing a curated dataset of experimentally validated epitopes and employing sophisticated machine learning techniques, VaxOptiML features three models: epitope prediction from target sequences, personalized HLA typing, and prioritization the predicted epitopes based on immunogenicity scores. Our rigorous data extraction, cleaning, and feature extraction processes, coupled with model building, yield exceptional accuracy, sensitivity, specificity, and F1 score, surpassing existing prediction methods. Comprehensive visual representations underscore VaxOptiML’s robustness and efficacy in accelerating epitope discovery and vaccine design for cancer immunotherapy. Deployed via Streamlit for public use, VaxOptiML enhances accessibility and usability for researchers and clinicians, demonstrating significant potential in cancer immunotherapy.
doi_str_mv 10.1007/s00251-024-01361-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3146569627</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3141979316</sourcerecordid><originalsourceid>FETCH-LOGICAL-c256t-c7441137095141284ffa3996a251737a9cc5376473bb4db1aba66db82a63e3423</originalsourceid><addsrcrecordid>eNp9kUFPHCEYhknTpq62f6CHhqSXXrB8wIB4M5uqm6zx0vZKGIZZMTswhRmj_npZV9ukh55IPp73_SAPQp-AHgOl6luhlDVAKBOEApdA9Bu0AMEZAQbwFi0o1ZwoBXCADku5pRQazeR7dMC1FIILWKDHX_b-epzC1foUb_2dz3YT4gYP1t2E6OvI5rgb9Clj69yc7eTxmH0X3BRSxKnHV5dLssI2dni1wn4MUxp9eQ6kWjyER99hZ6PzGYdhmGOabuqa8eEDetfbbfEfX84j9PP8-4_lJVlfX6yWZ2viWCMn4pQQAFxR3YAAdiL63nKtpa1_V1xZ7VzDlRSKt63oWrCtlbJrT5iV3HPB-BH6uu8dc_o9-zKZIRTnt1sbfZqL4SBkI7VkqqJf_kFv05xjfd2OAq00B1kptqdcTqVk35sxh8HmBwPU7MyYvRlTzZhnM0bX0OeX6rkdfPcn8qqiAnwPlHoVNz7_3f2f2idGbpgr</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3141979316</pqid></control><display><type>article</type><title>VaxOptiML: leveraging machine learning for accurate prediction of MHC-I and II epitopes for optimized cancer immunotherapy</title><source>MEDLINE</source><source>SpringerLink</source><creator>T, Dhanushkumar ; G, Sunila B ; Hebbar, Sripad Rama ; Selvam, Prasanna Kumar ; Vasudevan, Karthick</creator><creatorcontrib>T, Dhanushkumar ; G, Sunila B ; Hebbar, Sripad Rama ; Selvam, Prasanna Kumar ; Vasudevan, Karthick</creatorcontrib><description>Cancer immunotherapy hinges on accurate epitope prediction for advancing vaccine development. VaxOptiML (available at https://vaxoptiml.streamlit.app/ ) is an integrated pipeline designed to enhance epitope prediction and prioritization. This study aims to develop and deploy a robust tool for accurate prediction and prioritization of highly immunogenic and optimized MHC-I and MHC-II T-cell epitopes for cancer vaccine development and immunotherapy. Utilizing a curated dataset of experimentally validated epitopes and employing sophisticated machine learning techniques, VaxOptiML features three models: epitope prediction from target sequences, personalized HLA typing, and prioritization the predicted epitopes based on immunogenicity scores. Our rigorous data extraction, cleaning, and feature extraction processes, coupled with model building, yield exceptional accuracy, sensitivity, specificity, and F1 score, surpassing existing prediction methods. Comprehensive visual representations underscore VaxOptiML’s robustness and efficacy in accelerating epitope discovery and vaccine design for cancer immunotherapy. Deployed via Streamlit for public use, VaxOptiML enhances accessibility and usability for researchers and clinicians, demonstrating significant potential in cancer immunotherapy.