Na3V2(PO4)3 cathode materials for advanced sodium-ion batteries: Modification strategies and density functional theory calculations
[Display omitted] With the rapid development of electric vehicles and smart grids, the demands for energy supply systems such as secondary batteries are increasing exponentially. Despite the world-renowned achievements in portable devices, lithium-ion batteries (LIBs) have struggled to meet the dema...
Gespeichert in:
Veröffentlicht in: | Journal of colloid and interface science 2025-03, Vol.682, p.760-783 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 783 |
---|---|
container_issue | |
container_start_page | 760 |
container_title | Journal of colloid and interface science |
container_volume | 682 |
creator | Wang, Zhaoyang Li, Zhi Du, Zijuan Geng, Jiajun Zong, Wei Chen, Ruwei Dong, Haobo Gao, Xuan Zhao, Fangjia Wang, Tianlei Munshi, Tasnim Liu, Lingyang Zhang, Pengfang Shi, Wenjing Wang, Dong Wang, Yaoyao Wang, Min Xiong, Fangyu He, Guanjie |
description | [Display omitted]
With the rapid development of electric vehicles and smart grids, the demands for energy supply systems such as secondary batteries are increasing exponentially. Despite the world-renowned achievements in portable devices, lithium-ion batteries (LIBs) have struggled to meet the demands due to the constraints of total lithium resources. As the most promising alternative to LIBs, sodium-ion batteries (SIBs) are generating widespread research enthusiasm around the world. Among all components, the cathode material remains the primary obstacle to the practical application of SIBs due to its inability to match the performance of other components. Na3V2(PO4)3 (NVP) stands out as a promising cathode material for SIBs, given its suitable theoretical specific capacity, appropriate operating voltage, robust structural stability, and excellent ionic conductivity. In this article, we first review recent modification strategies for NVP, including conductive substance coating, ion doping (single-, dual- and multi-site doping) and morphology modulation (from zero-dimensional (0D) to three-dimensional (3D)). Subsequently, we summarize five ways in which density functional theory (DFT) calculations can be applied in guiding NVP modification studies. Furthermore, a series of emerging studies combining DFT calculations are introduced. Finally, the remaining challenges and the prospects for optimization of NVP in SIBs are presented. |
doi_str_mv | 10.1016/j.jcis.2024.11.212 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3146568371</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021979724027899</els_id><sourcerecordid>3146568371</sourcerecordid><originalsourceid>FETCH-LOGICAL-c214t-adb10339f5bb04bafc7ee2c085704adecfca3c3a6b478744fb45b07abfa7b2a43</originalsourceid><addsrcrecordid>eNp9kD1vFDEQhi0EEkfCH6ByGYpd_LXnW0SDovAhhYQiobXG9pj4tLcOtjfS1fxxvBw11Ugz7zOjeQh5w1nPGd--2_d7F0svmFA9573g4hnZcDYOneZMPicbxgTvRj3ql-RVKXvGOB-GcUN-34D8IS6-36q3kjqoD8kjPUDFHGEqNKRMwT_B7NDTknxcDl1MM7VQ1wiW9_Rb64bY0LVfam7szzagMHvqcS6xHmlYZrfOYaL1AVM-tlOTW6a_UDknL0I7hq__1TNy_-nq7vJLd337-evlx-vOCa5qB962X-QYBmuZshCcRhSO7QbNFHh0wYF0ErZW6Z1WKlg1WKbBBtBWgJJn5OK09zGnXwuWag6xOJwmmDEtxUiutsN2JzVvUXGKupxKyRjMY44HyEfDmVmNm71ZjZvVuOHcNOMN-nCCsD3xFDGb4iKu6mJGV41P8X_4H5_ajTk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3146568371</pqid></control><display><type>article</type><title>Na3V2(PO4)3 cathode materials for advanced sodium-ion batteries: Modification strategies and density functional theory calculations</title><source>Elsevier ScienceDirect Journals</source><creator>Wang, Zhaoyang ; Li, Zhi ; Du, Zijuan ; Geng, Jiajun ; Zong, Wei ; Chen, Ruwei ; Dong, Haobo ; Gao, Xuan ; Zhao, Fangjia ; Wang, Tianlei ; Munshi, Tasnim ; Liu, Lingyang ; Zhang, Pengfang ; Shi, Wenjing ; Wang, Dong ; Wang, Yaoyao ; Wang, Min ; Xiong, Fangyu ; He, Guanjie</creator><creatorcontrib>Wang, Zhaoyang ; Li, Zhi ; Du, Zijuan ; Geng, Jiajun ; Zong, Wei ; Chen, Ruwei ; Dong, Haobo ; Gao, Xuan ; Zhao, Fangjia ; Wang, Tianlei ; Munshi, Tasnim ; Liu, Lingyang ; Zhang, Pengfang ; Shi, Wenjing ; Wang, Dong ; Wang, Yaoyao ; Wang, Min ; Xiong, Fangyu ; He, Guanjie</creatorcontrib><description>[Display omitted]
