Identification of an Intrinsically Disordered Region (IDR) in Arginyltransferase 1 (ATE1)
Arginyltransferase 1 (ATE1) catalyzes arginylation, an important posttranslational modification (PTM) in eukaryotes that plays a critical role in cellular homeostasis. The disruption of ATE1 function is implicated in mammalian neurodegenerative disorders and cardiovascular maldevelopment, while post...
Gespeichert in:
Veröffentlicht in: | Biochemistry (Easton) 2024-12, Vol.63 (24), p.3236-3249 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3249 |
---|---|
container_issue | 24 |
container_start_page | 3236 |
container_title | Biochemistry (Easton) |
container_volume | 63 |
creator | Cartwright, Misti Parakra, Rinky Oduwole, Ayomide Zhang, Fangliang Deredge, Daniel J. Smith, Aaron T. |
description | Arginyltransferase 1 (ATE1) catalyzes arginylation, an important posttranslational modification (PTM) in eukaryotes that plays a critical role in cellular homeostasis. The disruption of ATE1 function is implicated in mammalian neurodegenerative disorders and cardiovascular maldevelopment, while posttranslational arginylation has also been linked to the activities of several important human viruses such as SARS-CoV-2 and HIV. Despite the known significance of ATE1 in mammalian cellular function, past biophysical studies of this enzyme have mainly focused on yeast ATE1, leaving the mechanism of arginylation in mammalian cells unclear. In this study, we sought to structurally and biophysically characterize mouse (Mus musculus) ATE1. Using size-exclusion chromatography (SEC), small-angle X-ray scattering (SAXS), and hydrogen–deuterium exchange mass spectrometry (HDX-MS), assisted by AlphaFold modeling, we found that mouse ATE1 is structurally more complex than yeast ATE1. Importantly, our data indicate the existence of an intrinsically disordered region (IDR) in all mouse ATE1 splice variants. However, comparative HDX-MS analyses show that yeast ATE1 does not have such an IDR, consistent with prior X-ray, cryo-EM, and SAXS analyses. Furthermore, bioinformatics approaches reveal that mammalian ATE1 sequences, as well those as in a large majority of other eukaryotes, contain an IDR-like sequence positioned in proximity to the ATE1 GNAT active-site fold. Computational analysis suggests that the IDR facilitates the formation of a complex between ATE1 and tRNAArg, adding a new complexity to the ATE1 structure and providing new insights for future studies of ATE1 functions. |
doi_str_mv | 10.1021/acs.biochem.4c00512 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_3146546659</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3146546659</sourcerecordid><originalsourceid>FETCH-LOGICAL-a226t-8f1632fef60b26ed51f1551525860003d4514f626e72c5274d67da34c537a80a3</originalsourceid><addsrcrecordid>eNo1kEFLwzAUx4Mobk4_gSA5boduSZqk7XG4qYWBMObBU8iaZGa06Uzaw769Gaunx_u_H4_3fgA8YzTHiOCFrMJ8b9vqRzdzWiHEMLkBY8wISmhRsFswRgjxhBQcjcBDCMfYUpTRezBKC04JztEYfJdKu84aW8nOtg62BkoHS9d560IM6_oMVza0XmmvFdzqw4WalqvtDFoHl_5g3bnuvHTBaC-DhhhOl7s1nj2COyProJ-GOgFfb-vd60ey-XwvX5ebRBLCuyQ3mKfEaMPRnnCtGDaYsfgFy3k8OFWUYWp4HGWkYiSjimdKprRiaSZzJNMJmF73nnz72-vQicaGSte1dLrtg0gx5YxyzoqIvgxov2-0EidvG-nP4l9HBBZXILoVx7b3Ll4uMBIX4eISDsLFIDz9A_9ZcTc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3146546659</pqid></control><display><type>article</type><title>Identification of an Intrinsically Disordered Region (IDR) in Arginyltransferase 1 (ATE1)</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Cartwright, Misti ; Parakra, Rinky ; Oduwole, Ayomide ; Zhang, Fangliang ; Deredge, Daniel J. ; Smith, Aaron T.</creator><creatorcontrib>Cartwright, Misti ; Parakra, Rinky ; Oduwole, Ayomide ; Zhang, Fangliang ; Deredge, Daniel J. ; Smith, Aaron T.