</description><identifier>ISSN: 0093-7711</identifier><identifier>ISSN: 1432-1211</identifier><identifier>EISSN: 1432-1211</identifier><identifier>DOI: 10.1007/s00251-024-01361-9</identifier><identifier>PMID: 39644341</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Allergology ; Biomedical and Life Sciences ; Biomedicine ; Cancer ; Cancer immunotherapy ; Cancer vaccines ; Cancer Vaccines - immunology ; Cancer Vaccines - therapeutic use ; Cell Biology ; Cell culture ; Computational Biology - methods ; Epitopes ; Epitopes, T-Lymphocyte - immunology ; Gene Function ; Histocompatibility Antigens Class I - immunology ; Histocompatibility Antigens Class II - immunology ; Human Genetics ; Humans ; Immunogenicity ; Immunology ; Immunotherapy ; Immunotherapy - methods ; Learning algorithms ; Lymphocytes T ; Machine Learning ; Major histocompatibility complex ; Neoplasms - immunology ; Neoplasms - therapy ; Original Article ; Predictions ; Software ; Tissue typing ; Vaccine development ; Vaccines</subject><ispartof>Immunogenetics (New York), 2025-12, Vol.77 (1), p.8, Article 8</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.</rights><rights>Copyright Springer Nature B.V. Dec 2025</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c256t-c7441137095141284ffa3996a251737a9cc5376473bb4db1aba66db82a63e3423</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00251-024-01361-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00251-024-01361-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27915,27916,41479,42548,51310</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39644341$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>T, Dhanushkumar</creatorcontrib><creatorcontrib>G, Sunila B</creatorcontrib><creatorcontrib>Hebbar, Sripad Rama</creatorcontrib><creatorcontrib>Selvam, Prasanna Kumar</creatorcontrib><creatorcontrib>Vasudevan, Karthick</creatorcontrib><title>VaxOptiML: leveraging machine learning for accurate prediction of MHC-I and II epitopes for optimized cancer immunotherapy</title><title>Immunogenetics (New York)</title><addtitle>Immunogenetics</addtitle><addtitle>Immunogenetics</addtitle><description>Cancer immunotherapy hinges on accurate epitope prediction for advancing vaccine development. VaxOptiML (available at https://vaxoptiml.streamlit.app/ ) is an integrated pipeline designed to enhance epitope prediction and prioritization. This study aims to develop and deploy a robust tool for accurate prediction and prioritization of highly immunogenic and optimized MHC-I and MHC-II T-cell epitopes for cancer vaccine development and immunotherapy. Utilizing a curated dataset of experimentally validated epitopes and employing sophisticated machine learning techniques, VaxOptiML features three models: epitope prediction from target sequences, personalized HLA typing, and prioritization the predicted epitopes based on immunogenicity scores. Our rigorous data extraction, cleaning, and feature extraction processes, coupled with model building, yield exceptional accuracy, sensitivity, specificity, and F1 score, surpassing existing prediction methods. Comprehensive visual representations underscore VaxOptiML’s robustness and efficacy in accelerating epitope discovery and vaccine design for cancer immunotherapy. Deployed via Streamlit for public use, VaxOptiML enhances accessibility and usability for researchers and clinicians, demonstrating significant potential in cancer immunotherapy.