Na3V2(PO4)3 cathode materials for advanced sodium-ion batteries: Modification strategies and density functional theory calculations

[Display omitted] With the rapid development of electric vehicles and smart grids, the demands for energy supply systems such as secondary batteries are increasing exponentially. Despite the world-renowned achievements in portable devices, lithium-ion batteries (LIBs) have struggled to meet the dema...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of colloid and interface science 2025-03, Vol.682, p.760-783
Hauptverfasser: Wang, Zhaoyang, Li, Zhi, Du, Zijuan, Geng, Jiajun, Zong, Wei, Chen, Ruwei, Dong, Haobo, Gao, Xuan, Zhao, Fangjia, Wang, Tianlei, Munshi, Tasnim, Liu, Lingyang, Zhang, Pengfang, Shi, Wenjing, Wang, Dong, Wang, Yaoyao, Wang, Min, Xiong, Fangyu, He, Guanjie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 783
container_issue
container_start_page 760
container_title Journal of colloid and interface science
container_volume 682
creator Wang, Zhaoyang
Li, Zhi
Du, Zijuan
Geng, Jiajun
Zong, Wei
Chen, Ruwei
Dong, Haobo
Gao, Xuan
Zhao, Fangjia
Wang, Tianlei
Munshi, Tasnim
Liu, Lingyang
Zhang, Pengfang
Shi, Wenjing
Wang, Dong
Wang, Yaoyao
Wang, Min
Xiong, Fangyu
He, Guanjie
description [Display omitted] With the rapid development of electric vehicles and smart grids, the demands for energy supply systems such as secondary batteries are increasing exponentially. Despite the world-renowned achievements in portable devices, lithium-ion batteries (LIBs) have struggled to meet the demands due to the constraints of total lithium resources. As the most promising alternative to LIBs, sodium-ion batteries (SIBs) are generating widespread research enthusiasm around the world. Among all components, the cathode material remains the primary obstacle to the practical application of SIBs due to its inability to match the performance of other components. Na3V2(PO4)3 (NVP) stands out as a promising cathode material for SIBs, given its suitable theoretical specific capacity, appropriate operating voltage, robust structural stability, and excellent ionic conductivity. In this article, we first review recent modification strategies for NVP, including conductive substance coating, ion doping (single-, dual- and multi-site doping) and morphology modulation (from zero-dimensional (0D) to three-dimensional (3D)). Subsequently, we summarize five ways in which density functional theory (DFT) calculations can be applied in guiding NVP modification studies. Furthermore, a series of emerging studies combining DFT calculations are introduced. Finally, the remaining challenges and the prospects for optimization of NVP in SIBs are presented.
doi_str_mv 10.1016/j.jcis.2024.11.212
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3146568371</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021979724027899</els_id><sourcerecordid>3146568371</sourcerecordid><originalsourceid>FETCH-LOGICAL-c214t-adb10339f5bb04bafc7ee2c085704adecfca3c3a6b478744fb45b07abfa7b2a43</originalsourceid><addsrcrecordid>eNp9kD1vFDEQhi0EEkfCH6ByGYpd_LXnW0SDovAhhYQiobXG9pj4tLcOtjfS1fxxvBw11Ugz7zOjeQh5w1nPGd--2_d7F0svmFA9573g4hnZcDYOneZMPicbxgTvRj3ql-RVKXvGOB-GcUN-34D8IS6-36q3kjqoD8kjPUDFHGEqNKRMwT_B7NDTknxcDl1MM7VQ1wiW9_Rb64bY0LVfam7szzagMHvqcS6xHmlYZrfOYaL1AVM-tlOTW6a_UDknL0I7hq__1TNy_-nq7vJLd337-evlx-vOCa5qB962X-QYBmuZshCcRhSO7QbNFHh0wYF0ErZW6Z1WKlg1WKbBBtBWgJJn5OK09zGnXwuWag6xOJwmmDEtxUiutsN2JzVvUXGKupxKyRjMY44HyEfDmVmNm71ZjZvVuOHcNOMN-nCCsD3xFDGb4iKu6mJGV41P8X_4H5_ajTk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3146568371</pqid></control><display><type>article</type><title>Na3V2(PO4)3 cathode materials for advanced sodium-ion batteries: Modification strategies and density functional theory calculations</title><source>Elsevier ScienceDirect Journals</source><creator>Wang, Zhaoyang ; Li, Zhi ; Du, Zijuan ; Geng, Jiajun ; Zong, Wei ; Chen, Ruwei ; Dong, Haobo ; Gao, Xuan ; Zhao, Fangjia ; Wang, Tianlei ; Munshi, Tasnim ; Liu, Lingyang ; Zhang, Pengfang ; Shi, Wenjing ; Wang, Dong ; Wang, Yaoyao ; Wang, Min ; Xiong, Fangyu ; He, Guanjie</creator><creatorcontrib>Wang, Zhaoyang ; Li, Zhi ; Du, Zijuan ; Geng, Jiajun ; Zong, Wei ; Chen, Ruwei ; Dong, Haobo ; Gao, Xuan ; Zhao, Fangjia ; Wang, Tianlei ; Munshi, Tasnim ; Liu, Lingyang ; Zhang, Pengfang ; Shi, Wenjing ; Wang, Dong ; Wang, Yaoyao ; Wang, Min ; Xiong, Fangyu ; He, Guanjie</creatorcontrib><description>[Display omitted] With the rapid development of electric vehicles and smart grids, the demands for energy supply systems such as secondary batteries are increasing exponentially. Despite the world-renowned achievements in portable devices, lithium-ion batteries (LIBs) have struggled to meet the demands due to the constraints of total lithium resources. As the most promising alternative to LIBs, sodium-ion batteries (SIBs) are generating widespread research enthusiasm around the world. Among all components, the cathode material remains the primary obstacle to the practical application of SIBs due to its inability to match the performance of other components. Na3V2(PO4)3 (NVP) stands out as a promising cathode material for SIBs, given its suitable theoretical specific capacity, appropriate operating voltage, robust structural stability, and excellent ionic conductivity. In this article, we first review recent modification strategies for NVP, including conductive substance coating, ion doping (single-, dual- and multi-site doping) and morphology modulation (from zero-dimensional (0D) to three-dimensional (3D)). Subsequently, we summarize five ways in which density functional theory (DFT) calculations can be applied in guiding NVP modification studies. Furthermore, a series of emerging studies combining DFT calculations are introduced. Finally, the remaining challenges and the prospects for optimization of NVP in SIBs are presented.</description><identifier>ISSN: 0021-9797</identifier><identifier>ISSN: 1095-7103</identifier><identifier>EISSN: 1095-7103</identifier><identifier>DOI: 10.1016/j.jcis.2024.11.212</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Cathode ; Density functional theory calculations ; Modification strategy ; Na3V2(PO4)3 ; Sodium-ion batteries</subject><ispartof>Journal of colloid and interface science, 2025-03, Vol.682, p.760-783</ispartof><rights>2024</rights><rights>Copyright © 2024. Published by Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c214t-adb10339f5bb04bafc7ee2c085704adecfca3c3a6b478744fb45b07abfa7b2a43</cites><orcidid>0000-0003-1910-2093 ; 0000-0003-1706-3801 ; 0000-0002-7365-9645 ; 0009-0004-6435-9597 ; 0000-0003-0494-8686</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0021979724027899$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Wang, Zhaoyang</creatorcontrib><creatorcontrib>Li, Zhi</creatorcontrib><creatorcontrib>Du, Zijuan</creatorcontrib><creatorcontrib>Geng, Jiajun</creatorcontrib><creatorcontrib>Zong, Wei</creatorcontrib><creatorcontrib>Chen, Ruwei</creatorcontrib><creatorcontrib>Dong, Haobo</creatorcontrib><creatorcontrib>Gao, Xuan</creatorcontrib><creatorcontrib>Zhao, Fangjia</creatorcontrib><creatorcontrib>Wang, Tianlei</creatorcontrib><creatorcontrib>Munshi, Tasnim</creatorcontrib><creatorcontrib>Liu, Lingyang</creatorcontrib><creatorcontrib>Zhang, Pengfang</creatorcontrib><creatorcontrib>Shi, Wenjing</creatorcontrib><creatorcontrib>Wang, Dong</creatorcontrib><creatorcontrib>Wang, Yaoyao</creatorcontrib><creatorcontrib>Wang, Min</creatorcontrib><creatorcontrib>Xiong, Fangyu</creatorcontrib><creatorcontrib>He, Guanjie</creatorcontrib><title>Na3V2(PO4)3 cathode materials for advanced sodium-ion batteries: Modification strategies and density functional theory calculations</title><title>Journal of colloid and interface science</title><description>[Display omitted] With the rapid development of electric vehicles and smart grids, the demands for energy supply systems such as secondary batteries are increasing exponentially. Despite the world-renowned achievements in portable devices, lithium-ion batteries (LIBs) have struggled to meet the demands due to the constraints of total lithium resources. As the most promising alternative to LIBs, sodium-ion batteries (SIBs) are generating widespread research enthusiasm around the world. Among all components, the