</creatorcontrib><description>Arginyltransferase 1 (ATE1) catalyzes arginylation, an important posttranslational modification (PTM) in eukaryotes that plays a critical role in cellular homeostasis. The disruption of ATE1 function is implicated in mammalian neurodegenerative disorders and cardiovascular maldevelopment, while posttranslational arginylation has also been linked to the activities of several important human viruses such as SARS-CoV-2 and HIV. Despite the known significance of ATE1 in mammalian cellular function, past biophysical studies of this enzyme have mainly focused on yeast ATE1, leaving the mechanism of arginylation in mammalian cells unclear. In this study, we sought to structurally and biophysically characterize mouse (Mus musculus) ATE1. Using size-exclusion chromatography (SEC), small-angle X-ray scattering (SAXS), and hydrogen–deuterium exchange mass spectrometry (HDX-MS), assisted by AlphaFold modeling, we found that mouse ATE1 is structurally more complex than yeast ATE1. Importantly, our data indicate the existence of an intrinsically disordered region (IDR) in all mouse ATE1 splice variants. However, comparative HDX-MS analyses show that yeast ATE1 does not have such an IDR, consistent with prior X-ray, cryo-EM, and SAXS analyses. Furthermore, bioinformatics approaches reveal that mammalian ATE1 sequences, as well those as in a large majority of other eukaryotes, contain an IDR-like sequence positioned in proximity to the ATE1 GNAT active-site fold. Computational analysis suggests that the IDR facilitates the formation of a complex between ATE1 and tRNAArg, adding a new complexity to the ATE1 structure and providing new insights for future studies of ATE1 functions.</description><identifier>ISSN: 0006-2960</identifier><identifier>ISSN: 1520-4995</identifier><identifier>EISSN: 1520-4995</identifier><identifier>DOI: 10.1021/acs.biochem.4c00512</identifier><identifier>PMID: 39642180</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Amino Acid Sequence ; Aminoacyltransferases - chemistry ; Aminoacyltransferases - genetics ; Aminoacyltransferases - metabolism ; Animals ; Humans ; Hydrogen Deuterium Exchange-Mass Spectrometry ; Intrinsically Disordered Proteins - chemistry ; Intrinsically Disordered Proteins - genetics ; Intrinsically Disordered Proteins - metabolism ; Mice ; Models, Molecular ; Protein Conformation ; Scattering, Small Angle ; X-Ray Diffraction</subject><ispartof>Biochemistry (Easton), 2024-12, Vol.63 (24), p.3236-3249</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-9332-8683 ; 0000-0002-6897-6523</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.biochem.4c00512$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.biochem.4c00512$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39642180$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cartwright, Misti</creatorcontrib><creatorcontrib>Parakra, Rinky</creatorcontrib><creatorcontrib>Oduwole, Ayomide</creatorcontrib><creatorcontrib>Zhang, Fangliang</creatorcontrib><creatorcontrib>Deredge, Daniel J.</creatorcontrib><creatorcontrib>Smith, Aaron T.</creatorcontrib><title>Identification of an Intrinsically Disordered Region (IDR) in Arginyltransferase 1 (ATE1)</title><title>Biochemistry (Easton)</title><addtitle>Biochemistry</addtitle><description>Arginyltransferase 1 (ATE1) catalyzes arginylation, an important posttranslational modification (PTM) in eukaryotes that plays a critical role in cellular homeostasis. The disruption of ATE1 function is implicated in mammalian neurodegenerative disorders and cardiovascular maldevelopment, while posttranslational arginylation has also been linked to the activities of several important human viruses such as SARS-CoV-2 and HIV. Despite the known significance of ATE1 in mammalian cellular function, past biophysical studies of this enzyme have mainly focused on yeast ATE1, leaving the mechanism of arginylation in mammalian cells unclear. In this study, we sought to structurally and biophysically characterize mouse (Mus musculus) ATE1. Using size-exclusion chromatography (SEC), small-angle X-ray scattering (SAXS), and