</description><subject>Allergology</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Cancer</subject><subject>Cancer immunotherapy</subject><subject>Cancer vaccines</subject><subject>Cancer Vaccines - immunology</subject><subject>Cancer Vaccines - therapeutic use</subject><subject>Cell Biology</subject><subject>Cell culture</subject><subject>Computational Biology - methods</subject><subject>Epitopes</subject><subject>Epitopes, T-Lymphocyte - immunology</subject><subject>Gene Function</subject><subject>Histocompatibility Antigens Class I - immunology</subject><subject>Histocompatibility Antigens Class II - immunology</subject><subject>Human Genetics</subject><subject>Humans</subject><subject>Immunogenicity</subject><subject>Immunology</subject><subject>Immunotherapy</subject><subject>Immunotherapy - methods</subject><subject>Learning algorithms</subject><subject>Lymphocytes T</subject><subject>Machine Learning</subject><subject>Major histocompatibility complex</subject><subject>Neoplasms - immunology</subject><subject>Neoplasms - therapy</subject><subject>Original Article</subject><subject>Predictions</subject><subject>Software</subject><subject>Tissue typing</subject><subject>Vaccine development</subject><subject>Vaccines</subject><issn>0093-7711</issn><issn>1432-1211</issn><issn>1432-1211</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kUFPHCEYhknTpq62f6CHhqSXXrB8wIB4M5uqm6zx0vZKGIZZMTswhRmj_npZV9ukh55IPp73_SAPQp-AHgOl6luhlDVAKBOEApdA9Bu0AMEZAQbwFi0o1ZwoBXCADku5pRQazeR7dMC1FIILWKDHX_b-epzC1foUb_2dz3YT4gYP1t2E6OvI5rgb9Clj69yc7eTxmH0X3BRSxKnHV5dLssI2dni1wn4MUxp9eQ6kWjyER99hZ6PzGYdhmGOabuqa8eEDetfbbfEfX84j9PP8-4_lJVlfX6yWZ2viWCMn4pQQAFxR3YAAdiL63nKtpa1_V1xZ7VzDlRSKt63oWrCtlbJrT5iV3HPB-BH6uu8dc_o9-zKZIRTnt1sbfZqL4SBkI7VkqqJf_kFv05xjfd2OAq00B1kptqdcTqVk35sxh8HmBwPU7MyYvRlTzZhnM0bX0OeX6rkdfPcn8qqiAnwPlHoVNz7_3f2f2idGbpgr</recordid><startdate>20251201</startdate><enddate>20251201</enddate><creator>T, Dhanushkumar</creator><creator>G, Sunila B</creator><creator>Hebbar, Sripad Rama</creator><creator>Selvam, Prasanna Kumar</creator><creator>Vasudevan, Karthick</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7T5</scope><scope>7T7</scope><scope>7TK</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20251201</creationdate><title>VaxOptiML: leveraging machine learning for accurate prediction of MHC-I and II epitopes for optimized cancer immunotherapy</title><author>T, Dhanushkumar ; G, Sunila B ; Hebbar, Sripad Rama ; Selvam, Prasanna Kumar ; Vasudevan, Karthick</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c256t-c7441137095141284ffa3996a251737a9cc5376473bb4db1aba66db82a63e3423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Allergology</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Cancer</topic><topic>Cancer immunotherapy</topic><topic>Cancer vaccines</topic><topic>Cancer Vaccines - immunology</topic><topic>Cancer Vaccines - therapeutic use</topic><topic>Cell Biology</topic><topic>Cell culture</topic><topic>Computational Biology - methods</topic><topic>Epitopes</topic><topic>Epitopes, T-Lymphocyte - immunology</topic><topic>Gene Function</topic><topic>Histocompatibility Antigens Class I - immunology</topic><topic>Histocompatibility Antigens Class II - immunology</topic><topic>Human Genetics</topic><topic>Humans</topic><topic>Immunogenicity</topic><topic>Immunology</topic><topic>Immunotherapy</topic><topic>Immunotherapy - methods</topic><topic>Learning algorithms</topic><topic>Lymphocytes T</topic><topic>Machine Learning</topic><topic>Major histocompatibility complex</topic><topic>Neoplasms - immunology</topic><topic>Neoplasms - therapy</topic><topic>Original Article</topic><topic>Predictions</topic><topic>Software</topic><topic>Tissue typing</topic><topic>Vaccine development</topic><topic>Vaccines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>T, Dhanushkumar</creatorcontrib><creatorcontrib>G, Sunila B</creatorcontrib><creatorcontrib>Hebbar, Sripad Rama</creatorcontrib><creatorcontrib>Selvam, Prasanna Kumar</creatorcontrib><creatorcontrib>Vasudevan, Karthick</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Immunogenetics (New York)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>T, Dhanushkumar</au><au>G, Sunila