Identification of an Intrinsically Disordered Region (IDR) in Arginyltransferase 1 (ATE1)

Arginyltransferase 1 (ATE1) catalyzes arginylation, an important posttranslational modification (PTM) in eukaryotes that plays a critical role in cellular homeostasis. The disruption of ATE1 function is implicated in mammalian neurodegenerative disorders and cardiovascular maldevelopment, while post...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemistry (Easton) 2024-12, Vol.63 (24), p.3236-3249
Hauptverfasser: Cartwright, Misti, Parakra, Rinky, Oduwole, Ayomide, Zhang, Fangliang, Deredge, Daniel J., Smith, Aaron T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3249
container_issue 24
container_start_page 3236
container_title Biochemistry (Easton)
container_volume 63
creator Cartwright, Misti
Parakra, Rinky
Oduwole, Ayomide
Zhang, Fangliang
Deredge, Daniel J.
Smith, Aaron T.
description Arginyltransferase 1 (ATE1) catalyzes arginylation, an important posttranslational modification (PTM) in eukaryotes that plays a critical role in cellular homeostasis. The disruption of ATE1 function is implicated in mammalian neurodegenerative disorders and cardiovascular maldevelopment, while posttranslational arginylation has also been linked to the activities of several important human viruses such as SARS-CoV-2 and HIV. Despite the known significance of ATE1 in mammalian cellular function, past biophysical studies of this enzyme have mainly focused on yeast ATE1, leaving the mechanism of arginylation in mammalian cells unclear. In this study, we sought to structurally and biophysically characterize mouse (Mus musculus) ATE1. Using size-exclusion chromatography (SEC), small-angle X-ray scattering (SAXS), and hydrogen–deuterium exchange mass spectrometry (HDX-MS), assisted by AlphaFold modeling, we found that mouse ATE1 is structurally more complex than yeast ATE1. Importantly, our data indicate the existence of an intrinsically disordered region (IDR) in all mouse ATE1 splice variants. However, comparative HDX-MS analyses show that yeast ATE1 does not have such an IDR, consistent with prior X-ray, cryo-EM, and SAXS analyses. Furthermore, bioinformatics approaches reveal that mammalian ATE1 sequences, as well those as in a large majority of other eukaryotes, contain an IDR-like sequence positioned in proximity to the ATE1 GNAT active-site fold. Computational analysis suggests that the IDR facilitates the formation of a complex between ATE1 and tRNAArg, adding a new complexity to the ATE1 structure and providing new insights for future studies of ATE1 functions.
doi_str_mv 10.1021/acs.biochem.4c00512
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_3146546659</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3146546659</sourcerecordid><originalsourceid>FETCH-LOGICAL-a226t-8f1632fef60b26ed51f1551525860003d4514f626e72c5274d67da34c537a80a3</originalsourceid><addsrcrecordid>eNo1kEFLwzAUx4Mobk4_gSA5boduSZqk7XG4qYWBMObBU8iaZGa06Uzaw769Gaunx_u_H4_3fgA8YzTHiOCFrMJ8b9vqRzdzWiHEMLkBY8wISmhRsFswRgjxhBQcjcBDCMfYUpTRezBKC04JztEYfJdKu84aW8nOtg62BkoHS9d560IM6_oMVza0XmmvFdzqw4WalqvtDFoHl_5g3bnuvHTBaC-DhhhOl7s1nj2COyProJ-GOgFfb-vd60ey-XwvX5ebRBLCuyQ3mKfEaMPRnnCtGDaYsfgFy3k8OFWUYWp4HGWkYiSjimdKprRiaSZzJNMJmF73nnz72-vQicaGSte1dLrtg0gx5YxyzoqIvgxov2-0EidvG-nP4l9HBBZXILoVx7b3Ll4uMBIX4eISDsLFIDz9A_9ZcTc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3146546659</pqid></control><display><type>article</type><title>Identification of an Intrinsically Disordered Region (IDR) in Arginyltransferase 1 (ATE1)</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Cartwright, Misti ; Parakra, Rinky ; Oduwole, Ayomide ; Zhang, Fangliang ; Deredge, Daniel J. ; Smith, Aaron T.</creator><creatorcontrib>Cartwright, Misti ; Parakra, Rinky ; Oduwole, Ayomide ; Zhang, Fangliang ; Deredge, Daniel J. ; Smith, Aaron T.