hydrogen–deuterium exchange mass spectrometry (HDX-MS), assisted by AlphaFold modeling, we found that mouse ATE1 is structurally more complex than yeast ATE1. Importantly, our data indicate the existence of an intrinsically disordered region (IDR) in all mouse ATE1 splice variants. However, comparative HDX-MS analyses show that yeast ATE1 does not have such an IDR, consistent with prior X-ray, cryo-EM, and SAXS analyses. Furthermore, bioinformatics approaches reveal that mammalian ATE1 sequences, as well those as in a large majority of other eukaryotes, contain an IDR-like sequence positioned in proximity to the ATE1 GNAT active-site fold. Computational analysis suggests that the IDR facilitates the formation of a complex between ATE1 and tRNAArg, adding a new complexity to the ATE1 structure and providing new insights for future studies of ATE1 functions.</description><subject>Amino Acid Sequence</subject><subject>Aminoacyltransferases - chemistry</subject><subject>Aminoacyltransferases - genetics</subject><subject>Aminoacyltransferases - metabolism</subject><subject>Animals</subject><subject>Humans</subject><subject>Hydrogen Deuterium Exchange-Mass Spectrometry</subject><subject>Intrinsically Disordered Proteins - chemistry</subject><subject>Intrinsically Disordered Proteins - genetics</subject><subject>Intrinsically Disordered Proteins - metabolism</subject><subject>Mice</subject><subject>Models, Molecular</subject><subject>Protein Conformation</subject><subject>Scattering, Small Angle</subject><subject>X-Ray Diffraction</subject><issn>0006-2960</issn><issn>1520-4995</issn><issn>1520-4995</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo1kEFLwzAUx4Mobk4_gSA5boduSZqk7XG4qYWBMObBU8iaZGa06Uzaw769Gaunx_u_H4_3fgA8YzTHiOCFrMJ8b9vqRzdzWiHEMLkBY8wISmhRsFswRgjxhBQcjcBDCMfYUpTRezBKC04JztEYfJdKu84aW8nOtg62BkoHS9d560IM6_oMVza0XmmvFdzqw4WalqvtDFoHl_5g3bnuvHTBaC-DhhhOl7s1nj2COyProJ-GOgFfb-vd60ey-XwvX5ebRBLCuyQ3mKfEaMPRnnCtGDaYsfgFy3k8OFWUYWp4HGWkYiSjimdKprRiaSZzJNMJmF73nnz72-vQicaGSte1dLrtg0gx5YxyzoqIvgxov2-0EidvG-nP4l9HBBZXILoVx7b3Ll4uMBIX4eISDsLFIDz9A_9ZcTc</recordid><startdate>20241217</startdate><enddate>20241217</enddate><creator>Cartwright, Misti</creator><creator>Parakra, Rinky</creator><creator>Oduwole, Ayomide</creator><creator>Zhang, Fangliang</creator><creator>Deredge, Daniel J.</creator><creator>Smith, Aaron T.</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9332-8683</orcidid><orcidid>https://orcid.org/0000-0002-6897-6523</orcidid></search><sort><creationdate>20241217</creationdate><title>Identification of an Intrinsically Disordered Region (IDR) in Arginyltransferase 1 (ATE1)</title><author>Cartwright, Misti ; Parakra, Rinky ; Oduwole, Ayomide ; Zhang, Fangliang ; Deredge, Daniel J. ; Smith, Aaron T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a226t-8f1632fef60b26ed51f1551525860003d4514f626e72c5274d67da34c537a80a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Amino Acid Sequence</topic><topic>Aminoacyltransferases - chemistry</topic><topic>Aminoacyltransferases - genetics</topic><topic>Aminoacyltransferases - metabolism</topic><topic>Animals</topic><topic>Humans</topic><topic>Hydrogen Deuterium Exchange-Mass Spectrometry</topic><topic>Intrinsically Disordered Proteins - chemistry</topic><topic>Intrinsically Disordered Proteins - genetics</topic><topic>Intrinsically Disordered Proteins - metabolism</topic><topic>Mice</topic><topic>Models, Molecular</topic><topic>Protein Conformation</topic><topic>Scattering, Small Angle</topic><topic>X-Ray Diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cartwright, Misti</creatorcontrib><creatorcontrib>Parakra, Rinky</creatorcontrib><creatorcontrib>Oduwole, Ayomide</creatorcontrib><creatorcontrib>Zhang, Fangliang</creatorcontrib><creatorcontrib>Deredge, Daniel J.</creatorcontrib><creatorcontrib>Smith, Aaron T.