With the rapid development of electric vehicles and smart grids, the demands for energy supply systems such as secondary batteries are increasing exponentially. Despite the world-renowned achievements in portable devices, lithium-ion batteries (LIBs) have struggled to meet the demands due to the constraints of total lithium resources. As the most promising alternative to LIBs, sodium-ion batteries (SIBs) are generating widespread research enthusiasm around the world. Among all components, the cathode material remains the primary obstacle to the practical application of SIBs due to its inability to match the performance of other components. Na3V2(PO4)3 (NVP) stands out as a promising cathode material for SIBs, given its suitable theoretical specific capacity, appropriate operating voltage, robust structural stability, and excellent ionic conductivity. In this article, we first review recent modification strategies for NVP, including conductive substance coating, ion doping (single-, dual- and multi-site doping) and morphology modulation (from zero-dimensional (0D) to three-dimensional (3D)). Subsequently, we summarize five ways in which density functional theory (DFT) calculations can be applied in guiding NVP modification studies. Furthermore, a series of emerging studies combining DFT calculations are introduced. Finally, the remaining challenges and the prospects for optimization of NVP in SIBs are presented.</description><identifier>ISSN: 0021-9797</identifier><identifier>ISSN: 1095-7103</identifier><identifier>EISSN: 1095-7103</identifier><identifier>DOI: 10.1016/j.jcis.2024.11.212</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Cathode ; Density functional theory calculations ; Modification strategy ; Na3V2(PO4)3 ; Sodium-ion batteries</subject><ispartof>Journal of colloid and interface science, 2025-03, Vol.682, p.760-783</ispartof><rights>2024</rights><rights>Copyright © 2024. Published by Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c214t-adb10339f5bb04bafc7ee2c085704adecfca3c3a6b478744fb45b07abfa7b2a43</cites><orcidid>0000-0003-1910-2093 ; 0000-0003-1706-3801 ; 0000-0002-7365-9645 ; 0009-0004-6435-9597 ; 0000-0003-0494-8686</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0021979724027899$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Wang, Zhaoyang</creatorcontrib><creatorcontrib>Li, Zhi</creatorcontrib><creatorcontrib>Du, Zijuan</creatorcontrib><creatorcontrib>Geng, Jiajun</creatorcontrib><creatorcontrib>Zong, Wei</creatorcontrib><creatorcontrib>Chen, Ruwei</creatorcontrib><creatorcontrib>Dong, Haobo</creatorcontrib><creatorcontrib>Gao, Xuan</creatorcontrib><creatorcontrib>Zhao, Fangjia</creatorcontrib><creatorcontrib>Wang, Tianlei</creatorcontrib><creatorcontrib>Munshi, Tasnim</creatorcontrib><creatorcontrib>Liu, Lingyang</creatorcontrib><creatorcontrib>Zhang, Pengfang</creatorcontrib><creatorcontrib>Shi, Wenjing</creatorcontrib><creatorcontrib>Wang, Dong</creatorcontrib><creatorcontrib>Wang, Yaoyao</creatorcontrib><creatorcontrib>Wang, Min</creatorcontrib><creatorcontrib>Xiong, Fangyu</creatorcontrib><creatorcontrib>He, Guanjie</creatorcontrib><title>Na3V2(PO4)3 cathode materials for advanced sodium-ion batteries: Modification strategies and density functional theory calculations</title><title>Journal of colloid and interface science</title><description>[Display omitted]
With the rapid development of electric vehicles and smart grids, the demands for energy supply systems such as secondary batteries are increasing exponentially. Despite the world-renowned achievements in portable devices, lithium-ion batteries (LIBs) have struggled to meet the demands due to the constraints of total lithium resources. As the most promising alternative to LIBs, sodium-ion batteries (SIBs) are generating widespread research enthusiasm around the world. Among all components, the cathode material remains the primary obstacle to the practical application of SIBs due to its inability to match the performance