</creatorcontrib><description>Arginyltransferase 1 (ATE1) catalyzes arginylation, an important posttranslational modification (PTM) in eukaryotes that plays a critical role in cellular homeostasis. The disruption of ATE1 function is implicated in mammalian neurodegenerative disorders and cardiovascular maldevelopment, while posttranslational arginylation has also been linked to the activities of several important human viruses such as SARS-CoV-2 and HIV. Despite the known significance of ATE1 in mammalian cellular function, past biophysical studies of this enzyme have mainly focused on yeast ATE1, leaving the mechanism of arginylation in mammalian cells unclear. In this study, we sought to structurally and biophysically characterize mouse (Mus musculus) ATE1. Using size-exclusion chromatography (SEC), small-angle X-ray scattering (SAXS), and hydrogen–deuterium exchange mass spectrometry (HDX-MS), assisted by AlphaFold modeling, we found that mouse ATE1 is structurally more complex than yeast ATE1. Importantly, our data indicate the existence of an intrinsically disordered region (IDR) in all mouse ATE1 splice variants. However, comparative HDX-MS analyses show that yeast ATE1 does not have such an IDR, consistent with prior X-ray, cryo-EM, and SAXS analyses. Furthermore, bioinformatics approaches reveal that mammalian ATE1 sequences, as well those as in a large majority of other eukaryotes, contain an IDR-like sequence positioned in proximity to the ATE1 GNAT active-site fold. Computational analysis suggests that the IDR facilitates the formation of a complex between ATE1 and tRNAArg, adding a new complexity to the ATE1 structure and providing new insights for future studies of ATE1 functions.</description><identifier>ISSN: 0006-2960</identifier><identifier>ISSN: 1520-4995</identifier><identifier>EISSN: 1520-4995</identifier><identifier>DOI: 10.1021/acs.biochem.4c00512</identifier><identifier>PMID: 39642180</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Amino Acid Sequence ; Aminoacyltransferases - chemistry ; Aminoacyltransferases - genetics ; Aminoacyltransferases - metabolism ; Animals ; Humans ; Hydrogen Deuterium Exchange-Mass Spectrometry ; Intrinsically Disordered Proteins - chemistry ; Intrinsically Disordered Proteins - genetics ; Intrinsically Disordered Proteins - metabolism ; Mice ; Models, Molecular ; Protein Conformation ; Scattering, Small Angle ; X-Ray Diffraction</subject><ispartof>Biochemistry (Easton), 2024-12, Vol.63 (24), p.3236-3249</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-9332-8683 ; 0000-0002-6897-6523</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.biochem.4c00512$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.biochem.4c00512$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39642180$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cartwright, Misti</creatorcontrib><creatorcontrib>Parakra, Rinky</creatorcontrib><creatorcontrib>Oduwole, Ayomide</creatorcontrib><creatorcontrib>Zhang, Fangliang</creatorcontrib><creatorcontrib>Deredge, Daniel J.</creatorcontrib><creatorcontrib>Smith, Aaron T.</creatorcontrib><title>Identification of an Intrinsically Disordered Region (IDR) in Arginyltransferase 1 (ATE1)</title><title>Biochemistry (Easton)</title><addtitle>Biochemistry</addtitle><description>Arginyltransferase 1 (ATE1) catalyzes arginylation, an important posttranslational modification (PTM) in eukaryotes that plays a critical role in cellular homeostasis. The disruption of ATE1 function is implicated in mammalian neurodegenerative disorders and cardiovascular maldevelopment, while posttranslational arginylation has also been linked to the activities of several important human viruses such as SARS-CoV-2 and HIV. Despite the known significance of ATE1 in mammalian cellular function, past biophysical studies of this enzyme have mainly focused on yeast ATE1, leaving the mechanism of arginylation in mammalian cells unclear. In this study, we sought to structurally and biophysically characterize mouse (Mus musculus) ATE1. Using size-exclusion