B</au><au>Hebbar, Sripad Rama</au><au>Selvam, Prasanna Kumar</au><au>Vasudevan, Karthick</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>VaxOptiML: leveraging machine learning for accurate prediction of MHC-I and II epitopes for optimized cancer immunotherapy</atitle><jtitle>Immunogenetics (New York)</jtitle><stitle>Immunogenetics</stitle><addtitle>Immunogenetics</addtitle><date>2025-12-01</date><risdate>2025</risdate><volume>77</volume><issue>1</issue><spage>8</spage><pages>8-</pages><artnum>8</artnum><issn>0093-7711</issn><issn>1432-1211</issn><eissn>1432-1211</eissn><abstract>Cancer immunotherapy hinges on accurate epitope prediction for advancing vaccine development. VaxOptiML (available at https://vaxoptiml.streamlit.app/ ) is an integrated pipeline designed to enhance epitope prediction and prioritization. This study aims to develop and deploy a robust tool for accurate prediction and prioritization of highly immunogenic and optimized MHC-I and MHC-II T-cell epitopes for cancer vaccine development and immunotherapy. Utilizing a curated dataset of experimentally validated epitopes and employing sophisticated machine learning techniques, VaxOptiML features three models: epitope prediction from target sequences, personalized HLA typing, and prioritization the predicted epitopes based on immunogenicity scores. Our rigorous data extraction, cleaning, and feature extraction processes, coupled with model building, yield exceptional accuracy, sensitivity, specificity, and F1 score, surpassing existing prediction methods. Comprehensive visual representations underscore VaxOptiML’s robustness and efficacy in accelerating epitope discovery and vaccine design for cancer immunotherapy. Deployed via Streamlit for public use, VaxOptiML enhances accessibility and usability for researchers and clinicians, demonstrating significant potential in cancer immunotherapy.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>39644341</pmid><doi>10.1007/s00251-024-01361-9</doi></addata></record>
fulltext fulltext
identifier ISSN: 0093-7711
ispartof Immunogenetics (New York), 2025-12, Vol.77 (1), p.8, Article 8
issn 0093-7711
1432-1211
1432-1211
language eng
recordid cdi_proquest_miscellaneous_3146569627
source MEDLINE; SpringerLink
subjects Allergology
Biomedical and Life Sciences
Biomedicine
Cancer
Cancer immunotherapy
Cancer vaccines
Cancer Vaccines - immunology
Cancer Vaccines - therapeutic use
Cell Biology
Cell culture
Computational Biology - methods
Epitopes
Epitopes, T-Lymphocyte - immunology
Gene Function
Histocompatibility Antigens Class I - immunology
Histocompatibility Antigens Class II - immunology
Human Genetics
Humans
Immunogenicity
Immunology
Immunotherapy
Immunotherapy - methods
Learning algorithms
Lymphocytes T
Machine Learning
Major histocompatibility complex
Neoplasms - immunology
Neoplasms - therapy
Original Article
Predictions
Software
Tissue typing
Vaccine development
Vaccines
title VaxOptiML: leveraging machine learning for accurate prediction of MHC-I and II epitopes for optimized cancer immunotherapy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T18%3A07%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=VaxOptiML:%20leveraging%20machine%20learning%20for%20accurate%20prediction%20of%20MHC-I%20and%20II%20epitopes%20for%20optimized%20cancer%20immunotherapy&rft.jtitle=Immunogenetics%20(New%20York)&rft.au=T,%20Dhanushkumar&rft.date=2025-12-01&rft.volume=77&rft.issue=1&rft.spage=8&rft.pages=8-&rft.artnum=8&rft.issn=0093-7711&rft.eissn=1432-1211&rft_id=info:doi/10.1007/s00251-024-01361-9&rft_dat=%3Cproquest_cross%3E3141979316%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3141979316&rft_id=info:pmid/39644341&rfr_iscdi=true