Quantum Speed Limit in Quantum Sensing
Quantum sensors capitalize on advanced control sequences for maximizing sensitivity and precision. However, protocols are not usually optimized for temporal resolution. Here, we establish the limits for time-resolved sensing of dynamical signals using qubit probes. We show that the best possible tim...
Gespeichert in:
Veröffentlicht in: | Physical review letters 2024-11, Vol.133 (21), p.210802, Article 210802 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Quantum sensors capitalize on advanced control sequences for maximizing sensitivity and precision. However, protocols are not usually optimized for temporal resolution. Here, we establish the limits for time-resolved sensing of dynamical signals using qubit probes. We show that the best possible time resolution is closely related to the quantum speed limit (QSL), which describes the minimum time needed to transform between basis states. We further show that a composite control sequence consisting of two phase-shifted pulses reaches the QSL. Practical implementation is discussed based on the example of the spin-1 qutrit of a nitrogen-vacancy center in diamond. |
---|---|
ISSN: | 0031-9007 1079-7114 1079-7114 |
DOI: | 10.1103/PhysRevLett.133.210802 |