cathode material remains the primary obstacle to the practical application of SIBs due to its inability to match the performance of other components. Na3V2(PO4)3 (NVP) stands out as a promising cathode material for SIBs, given its suitable theoretical specific capacity, appropriate operating voltage, robust structural stability, and excellent ionic conductivity. In this article, we first review recent modification strategies for NVP, including conductive substance coating, ion doping (single-, dual- and multi-site doping) and morphology modulation (from zero-dimensional (0D) to three-dimensional (3D)). Subsequently, we summarize five ways in which density functional theory (DFT) calculations can be applied in guiding NVP modification studies. Furthermore, a series of emerging studies combining DFT calculations are introduced. Finally, the remaining challenges and the prospects for optimization of NVP in SIBs are presented.</description><subject>Cathode</subject><subject>Density functional theory calculations</subject><subject>Modification strategy</subject><subject>Na3V2(PO4)3</subject><subject>Sodium-ion batteries</subject><issn>0021-9797</issn><issn>1095-7103</issn><issn>1095-7103</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNp9kD1vFDEQhi0EEkfCH6ByGYpd_LXnW0SDovAhhYQiobXG9pj4tLcOtjfS1fxxvBw11Ugz7zOjeQh5w1nPGd--2_d7F0svmFA9573g4hnZcDYOneZMPicbxgTvRj3ql-RVKXvGOB-GcUN-34D8IS6-36q3kjqoD8kjPUDFHGEqNKRMwT_B7NDTknxcDl1MM7VQ1wiW9_Rb64bY0LVfam7szzagMHvqcS6xHmlYZrfOYaL1AVM-tlOTW6a_UDknL0I7hq__1TNy_-nq7vJLd337-evlx-vOCa5qB962X-QYBmuZshCcRhSO7QbNFHh0wYF0ErZW6Z1WKlg1WKbBBtBWgJJn5OK09zGnXwuWag6xOJwmmDEtxUiutsN2JzVvUXGKupxKyRjMY44HyEfDmVmNm71ZjZvVuOHcNOMN-nCCsD3xFDGb4iKu6mJGV41P8X_4H5_ajTk</recordid><startdate>20250315</startdate><enddate>20250315</enddate><creator>Wang, Zhaoyang</creator><creator>Li, Zhi</creator><creator>Du, Zijuan</creator><creator>Geng, Jiajun</creator><creator>Zong, Wei</creator><creator>Chen, Ruwei</creator><creator>Dong, Haobo</creator><creator>Gao, Xuan</creator><creator>Zhao, Fangjia</creator><creator>Wang, Tianlei</creator><creator>Munshi, Tasnim</creator><creator>Liu, Lingyang</creator><creator>Zhang, Pengfang</creator><creator>Shi, Wenjing</creator><creator>Wang, Dong</creator><creator>Wang, Yaoyao</creator><creator>Wang, Min</creator><creator>Xiong, Fangyu</creator><creator>He, Guanjie</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1910-2093</orcidid><orcidid>https://orcid.org/0000-0003-1706-3801</orcidid><orcidid>https://orcid.org/0000-0002-7365-9645</orcidid><orcidid>https://orcid.org/0009-0004-6435-9597</orcidid><orcidid>https://orcid.org/0000-0003-0494-8686</orcidid></search><sort><creationdate>20250315</creationdate><title>Na3V2(PO4)3 cathode materials for advanced sodium-ion batteries: Modification strategies and density functional theory calculations</title><author>Wang, Zhaoyang ; Li, Zhi ; Du, Zijuan ; Geng, Jiajun ; Zong, Wei ; Chen, Ruwei ; Dong, Haobo ; Gao, Xuan ; Zhao, Fangjia ; Wang, Tianlei ; Munshi, Tasnim ; Liu, Lingyang ; Zhang, Pengfang ; Shi, Wenjing ; Wang, Dong ; Wang, Yaoyao ; Wang, Min ; Xiong, Fangyu ; He, Guanjie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c214t-adb10339f5bb04bafc7ee2c085704adecfca3c3a6b478744fb45b07abfa7b2a43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Cathode</topic><topic>Density functional theory calculations</topic><topic>Modification strategy</topic><topic>Na3V2(PO4)3</topic><topic>Sodium-ion batteries</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Zhaoyang</creatorcontrib><creatorcontrib>Li, Zhi</creatorcontrib><creatorcontrib>Du, Zijuan</creatorcontrib><creatorcontrib>Geng, Jiajun</creatorcontrib><creatorcontrib>Zong, Wei</creatorcontrib><creatorcontrib>Chen, Ruwei</creatorcontrib><creatorcontrib>Dong, Haobo</creatorcontrib><creatorcontrib>Gao, Xuan</creatorcontrib><creatorcontrib>Zhao, Fangjia</creatorcontrib><creatorcontrib>Wang, Tianlei</creatorcontrib><creatorcontrib>Munshi, Tasnim</creatorcontrib><creatorcontrib>Liu, Lingyang</creatorcontrib><creatorcontrib>Zhang, Pengfang</creatorcontrib><creatorcontrib>Shi, Wenjing</creatorcontrib><creatorcontrib>Wang, Dong</creatorcontrib><creatorcontrib>Wang, Yaoyao</creatorcontrib><creatorcontrib>Wang, Min</creatorcontrib><creatorcontrib>Xiong, Fangyu</creatorcontrib><creatorcontrib>He, Guanjie</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of