Challenges and solutions of deep learning-based automated liver segmentation: A systematic review
The liver is one of the vital organs in the body. Precise liver segmentation in medical images is essential for liver disease treatment. The deep learning-based liver segmentation process faces several challenges. This research aims to analyze the challenges of liver segmentation in prior studies an...
Gespeichert in:
Veröffentlicht in: | Computers in biology and medicine 2024-12, Vol.185, p.109459, Article 109459 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 109459 |
container_title | Computers in biology and medicine |
container_volume | 185 |
creator | Ghobadi, Vahideh Ismail, Luthffi Idzhar Wan Hasan, Wan Zuha Ahmad, Haron Ramli, Hafiz Rashidi Norsahperi, Nor Mohd Haziq Tharek, Anas Hanapiah, Fazah Akhtar |
description | The liver is one of the vital organs in the body. Precise liver segmentation in medical images is essential for liver disease treatment. The deep learning-based liver segmentation process faces several challenges. This research aims to analyze the challenges of liver segmentation in prior studies and identify the modifications made to network models and other enhancements implemented by researchers to tackle each challenge. In total, 88 articles from Scopus and ScienceDirect databases published between January 2016 and January 2022 have been studied. The liver segmentation challenges are classified into five main categories, each containing some subcategories. For each challenge, the proposed technique to overcome the challenge is investigated. The provided report details the authors, publication years, dataset types, imaging technologies, and evaluation metrics of all references for comparison. Additionally, a summary table outlines the challenges and solutions.
[Display omitted]
•Reviewing articles on deep learning-based liver segmentation in medical images.•Dividing liver segmentation challenges into the five main categories.•Analysis of the solutions researchers proposed for liver segmentation challenges. |
doi_str_mv | 10.1016/j.compbiomed.2024.109459 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_3146567720</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0010482524015440</els_id><sourcerecordid>3146567720</sourcerecordid><originalsourceid>FETCH-LOGICAL-e1150-b0712638685f420f00891d80d289dfcac7b2878a16fe435b1fcf4d51d92f850d3</originalsourceid><addsrcrecordid>eNpFkUtPwzAMgCMEYuPxF1COXDqcNGlTbmPiJU3iAucoTZyRqW1G04L493QaiJMt67Nl-yOEMlgwYMXNdmFju6tDbNEtOHAxlSshqyMyZ6qsMpC5OCZzAAaZUFzOyFlKWwAQkMMpmeVVIXgJMCdm9W6aBrsNJmo6R1NsxiHELtHoqUPc0QZN34Vuk9UmoaNmHGJrhilrwif2NOGmxW4w-6ZbuqTpOw04AcHSHj8Dfl2QE2-ahJe_8Zy8Pdy_rp6y9cvj82q5zpAxCVkNJeNFrgolveDgAVTFnALHVeW8NbasuSqVYYVHkcuaeeuFk8xV3CsJLj8n14e5uz5-jJgG3YZksWlMh3FMOmeikEVZcpjQq190rKcP6l0fWtN_67-3TMDdAcBp4emIXicbsLPoQo920C4GzUDvXeit_neh9y70wUX-A_Vofz0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3146567720</pqid></control><display><type>article</type><title>Challenges and solutions of deep learning-based automated liver segmentation: A systematic review</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Ghobadi, Vahideh ; Ismail, Luthffi Idzhar ; Wan Hasan, Wan Zuha ; Ahmad, Haron ; Ramli, Hafiz Rashidi ; Norsahperi, Nor Mohd Haziq ; Tharek, Anas ; Hanapiah, Fazah Akhtar</creator><creatorcontrib>Ghobadi, Vahideh ; Ismail, Luthffi Idzhar ; Wan Hasan, Wan Zuha ; Ahmad, Haron ; Ramli, Hafiz Rashidi ; Norsahperi, Nor Mohd Haziq ; Tharek, Anas ; Hanapiah, Fazah Akhtar</creatorcontrib><description>The liver is one of the vital organs in the body. Precise liver segmentation in medical images is essential for liver disease treatment. The deep learning-based liver segmentation process faces several challenges. This research aims to analyze the challenges of liver segmentation in prior studies and identify the modifications made to network models and other enhancements implemented by researchers to tackle each challenge. In total, 88 articles from Scopus and ScienceDirect databases published between January 2016 and January 2022 have been studied. The liver segmentation challenges are classified into five main categories, each containing some subcategories. For each challenge, the proposed technique to overcome the challenge is investigated. The provided report details the authors, publication years, dataset types, imaging technologies, and evaluation metrics of all references for comparison. Additionally, a summary table outlines the challenges and solutions.