chromatography (SEC), small-angle X-ray scattering (SAXS), and hydrogen–deuterium exchange mass spectrometry (HDX-MS), assisted by AlphaFold modeling, we found that mouse ATE1 is structurally more complex than yeast ATE1. Importantly, our data indicate the existence of an intrinsically disordered region (IDR) in all mouse ATE1 splice variants. However, comparative HDX-MS analyses show that yeast ATE1 does not have such an IDR, consistent with prior X-ray, cryo-EM, and SAXS analyses. Furthermore, bioinformatics approaches reveal that mammalian ATE1 sequences, as well those as in a large majority of other eukaryotes, contain an IDR-like sequence positioned in proximity to the ATE1 GNAT active-site fold. Computational analysis suggests that the IDR facilitates the formation of a complex between ATE1 and tRNAArg, adding a new complexity to the ATE1 structure and providing new insights for future studies of ATE1 functions.</description><subject>Amino Acid Sequence</subject><subject>Aminoacyltransferases - chemistry</subject><subject>Aminoacyltransferases - genetics</subject><subject>Aminoacyltransferases - metabolism</subject><subject>Animals</subject><subject>Humans</subject><subject>Hydrogen Deuterium Exchange-Mass Spectrometry</subject><subject>Intrinsically Disordered Proteins - chemistry</subject><subject>Intrinsically Disordered Proteins - genetics</subject><subject>Intrinsically Disordered Proteins - metabolism</subject><subject>Mice</subject><subject>Models, Molecular</subject><subject>Protein Conformation</subject><subject>Scattering, Small Angle</subject><subject>X-Ray Diffraction</subject><issn>0006-2960</issn><issn>1520-4995</issn><issn>1520-4995</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo1kEFLwzAUx4Mobk4_gSA5boduSZqk7XG4qYWBMObBU8iaZGa06Uzaw769Gaunx_u_H4_3fgA8YzTHiOCFrMJ8b9vqRzdzWiHEMLkBY8wISmhRsFswRgjxhBQcjcBDCMfYUpTRezBKC04JztEYfJdKu84aW8nOtg62BkoHS9d560IM6_oMVza0XmmvFdzqw4WalqvtDFoHl_5g3bnuvHTBaC-DhhhOl7s1nj2COyProJ-GOgFfb-vd60ey-XwvX5ebRBLCuyQ3mKfEaMPRnnCtGDaYsfgFy3k8OFWUYWp4HGWkYiSjimdKprRiaSZzJNMJmF73nnz72-vQicaGSte1dLrtg0gx5YxyzoqIvgxov2-0EidvG-nP4l9HBBZXILoVx7b3Ll4uMBIX4eISDsLFIDz9A_9ZcTc</recordid><startdate>20241217</startdate><enddate>20241217</enddate><creator>Cartwright, Misti</creator><creator>Parakra, Rinky</creator><creator>Oduwole, Ayomide</creator><creator>Zhang, Fangliang</creator><creator>Deredge, Daniel J.</creator><creator>Smith, Aaron T.</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9332-8683</orcidid><orcidid>https://orcid.org/0000-0002-6897-6523</orcidid></search><sort><creationdate>20241217</creationdate><title>Identification of an Intrinsically Disordered Region (IDR) in Arginyltransferase 1 (ATE1)</title><author>Cartwright, Misti ; Parakra, Rinky ; Oduwole, Ayomide ; Zhang, Fangliang ; Deredge, Daniel J. ; Smith, Aaron T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a226t-8f1632fef60b26ed51f1551525860003d4514f626e72c5274d67da34c537a80a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Amino Acid Sequence</topic><topic>Aminoacyltransferases - chemistry</topic><topic>Aminoacyltransferases - genetics</topic><topic>Aminoacyltransferases - metabolism</topic><topic>Animals</topic><topic>Humans</topic><topic>Hydrogen Deuterium Exchange-Mass Spectrometry</topic><topic>Intrinsically Disordered Proteins - chemistry</topic><topic>Intrinsically Disordered Proteins - genetics</topic><topic>Intrinsically Disordered Proteins - metabolism</topic><topic>Mice</topic><topic>Models, Molecular</topic><topic>Protein Conformation</topic><topic>Scattering, Small Angle</topic><topic>X-Ray Diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cartwright, Misti</creatorcontrib><creatorcontrib>Parakra, Rinky</creatorcontrib><creatorcontrib>Oduwole, Ayomide</creatorcontrib><creatorcontrib>Zhang, Fangliang</creatorcontrib><creatorcontrib>Deredge, Daniel J.</creatorcontrib><creatorcontrib>Smith, Aaron T.