of other components. Na3V2(PO4)3 (NVP) stands out as a promising cathode material for SIBs, given its suitable theoretical specific capacity, appropriate operating voltage, robust structural stability, and excellent ionic conductivity. In this article, we first review recent modification strategies for NVP, including conductive substance coating, ion doping (single-, dual- and multi-site doping) and morphology modulation (from zero-dimensional (0D) to three-dimensional (3D)). Subsequently, we summarize five ways in which density functional theory (DFT) calculations can be applied in guiding NVP modification studies. Furthermore, a series of emerging studies combining DFT calculations are introduced. Finally, the remaining challenges and the prospects for optimization of NVP in SIBs are presented.</description><subject>Cathode</subject><subject>Density functional theory calculations</subject><subject>Modification strategy</subject><subject>Na3V2(PO4)3</subject><subject>Sodium-ion batteries</subject><issn>0021-9797</issn><issn>1095-7103</issn><issn>1095-7103</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNp9kD1vFDEQhi0EEkfCH6ByGYpd_LXnW0SDovAhhYQiobXG9pj4tLcOtjfS1fxxvBw11Ugz7zOjeQh5w1nPGd--2_d7F0svmFA9573g4hnZcDYOneZMPicbxgTvRj3ql-RVKXvGOB-GcUN-34D8IS6-36q3kjqoD8kjPUDFHGEqNKRMwT_B7NDTknxcDl1MM7VQ1wiW9_Rb64bY0LVfam7szzagMHvqcS6xHmlYZrfOYaL1AVM-tlOTW6a_UDknL0I7hq__1TNy_-nq7vJLd337-evlx-vOCa5qB962X-QYBmuZshCcRhSO7QbNFHh0wYF0ErZW6Z1WKlg1WKbBBtBWgJJn5OK09zGnXwuWag6xOJwmmDEtxUiutsN2JzVvUXGKupxKyRjMY44HyEfDmVmNm71ZjZvVuOHcNOMN-nCCsD3xFDGb4iKu6mJGV41P8X_4H5_ajTk</recordid><startdate>20250315</startdate><enddate>20250315</enddate><creator>Wang, Zhaoyang</creator><creator>Li, Zhi</creator><creator>Du, Zijuan</creator><creator>Geng, Jiajun</creator><creator>Zong, Wei</creator><creator>Chen, Ruwei</creator><creator>Dong, Haobo</creator><creator>Gao, Xuan</creator><creator>Zhao, Fangjia</creator><creator>Wang, Tianlei</creator><creator>Munshi, Tasnim</creator><creator>Liu, Lingyang</creator><creator>Zhang, Pengfang</creator><creator>Shi, Wenjing</creator><creator>Wang, Dong</creator><creator>Wang, Yaoyao</creator><creator>Wang, Min</creator><creator>Xiong, Fangyu</creator><creator>He, Guanjie</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1910-2093</orcidid><orcidid>https://orcid.org/0000-0003-1706-3801</orcidid><orcidid>https://orcid.org/0000-0002-7365-9645</orcidid><orcidid>https://orcid.org/0009-0004-6435-9597</orcidid><orcidid>https://orcid.org/0000-0003-0494-8686</orcidid></search><sort><creationdate>20250315</creationdate><title>Na3V2(PO4)3 cathode materials for advanced sodium-ion batteries: Modification strategies and density functional theory calculations</title><author>Wang, Zhaoyang ; Li, Zhi ; Du, Zijuan ; Geng, Jiajun ; Zong, Wei ; Chen, Ruwei ; Dong, Haobo ; Gao, Xuan ; Zhao, Fangjia ; Wang, Tianlei ; Munshi, Tasnim ; Liu, Lingyang ; Zhang, Pengfang ; Shi, Wenjing ; Wang, Dong ; Wang, Yaoyao ; Wang, Min ; Xiong, Fangyu ; He, Guanjie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c214t-adb10339f5bb04bafc7ee2c085704adecfca3c3a6b478744fb45b07abfa7b2a43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Cathode</topic><topic>Density functional theory calculations</topic><topic>Modification strategy</topic><topic>Na3V2(PO4)3</topic><topic>Sodium-ion batteries</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Zhaoyang</creatorcontrib><creatorcontrib>Li, Zhi</creatorcontrib><creatorcontrib>Du, Zijuan</creatorcontrib><creatorcontrib>Geng, Jiajun</creatorcontrib><creatorcontrib>Zong, Wei</creatorcontrib><creatorcontrib>Chen, Ruwei</creatorcontrib><creatorcontrib>Dong, Haobo</creatorcontrib><creatorcontrib>Gao, Xuan</creatorcontrib><creatorcontrib>Zhao, Fangjia</creatorcontrib><creatorcontrib>Wang, Tianlei</creatorcontrib><creatorcontrib>Munshi, Tasnim</creatorcontrib><creatorcontrib>Liu, Lingyang</creatorcontrib><creatorcontrib>Zhang, Pengfang</creatorcontrib><creatorcontrib>Shi, Wenjing</creatorcontrib><creatorcontrib>Wang, Dong</creatorcontrib><creatorcontrib>Wang, Yaoyao</creatorcontrib><creatorcontrib>Wang, Min</creatorcontrib><creatorcontrib>Xiong, Fangyu</creatorcontrib><creatorcontrib>He, Guanjie</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of