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>Biochemistry (Easton)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cartwright, Misti</au><au>Parakra, Rinky</au><au>Oduwole, Ayomide</au><au>Zhang, Fangliang</au><au>Deredge, Daniel J.</au><au>Smith, Aaron T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identification of an Intrinsically Disordered Region (IDR) in Arginyltransferase 1 (ATE1)</atitle><jtitle>Biochemistry (Easton)</jtitle><addtitle>Biochemistry</addtitle><date>2024-12-17</date><risdate>2024</risdate><volume>63</volume><issue>24</issue><spage>3236</spage><epage>3249</epage><pages>3236-3249</pages><issn>0006-2960</issn><issn>1520-4995</issn><eissn>1520-4995</eissn><abstract>Arginyltransferase 1 (ATE1) catalyzes arginylation, an important posttranslational modification (PTM) in eukaryotes that plays a critical role in cellular homeostasis. The disruption of ATE1 function is implicated in mammalian neurodegenerative disorders and cardiovascular maldevelopment, while posttranslational arginylation has also been linked to the activities of several important human viruses such as SARS-CoV-2 and HIV. Despite the known significance of ATE1 in mammalian cellular function, past biophysical studies of this enzyme have mainly focused on yeast ATE1, leaving the mechanism of arginylation in mammalian cells unclear. In this study, we sought to structurally and biophysically characterize mouse (Mus musculus) ATE1. Using size-exclusion chromatography (SEC), small-angle X-ray scattering (SAXS), and hydrogen–deuterium exchange mass spectrometry (HDX-MS), assisted by AlphaFold modeling, we found that mouse ATE1 is structurally more complex than yeast ATE1. Importantly, our data indicate the existence of an intrinsically disordered region (IDR) in all mouse ATE1 splice variants. However, comparative HDX-MS analyses show that yeast ATE1 does not have such an IDR, consistent with prior X-ray, cryo-EM, and SAXS analyses. Furthermore, bioinformatics approaches reveal that mammalian ATE1 sequences, as well those as in a large majority of other eukaryotes, contain an IDR-like sequence positioned in proximity to the ATE1 GNAT active-site fold. Computational analysis suggests that the IDR facilitates the formation of a complex between ATE1 and tRNAArg, adding a new complexity to the ATE1 structure and providing new insights for future studies of ATE1 functions.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>39642180</pmid><doi>10.1021/acs.biochem.4c00512</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-9332-8683</orcidid><orcidid>https://orcid.org/0000-0002-6897-6523</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-2960 |
ispartof | Biochemistry (Easton), 2024-12, Vol.63 (24), p.3236-3249 |
issn | 0006-2960 1520-4995 1520-4995 |
language | eng |
recordid | cdi_proquest_miscellaneous_3146546659 |
source | MEDLINE; American Chemical Society Journals |
subjects | Amino Acid Sequence Aminoacyltransferases - chemistry Aminoacyltransferases - genetics Aminoacyltransferases - metabolism Animals Humans Hydrogen Deuterium Exchange-Mass Spectrometry Intrinsically Disordered Proteins - chemistry Intrinsically Disordered Proteins - genetics Intrinsically Disordered Proteins - metabolism Mice Models, Molecular Protein Conformation Scattering, Small Angle X-Ray Diffraction |
title | Identification of an Intrinsically Disordered Region (IDR) in Arginyltransferase 1 (ATE1) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T00%3A57%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identification%20of%20an%20Intrinsically%20Disordered%20Region%20(IDR)%20in%20Arginyltransferase%201%20(ATE1)&rft.jtitle=Biochemistry%20(Easton)&rft.au=Cartwright,%20Misti&rft.date=2024-12-17&rft.volume=63&rft.issue=24&rft.spage=3236&rft.epage=3249&rft.pages=3236-3249&rft.issn=0006-2960&rft.eissn=1520-4995&rft_id=info:doi/10.1021/acs.biochem.4c00512&rft_dat=%3Cproquest_pubme%3E3146546659%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3146546659&rft_id=info:pmid/39642180&rfr_iscdi=true |