colloid and interface science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Zhaoyang</au><au>Li, Zhi</au><au>Du, Zijuan</au><au>Geng, Jiajun</au><au>Zong, Wei</au><au>Chen, Ruwei</au><au>Dong, Haobo</au><au>Gao, Xuan</au><au>Zhao, Fangjia</au><au>Wang, Tianlei</au><au>Munshi, Tasnim</au><au>Liu, Lingyang</au><au>Zhang, Pengfang</au><au>Shi, Wenjing</au><au>Wang, Dong</au><au>Wang, Yaoyao</au><au>Wang, Min</au><au>Xiong, Fangyu</au><au>He, Guanjie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Na3V2(PO4)3 cathode materials for advanced sodium-ion batteries: Modification strategies and density functional theory calculations</atitle><jtitle>Journal of colloid and interface science</jtitle><date>2025-03-15</date><risdate>2025</risdate><volume>682</volume><spage>760</spage><epage>783</epage><pages>760-783</pages><issn>0021-9797</issn><issn>1095-7103</issn><eissn>1095-7103</eissn><abstract>[Display omitted] With the rapid development of electric vehicles and smart grids, the demands for energy supply systems such as secondary batteries are increasing exponentially. Despite the world-renowned achievements in portable devices, lithium-ion batteries (LIBs) have struggled to meet the demands due to the constraints of total lithium resources. As the most promising alternative to LIBs, sodium-ion batteries (SIBs) are generating widespread research enthusiasm around the world. Among all components, the cathode material remains the primary obstacle to the practical application of SIBs due to its inability to match the performance of other components. Na3V2(PO4)3 (NVP) stands out as a promising cathode material for SIBs, given its suitable theoretical specific capacity, appropriate operating voltage, robust structural stability, and excellent ionic conductivity. In this article, we first review recent modification strategies for NVP, including conductive substance coating, ion doping (single-, dual- and multi-site doping) and morphology modulation (from zero-dimensional (0D) to three-dimensional (3D)). Subsequently, we summarize five ways in which density functional theory (DFT) calculations can be applied in guiding NVP modification studies. Furthermore, a series of emerging studies combining DFT calculations are introduced. Finally, the remaining challenges and the prospects for optimization of NVP in SIBs are presented.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.jcis.2024.11.212</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0003-1910-2093</orcidid><orcidid>https://orcid.org/0000-0003-1706-3801</orcidid><orcidid>https://orcid.org/0000-0002-7365-9645</orcidid><orcidid>https://orcid.org/0009-0004-6435-9597</orcidid><orcidid>https://orcid.org/0000-0003-0494-8686</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0021-9797
ispartof Journal of colloid and interface science, 2025-03, Vol.682, p.760-783
issn 0021-9797
1095-7103
1095-7103
language eng
recordid cdi_proquest_miscellaneous_3146568371
source Elsevier ScienceDirect Journals
subjects Cathode
Density functional theory calculations
Modification strategy
Na3V2(PO4)3
Sodium-ion batteries
title Na3V2(PO4)3 cathode materials for advanced sodium-ion batteries: Modification strategies and density functional theory calculations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T22%3A47%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Na3V2(PO4)3%20cathode%20materials%20for%20advanced%20sodium-ion%20batteries:%20Modification%20strategies%20and%20density%20functional%20theory%20calculations&rft.jtitle=Journal%20of%20colloid%20and%20interface%20science&rft.au=Wang,%20Zhaoyang&rft.date=2025-03-15&rft.volume=682&rft.spage=760&rft.epage=783&rft.pages=760-783&rft.issn=0021-9797&rft.eissn=1095-7103&rft_id=info:doi/10.1016/j.jcis.2024.11.212&rft_dat=%3Cproquest_cross%3E3146568371%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3146568371&rft_id=info:pmid/&rft_els_id=S0021979724027899&rfr_iscdi=true