[Display omitted]
•Reviewing articles on deep learning-based liver segmentation in medical images.•Dividing liver segmentation challenges into the five main categories.•Analysis of the solutions researchers proposed for liver segmentation challenges.</description><identifier>ISSN: 0010-4825</identifier><identifier>ISSN: 1879-0534</identifier><identifier>EISSN: 1879-0534</identifier><identifier>DOI: 10.1016/j.compbiomed.2024.109459</identifier><identifier>PMID: 39642700</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Deep learning ; Liver segmentation ; Medical images</subject><ispartof>Computers in biology and medicine, 2024-12, Vol.185, p.109459, Article 109459</ispartof><rights>2024</rights><rights>Copyright © 2024. Published by Elsevier Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-7523-1821 ; 0009-0000-8127-0317</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.compbiomed.2024.109459$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39642700$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ghobadi, Vahideh</creatorcontrib><creatorcontrib>Ismail, Luthffi Idzhar</creatorcontrib><creatorcontrib>Wan Hasan, Wan Zuha</creatorcontrib><creatorcontrib>Ahmad, Haron</creatorcontrib><creatorcontrib>Ramli, Hafiz Rashidi</creatorcontrib><creatorcontrib>Norsahperi, Nor Mohd Haziq</creatorcontrib><creatorcontrib>Tharek, Anas</creatorcontrib><creatorcontrib>Hanapiah, Fazah Akhtar</creatorcontrib><title>Challenges and solutions of deep learning-based automated liver segmentation: A systematic review</title><title>Computers in biology and medicine</title><addtitle>Comput Biol Med</addtitle><description>The liver is one of the vital organs in the body. Precise liver segmentation in medical images is essential for liver disease treatment. The deep learning-based liver segmentation process faces several challenges. This research aims to analyze the challenges of liver segmentation in prior studies and identify the modifications made to network models and other enhancements implemented by researchers to tackle each challenge. In total, 88 articles from Scopus and ScienceDirect databases published between January 2016 and January 2022 have been studied. The liver segmentation challenges are classified into five main categories, each containing some subcategories. For each challenge, the proposed technique to overcome the challenge is investigated. The provided report details the authors, publication years, dataset types, imaging technologies, and evaluation metrics of all references for comparison. Additionally, a summary table outlines the challenges and solutions.
[Display omitted]
•Reviewing articles on deep learning-based liver segmentation in medical images.•Dividing liver segmentation challenges into the five main categories.•Analysis of the solutions researchers proposed for liver segmentation challenges.</description><subject>Deep learning</subject><subject>Liver segmentation</subject><subject>Medical images</subject><issn>0010-4825</issn><issn>1879-0534</issn><issn>1879-0534</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpFkUtPwzAMgCMEYuPxF1COXDqcNGlTbmPiJU3iAucoTZyRqW1G04L493QaiJMt67Nl-yOEMlgwYMXNdmFju6tDbNEtOHAxlSshqyMyZ6qsMpC5OCZzAAaZUFzOyFlKWwAQkMMpmeVVIXgJMCdm9W6aBrsNJmo6R1NsxiHELtHoqUPc0QZN34Vuk9UmoaNmHGJrhilrwif2NOGmxW4w-6ZbuqTpOw04AcHSHj8Dfl2QE2-ahJe_8Zy8Pdy_rp6y9cvj82q5zpAxCVkNJeNFrgolveDgAVTFnALHVeW8NbasuSqVYYVHkcuaeeuFk8xV3CsJLj8n14e5uz5-jJgG3YZksWlMh3FMOmeikEVZcpjQq190rKcP6l0fWtN_67-3TMDdAcBp4emIXicbsLPoQo920C4GzUDvXeit_neh9y70wUX-A_Vofz0</recordid><startdate>20241205</startdate><enddate>20241205</enddate><creator>Ghobadi, Vahideh</creator><creator>Ismail, Luthffi Idzhar</creator><creator>Wan Hasan, Wan Zuha</creator><creator>Ahmad, Haron</creator><creator>Ramli, Hafiz Rashidi</creator><creator>Norsahperi, Nor Mohd Haziq</creator><creator>Tharek, Anas</creator><creator>Hanapiah, Fazah Akhtar</creator><general>Elsevier Ltd</general><scope>NPM</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7523-1821</orcidid><orcidid>https://orcid.org/0009-0000-8127-0317</orcidid></search><sort><creationdate>20241205</creationdate><title>Challenges and solutions of deep learning-based automated liver segmentation: A systematic review</title><author>Ghobadi, Vahideh ; Ismail, Luthffi Idzhar ; Wan Hasan, Wan Zuha ; Ahmad, Haron ; Ramli, Hafiz Rashidi ; Norsahperi, Nor Mohd Haziq ; Tharek, Anas ; Hanapiah, Fazah Akhtar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-e1150-b0712638685f420f00891d80d289dfcac7b2878a16fe435b1fcf4d51d92f850d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Deep learning</topic><topic>Liver segmentation</topic><topic>Medical images</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ghobadi, Vahideh</creatorcontrib><creatorcontrib>Ismail, Luthffi Idzhar</creatorcontrib><creatorcontrib>Wan Hasan, Wan Zuha</creatorcontrib><creatorcontrib>Ahmad, Haron</creatorcontrib><creatorcontrib>Ramli, Hafiz Rashidi</creatorcontrib><creatorcontrib>Norsahperi, Nor Mohd Haziq</creatorcontrib><creatorcontrib>Tharek, Anas</creatorcontrib><creatorcontrib>Hanapiah, Fazah Akhtar</creatorcontrib><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>Computers in biology and medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ghobadi, Vahideh</au><au>Ismail, Luthffi Idzhar</au><au>Wan Hasan, Wan Zuha</au><au>Ahmad, Haron</au><au>Ramli, Hafiz Rashidi</au><au>Norsahperi, Nor Mohd Haziq</au><au>Tharek, Anas</au><au>Hanapiah, Fazah Akhtar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Challenges and solutions of deep learning-based automated liver segmentation: A systematic review</atitle><jtitle>Computers in biology and medicine</jtitle><addtitle>Comput Biol Med</addtitle><date>2024-12-05</date><risdate>2024</risdate><volume>185</volume><spage>109459</spage><pages>109459-</pages><artnum>109459</artnum><issn>0010-4825</issn><issn>1879-0534</issn><eissn>1879-0534</eissn><abstract>The liver is one of the vital organs in the body. Precise liver segmentation in medical images is essential for liver disease treatment. The deep learning-based liver segmentation process faces several challenges. This research aims to analyze the challenges of liver segmentation in prior studies and identify the modifications made to network models and other enhancements implemented by researchers to tackle each challenge. In total, 88 articles from Scopus and ScienceDirect databases published between January 2016 and January 2022 have been studied. The liver segmentation challenges are classified into five main categories, each containing some subcategories. For each challenge, the proposed technique to overcome the challenge is investigated. The provided report details the authors, publication years, dataset types, imaging technologies, and evaluation metrics of all references for comparison. Additionally, a summary table outlines the challenges and solutions.
[Display omitted]
•Reviewing articles on deep learning-based liver segmentation in medical images.•Dividing liver segmentation challenges into the five main categories.•Analysis of the solutions researchers proposed for liver segmentation challenges.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>39642700</pmid><doi>10.1016/j.compbiomed.2024.109459</doi><orcidid>https://orcid.org/0000-0001-7523-1821</orcidid><orcidid>https://orcid.org/0009-0000-8127-0317</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0010-4825 |
ispartof | Computers in biology and medicine, 2024-12, Vol.185, p.109459, Article 109459 |
issn | 0010-4825 1879-0534 1879-0534 |
language | eng |
recordid | cdi_proquest_miscellaneous_3146567720 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Deep learning Liver segmentation Medical images |
title | Challenges and solutions of deep learning-based automated liver segmentation: A systematic review |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T05%3A10%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Challenges%20and%20solutions%20of%20deep%20learning-based%20automated%20liver%20segmentation:%20A%20systematic%20review&rft.jtitle=Computers%20in%20biology%20and%20medicine&rft.au=Ghobadi,%20Vahideh&rft.date=2024-12-05&rft.volume=185&rft.spage=109459&rft.pages=109459-&rft.artnum=109459&rft.issn=0010-4825&rft.eissn=1879-0534&rft_id=info:doi/10.1016/j.compbiomed.2024.109459&rft_dat=%3Cproquest_pubme%3E3146567720%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3146567720&rft_id=info:pmid/39642700&rft_els_id=S0010482524015440&rfr_iscdi=true |