VaxOptiML: leveraging machine learning for accurate prediction of MHC-I and II epitopes for optimized cancer immunotherapy
Cancer immunotherapy hinges on accurate epitope prediction for advancing vaccine development. VaxOptiML (available at https://vaxoptiml.streamlit.app/ ) is an integrated pipeline designed to enhance epitope prediction and prioritization. This study aims to develop and deploy a robust tool for accura...
Gespeichert in:
Veröffentlicht in: | Immunogenetics (New York) 2025-12, Vol.77 (1), p.8, Article 8 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 8 |
container_title | Immunogenetics (New York) |
container_volume | 77 |
creator | T, Dhanushkumar G, Sunila B Hebbar, Sripad Rama Selvam, Prasanna Kumar Vasudevan, Karthick |
description | Cancer immunotherapy hinges on accurate epitope prediction for advancing vaccine development. VaxOptiML (available at
https://vaxoptiml.streamlit.app/
) is an integrated pipeline designed to enhance epitope prediction and prioritization. This study aims to develop and deploy a robust tool for accurate prediction and prioritization of highly immunogenic and optimized MHC-I and MHC-II T-cell epitopes for cancer vaccine development and immunotherapy. Utilizing a curated dataset of experimentally validated epitopes and employing sophisticated machine learning techniques, VaxOptiML features three models: epitope prediction from target sequences, personalized HLA typing, and prioritization the predicted epitopes based on immunogenicity scores. Our rigorous data extraction, cleaning, and feature extraction processes, coupled with model building, yield exceptional accuracy, sensitivity, specificity, and F1 score, surpassing existing prediction methods. Comprehensive visual representations underscore VaxOptiML’s robustness and efficacy in accelerating epitope discovery and vaccine design for cancer immunotherapy. Deployed via Streamlit for public use, VaxOptiML enhances accessibility and usability for researchers and clinicians, demonstrating significant potential in cancer immunotherapy. |
doi_str_mv | 10.1007/s00251-024-01361-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3146569627</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3141979316</sourcerecordid><originalsourceid>FETCH-LOGICAL-c256t-c7441137095141284ffa3996a251737a9cc5376473bb4db1aba66db82a63e3423</originalsourceid><addsrcrecordid>eNp9kUFPHCEYhknTpq62f6CHhqSXXrB8wIB4M5uqm6zx0vZKGIZZMTswhRmj_npZV9ukh55IPp73_SAPQp-AHgOl6luhlDVAKBOEApdA9Bu0AMEZAQbwFi0o1ZwoBXCADku5pRQazeR7dMC1FIILWKDHX_b-epzC1foUb_2dz3YT4gYP1t2E6OvI5rgb9Clj69yc7eTxmH0X3BRSxKnHV5dLssI2dni1wn4MUxp9eQ6kWjyER99hZ6PzGYdhmGOabuqa8eEDetfbbfEfX84j9PP8-4_lJVlfX6yWZ2viWCMn4pQQAFxR3YAAdiL63nKtpa1_V1xZ7VzDlRSKt63oWrCtlbJrT5iV3HPB-BH6uu8dc_o9-zKZIRTnt1sbfZqL4SBkI7VkqqJf_kFv05xjfd2OAq00B1kptqdcTqVk35sxh8HmBwPU7MyYvRlTzZhnM0bX0OeX6rkdfPcn8qqiAnwPlHoVNz7_3f2f2idGbpgr</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3141979316</pqid></control><display><type>article</type><title>VaxOptiML: leveraging machine learning for accurate prediction of MHC-I and II epitopes for optimized cancer immunotherapy</title><source>MEDLINE</source><source>SpringerLink</source><creator>T, Dhanushkumar ; G, Sunila B ; Hebbar, Sripad Rama ; Selvam, Prasanna Kumar ; Vasudevan, Karthick</creator><creatorcontrib>T, Dhanushkumar ; G, Sunila B ; Hebbar, Sripad Rama ; Selvam, Prasanna Kumar ; Vasudevan, Karthick</creatorcontrib><description>Cancer immunotherapy hinges on accurate epitope prediction for advancing vaccine development. VaxOptiML (available at
https://vaxoptiml.streamlit.app/