colloid and interface science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Zhaoyang</au><au>Li, Zhi</au><au>Du, Zijuan</au><au>Geng, Jiajun</au><au>Zong, Wei</au><au>Chen, Ruwei</au><au>Dong, Haobo</au><au>Gao, Xuan</au><au>Zhao, Fangjia</au><au>Wang, Tianlei</au><au>Munshi, Tasnim</au><au>Liu, Lingyang</au><au>Zhang, Pengfang</au><au>Shi, Wenjing</au><au>Wang, Dong</au><au>Wang, Yaoyao</au><au>Wang, Min</au><au>Xiong, Fangyu</au><au>He, Guanjie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Na3V2(PO4)3 cathode materials for advanced sodium-ion batteries: Modification strategies and density functional theory calculations</atitle><jtitle>Journal of colloid and interface science</jtitle><date>2025-03-15</date><risdate>2025</risdate><volume>682</volume><spage>760</spage><epage>783</epage><pages>760-783</pages><issn>0021-9797</issn><issn>1095-7103</issn><eissn>1095-7103</eissn><abstract>[Display omitted]
With the rapid development of electric vehicles and smart grids, the demands for energy supply systems such as secondary batteries are increasing exponentially. Despite the world-renowned achievements in portable devices, lithium-ion batteries (LIBs) have struggled to meet the demands due to the constraints of total lithium resources. As the most promising alternative to LIBs, sodium-ion batteries (SIBs) are generating widespread research enthusiasm around the world. Among all components, the cathode material remains the primary obstacle to the practical application of SIBs due to its inability to match the performance of other components. Na3V2(PO4)3 (NVP) stands out as a promising cathode material for SIBs, given its suitable theoretical specific capacity, appropriate operating voltage, robust structural stability, and excellent ionic conductivity. In this article, we first review recent modification strategies for NVP, including conductive substance coating, ion doping (single-, dual- and multi-site doping) and morphology modulation (from zero-dimensional (0D) to three-dimensional (3D)). Subsequently, we summarize five ways in which density functional theory (DFT) calculations can be applied in guiding NVP modification studies. Furthermore, a series of emerging studies combining DFT calculations are introduced. Finally, the remaining challenges and the prospects for optimization of NVP in SIBs are presented.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.jcis.2024.11.212</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0003-1910-2093</orcidid><orcidid>https://orcid.org/0000-0003-1706-3801</orcidid><orcidid>https://orcid.org/0000-0002-7365-9645</orcidid><orcidid>https://orcid.org/0009-0004-6435-9597</orcidid><orcidid>https://orcid.org/0000-0003-0494-8686</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9797 |
ispartof | Journal of colloid and interface science, 2025-03, Vol.682, p.760-783 |
issn | 0021-9797 1095-7103 1095-7103 |
language | eng |
recordid | cdi_proquest_miscellaneous_3146568371 |
source | Elsevier ScienceDirect Journals |
subjects | Cathode Density functional theory calculations Modification strategy Na3V2(PO4)3 Sodium-ion batteries |
title | Na3V2(PO4)3 cathode materials for advanced sodium-ion batteries: Modification strategies and density functional theory calculations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T22%3A47%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Na3V2(PO4)3%20cathode%20materials%20for%20advanced%20sodium-ion%20batteries:%20Modification%20strategies%20and%20density%20functional%20theory%20calculations&rft.jtitle=Journal%20of%20colloid%20and%20interface%20science&rft.au=Wang,%20Zhaoyang&rft.date=2025-03-15&rft.volume=682&rft.spage=760&rft.epage=783&rft.pages=760-783&rft.issn=0021-9797&rft.eissn=1095-7103&rft_id=info:doi/10.1016/j.jcis.2024.11.212&rft_dat=%3Cproquest_cross%3E3146568371%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3146568371&rft_id=info:pmid/&rft_els_id=S0021979724027899&rfr_iscdi=true |