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>Biochemistry (Easton)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cartwright, Misti</au><au>Parakra, Rinky</au><au>Oduwole, Ayomide</au><au>Zhang, Fangliang</au><au>Deredge, Daniel J.</au><au>Smith, Aaron T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identification of an Intrinsically Disordered Region (IDR) in Arginyltransferase 1 (ATE1)</atitle><jtitle>Biochemistry (Easton)</jtitle><addtitle>Biochemistry</addtitle><date>2024-12-17</date><risdate>2024</risdate><volume>63</volume><issue>24</issue><spage>3236</spage><epage>3249</epage><pages>3236-3249</pages><issn>0006-2960</issn><issn>1520-4995</issn><eissn>1520-4995</eissn><abstract>Arginyltransferase 1 (ATE1) catalyzes arginylation, an important posttranslational modification (PTM) in eukaryotes that plays a critical role in cellular homeostasis. The disruption of ATE1 function is implicated in mammalian neurodegenerative disorders and cardiovascular maldevelopment, while posttranslational arginylation has also been linked to the activities of several important human viruses such as SARS-CoV-2 and HIV. Despite the known significance of ATE1 in mammalian cellular function, past biophysical studies of this enzyme have mainly focused on yeast ATE1, leaving the mechanism of arginylation in mammalian cells unclear. In this study, we sought to structurally and biophysically characterize mouse (Mus musculus) ATE1. Using size-exclusion chromatography (SEC), small-angle X-ray scattering (SAXS), and hydrogen–deuterium exchange mass spectrometry (HDX-MS), assisted by AlphaFold modeling, we found that mouse ATE1 is structurally more complex than yeast ATE1. Importantly, our data indicate the existence of an intrinsically disordered region (IDR) in all mouse ATE1 splice variants. However, comparative HDX-MS analyses show that yeast ATE1 does not have such an IDR, consistent with prior X-ray, cryo-EM, and SAXS analyses. Furthermore, bioinformatics approaches reveal that mammalian ATE1 sequences, as well those as in a large majority of other eukaryotes, contain an IDR-like sequence positioned in proximity to the ATE1 GNAT active-site fold. Computational analysis suggests that the IDR facilitates the formation of a complex between ATE1 and tRNAArg, adding a new complexity to the ATE1 structure and providing new insights for future studies of ATE1 functions.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>39642180</pmid><doi>10.1021/acs.biochem.4c00512</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-9332-8683</orcidid><orcidid>https://orcid.org/0000-0002-6897-6523</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-2960
ispartof Biochemistry (Easton), 2024-12, Vol.63 (24), p.3236-3249
issn 0006-2960
1520-4995
1520-4995
language eng
recordid cdi_proquest_miscellaneous_3146546659
source MEDLINE; American Chemical Society Journals
subjects Amino Acid Sequence
Aminoacyltransferases - chemistry
Aminoacyltransferases - genetics
Aminoacyltransferases - metabolism
Animals
Humans
Hydrogen Deuterium Exchange-Mass Spectrometry
Intrinsically Disordered Proteins - chemistry
Intrinsically Disordered Proteins - genetics
Intrinsically Disordered Proteins - metabolism
Mice
Models, Molecular
Protein Conformation
Scattering, Small Angle
X-Ray Diffraction
title Identification of an Intrinsically Disordered Region (IDR) in Arginyltransferase 1 (ATE1)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T00%3A57%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identification%20of%20an%20Intrinsically%20Disordered%20Region%20(IDR)%20in%20Arginyltransferase%201%20(ATE1)&rft.jtitle=Biochemistry%20(Easton)&rft.au=Cartwright,%20Misti&rft.date=2024-12-17&rft.volume=63&rft.issue=24&rft.spage=3236&rft.epage=3249&rft.pages=3236-3249&rft.issn=0006-2960&rft.eissn=1520-4995&rft_id=info:doi/10.1021/acs.biochem.4c00512&rft_dat=%3Cproquest_pubme%3E3146546659%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3146546659&rft_id=info:pmid/39642180&rfr_iscdi=true