) is an integrated pipeline designed to enhance epitope prediction and prioritization. This study aims to develop and deploy a robust tool for accurate prediction and prioritization of highly immunogenic and optimized MHC-I and MHC-II T-cell epitopes for cancer vaccine development and immunotherapy. Utilizing a curated dataset of experimentally validated epitopes and employing sophisticated machine learning techniques, VaxOptiML features three models: epitope prediction from target sequences, personalized HLA typing, and prioritization the predicted epitopes based on immunogenicity scores. Our rigorous data extraction, cleaning, and feature extraction processes, coupled with model building, yield exceptional accuracy, sensitivity, specificity, and F1 score, surpassing existing prediction methods. Comprehensive visual representations underscore VaxOptiML’s robustness and efficacy in accelerating epitope discovery and vaccine design for cancer immunotherapy. Deployed via Streamlit for public use, VaxOptiML enhances accessibility and usability for researchers and clinicians, demonstrating significant potential in cancer immunotherapy.</description><identifier>ISSN: 0093-7711</identifier><identifier>ISSN: 1432-1211</identifier><identifier>EISSN: 1432-1211</identifier><identifier>DOI: 10.1007/s00251-024-01361-9</identifier><identifier>PMID: 39644341</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Allergology ; Biomedical and Life Sciences ; Biomedicine ; Cancer ; Cancer immunotherapy ; Cancer vaccines ; Cancer Vaccines - immunology ; Cancer Vaccines - therapeutic use ; Cell Biology ; Cell culture ; Computational Biology - methods ; Epitopes ; Epitopes, T-Lymphocyte - immunology ; Gene Function ; Histocompatibility Antigens Class I - immunology ; Histocompatibility Antigens Class II - immunology ; Human Genetics ; Humans ; Immunogenicity ; Immunology ; Immunotherapy ; Immunotherapy - methods ; Learning algorithms ; Lymphocytes T ; Machine Learning ; Major histocompatibility complex ; Neoplasms - immunology ; Neoplasms - therapy ; Original Article ; Predictions ; Software ; Tissue typing ; Vaccine development ; Vaccines</subject><ispartof>Immunogenetics (New York), 2025-12, Vol.77 (1), p.8, Article 8</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.</rights><rights>Copyright Springer Nature B.V. Dec 2025</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c256t-c7441137095141284ffa3996a251737a9cc5376473bb4db1aba66db82a63e3423</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00251-024-01361-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00251-024-01361-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27915,27916,41479,42548,51310</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39644341$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>T, Dhanushkumar</creatorcontrib><creatorcontrib>G, Sunila B</creatorcontrib><creatorcontrib>Hebbar, Sripad Rama</creatorcontrib><creatorcontrib>Selvam, Prasanna Kumar</creatorcontrib><creatorcontrib>Vasudevan, Karthick</creatorcontrib><title>VaxOptiML: leveraging machine learning for accurate prediction of MHC-I and II epitopes for optimized cancer immunotherapy</title><title>Immunogenetics (New York)</title><addtitle>Immunogenetics</addtitle><addtitle>Immunogenetics</addtitle><description>Cancer immunotherapy hinges on accurate epitope prediction for advancing vaccine development. VaxOptiML (available at
https://vaxoptiml.streamlit.app/
) is an integrated pipeline designed to enhance epitope prediction and prioritization. This study aims to develop and deploy a robust tool for accurate prediction and prioritization of highly immunogenic and optimized MHC-I and MHC-II T-cell epitopes for cancer vaccine development and immunotherapy. Utilizing a curated dataset of experimentally validated epitopes and employing sophisticated machine learning techniques, VaxOptiML features three models: epitope prediction from target sequences, personalized HLA typing, and prioritization the predicted epitopes based on immunogenicity scores. Our rigorous data extraction, cleaning, and feature extraction processes, coupled with model building, yield exceptional accuracy, sensitivity, specificity, and F1 score, surpassing existing prediction methods. Comprehensive visual representations underscore VaxOptiML’s robustness and efficacy in accelerating epitope discovery and vaccine design for cancer immunotherapy. Deployed via Streamlit for public use, VaxOptiML enhances accessibility and usability for researchers and clinicians, demonstrating significant potential in cancer immunotherapy.</description><subject>Allergology</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Cancer</subject><subject>Cancer immunotherapy</subject><subject>Cancer vaccines</subject><subject>Cancer Vaccines - immunology</subject><subject>Cancer Vaccines - therapeutic use</subject><subject>Cell Biology</subject><subject>Cell culture</subject><subject>Computational Biology - methods</subject><subject>Epitopes</subject><subject>Epitopes, T-Lymphocyte - immunology</subject><subject>Gene Function</subject><subject>Histocompatibility Antigens Class I - immunology</subject><subject>Histocompatibility Antigens Class II - immunology</subject><subject>Human Genetics</subject><subject>Humans</subject><subject>Immunogenicity</subject><subject>Immunology</subject><subject>Immunotherapy</subject><subject>Immunotherapy - methods</subject><subject>Learning algorithms</subject><subject>Lymphocytes T</subject><subject>Machine Learning</subject><subject>Major histocompatibility complex</subject><subject>Neoplasms - immunology</subject><subject>Neoplasms - therapy</subject><subject>Original Article</subject><subject>Predictions</subject><subject>Software</subject><subject>Tissue typing</subject><subject>Vaccine development</subject><subject>Vaccines</subject><issn>0093-7711</issn><issn>1432-1211</issn><issn>1432-1211</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kUFPHCEYhknTpq62f6CHhqSXXrB8wIB4M5uqm6zx0vZKGIZZMTswhRmj_npZV9ukh55IPp73_SAPQp-AHgOl6luhlDVAKBOEApdA9Bu0AMEZAQbwFi0o1ZwoBXCADku5pRQazeR7dMC1FIILWKDHX_b-epzC1foUb_2dz3YT4gYP1t2E6OvI5rgb9Clj69yc7eTxmH0X3BRSxKnHV5dLssI2dni1wn4MUxp9eQ6kWjyER99hZ6PzGYdhmGOabuqa8eEDetfbbfEfX84j9PP8-4_lJVlfX6yWZ2viWCMn4pQQAFxR3YAAdiL63nKtpa1_V1xZ7VzDlRSKt63oWrCtlbJrT5iV3HPB-BH6uu8dc_o9-zKZIRTnt1sbfZqL4SBkI7VkqqJf_kFv05xjfd2OAq00B1kptqdcTqVk35sxh8HmBwPU7MyYvRlTzZhnM0bX0OeX6rkdfPcn8qqiAnwPlHoVNz7_3f2f2idGbpgr</recordid><startdate>20251201</startdate><enddate>20251201</enddate><creator>T, Dhanushkumar</creator><creator>G, Sunila B</creator><creator>Hebbar, Sripad Rama</creator><creator>Selvam, Prasanna Kumar</creator><creator>Vasudevan, Karthick</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7T5</scope><scope>7T7</scope><scope>7TK</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20251201</creationdate><title>VaxOptiML: leveraging machine learning for accurate prediction of MHC-I and II epitopes for optimized cancer immunotherapy</title><author>T, Dhanushkumar ; G, Sunila B ; Hebbar, Sripad Rama ; Selvam, Prasanna Kumar ; Vasudevan, Karthick</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c256t-c7441137095141284ffa3996a251737a9cc5376473bb4db1aba66db82a63e3423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Allergology</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Cancer</topic><topic>Cancer immunotherapy</topic><topic>Cancer vaccines</topic><topic>Cancer Vaccines - immunology</topic><topic>Cancer Vaccines - therapeutic use</topic><topic>Cell Biology</topic><topic>Cell culture</topic><topic>Computational Biology - methods</topic><topic>Epitopes</topic><topic>Epitopes, T-Lymphocyte - immunology</topic><topic>Gene Function</topic><topic>Histocompatibility Antigens Class I - immunology</topic><topic>Histocompatibility Antigens Class II - immunology</topic><topic>Human Genetics</topic><topic>Humans</topic><topic>Immunogenicity</topic><topic>Immunology</topic><topic>Immunotherapy</topic><topic>Immunotherapy - methods</topic><topic>Learning algorithms</topic><topic>Lymphocytes T</topic><topic>Machine Learning</topic><topic>Major histocompatibility complex</topic><topic>Neoplasms - immunology</topic><topic>Neoplasms - therapy</topic><topic>Original Article</topic><topic>Predictions</topic><topic>Software</topic><topic>Tissue typing</topic><topic>Vaccine development</topic><topic>Vaccines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>T, Dhanushkumar</creatorcontrib><creatorcontrib>G, Sunila B</creatorcontrib><creatorcontrib>Hebbar, Sripad Rama</creatorcontrib><creatorcontrib>Selvam, Prasanna Kumar</creatorcontrib><creatorcontrib>Vasudevan, Karthick</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Immunogenetics (New York)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>T, Dhanushkumar</au><au>G, Sunila B</au><au>Hebbar, Sripad Rama</au><au>Selvam, Prasanna Kumar</au><au>Vasudevan, Karthick</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>VaxOptiML: leveraging machine learning for accurate prediction of MHC-I and II epitopes for optimized cancer immunotherapy</atitle><jtitle>Immunogenetics (New York)</jtitle><stitle>Immunogenetics</stitle><addtitle>Immunogenetics</addtitle><date>2025-12-01</date><risdate>2025</risdate><volume>77</volume><issue>1</issue><spage>8</spage><pages>8-</pages><artnum>8</artnum><issn>0093-7711</issn><issn>1432-1211</issn><eissn>1432-1211</eissn><abstract>Cancer immunotherapy hinges on accurate epitope prediction for advancing vaccine development. VaxOptiML (available at
https://vaxoptiml.streamlit.app/
) is an integrated pipeline designed to enhance epitope prediction and prioritization. This study aims to develop and deploy a robust tool for accurate prediction and prioritization of highly immunogenic and optimized MHC-I and MHC-II T-cell epitopes for cancer vaccine development and immunotherapy. Utilizing a curated dataset of experimentally validated epitopes and employing sophisticated machine learning techniques, VaxOptiML features three models: epitope prediction from target sequences, personalized HLA typing, and prioritization the predicted epitopes based on immunogenicity scores. Our rigorous data extraction, cleaning, and feature extraction processes, coupled with model building, yield exceptional accuracy, sensitivity, specificity, and F1 score, surpassing existing prediction methods. Comprehensive visual representations underscore VaxOptiML’s robustness and efficacy in accelerating epitope discovery and vaccine design for cancer immunotherapy. Deployed via Streamlit for public use, VaxOptiML enhances accessibility and usability for researchers and clinicians, demonstrating significant potential in cancer immunotherapy.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>39644341</pmid><doi>10.1007/s00251-024-01361-9</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0093-7711 |
ispartof | Immunogenetics (New York), 2025-12, Vol.77 (1), p.8, Article 8 |
issn | 0093-7711 1432-1211 1432-1211 |
language | eng |
recordid | cdi_proquest_miscellaneous_3146569627 |
source | MEDLINE; SpringerLink |
subjects | Allergology Biomedical and Life Sciences Biomedicine Cancer Cancer immunotherapy Cancer vaccines Cancer Vaccines - immunology Cancer Vaccines - therapeutic use Cell Biology Cell culture Computational Biology - methods Epitopes Epitopes, T-Lymphocyte - immunology Gene Function Histocompatibility Antigens Class I - immunology Histocompatibility Antigens Class II - immunology Human Genetics Humans Immunogenicity Immunology Immunotherapy Immunotherapy - methods Learning algorithms Lymphocytes T Machine Learning Major histocompatibility complex Neoplasms - immunology Neoplasms - therapy Original Article Predictions Software Tissue typing Vaccine development Vaccines |
title | VaxOptiML: leveraging machine learning for accurate prediction of MHC-I and II epitopes for optimized cancer immunotherapy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T18%3A07%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=VaxOptiML:%20leveraging%20machine%20learning%20for%20accurate%20prediction%20of%20MHC-I%20and%20II%20epitopes%20for%20optimized%20cancer%20immunotherapy&rft.jtitle=Immunogenetics%20(New%20York)&rft.au=T,%20Dhanushkumar&rft.date=2025-12-01&rft.volume=77&rft.issue=1&rft.spage=8&rft.pages=8-&rft.artnum=8&rft.issn=0093-7711&rft.eissn=1432-1211&rft_id=info:doi/10.1007/s00251-024-01361-9&rft_dat=%3Cproquest_cross%3E3141979316%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3141979316&rft_id=info:pmid/39644341&rfr_iscdi=true |