Regulating the Intralayer Cation Disorder in Layered Lithium‐Rich Cathodes to Improve Cycle Performance

The Li/Mn ordered structure of lithium‐rich (LR) cathodes leads to the heterogeneous Li2MnO3 and LiTMO2 components, readily triggering structural degeneration and performance degradation in long‐term cycling. However, the lack of guiding principles for promoting cation disorder within the transition...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Small (Weinheim an der Bergstrasse, Germany) Germany), 2025-01, Vol.21 (1), p.e2405310-n/a
Hauptverfasser: Cai, Guohong, Cai, Guanqun, Cao, Tong, Qu, Shangqing, Chu, Shengqi, Zhang, Daliang, Xu, Juping, Yin, Wen, Liu, Yiding, Li, Guobao, Sun, Junliang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 1
container_start_page e2405310
container_title Small (Weinheim an der Bergstrasse, Germany)
container_volume 21
creator Cai, Guohong
Cai, Guanqun
Cao, Tong
Qu, Shangqing
Chu, Shengqi
Zhang, Daliang
Xu, Juping
Yin, Wen
Liu, Yiding
Li, Guobao
Sun, Junliang
description The Li/Mn ordered structure of lithium‐rich (LR) cathodes leads to the heterogeneous Li2MnO3 and LiTMO2 components, readily triggering structural degeneration and performance degradation in long‐term cycling. However, the lack of guiding principles for promoting cation disorder within the transition metal (TM) layers has posed a persistent challenge in designing homogeneous layered LR cathodes. Herein, the (Li + Mn)TM content in the TM layer as a criterion for the design of cation‐disordered layered LR cathodes is proposed. The intralayer cation disorder can be achieved by tuning the (Li + Mn)TM content less than 0.5 combined with incorporating the solute ions with suitable ionic radii. For a multicomponent LR nickel cobalt manganese (LRNCM) oxides system, multiscale structural analyses reveal that cation‐disordered layered Li1.1(Ni0.6Co0.1Mn0.3)0.9O2 (LR613) exhibits enhanced compositional homogeneity and higher R3¯$\bar{3}$m symmetry. The developed LR613 cathode undergoes a solid‐solution reaction during Li+ deintercalation and mitigates voltage decay during cycling. It is elucidated that intralayer cation disorder effectively alleviates microstrain within the cathode structure and enhances overall structural stability. This comprehensive understanding of the composition‐structure‐electrochemical behavior relationship inspires the development of durable cation‐disordered layered LR cathodes through composition tuning. The interlayer and intralayer cationic ordering can be regulated by the incorporation of ions with different ionic radii. A design principle for cation‐disordered layered structure is proposed to guide the synthesis of homogeneous lithium‐rich cathodes. The intralayer cation disorder helps alleviate structural microstrain during Li+‐(de)intercalation process, thus improving the electrochemical cycle performance of lithium‐rich cathodes.
doi_str_mv 10.1002/smll.202405310
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3146536204</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3152457458</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2580-bfc102017964089a50b78f9e7bb8997f5b84691ce2dfbc699b3a165be0f389a3</originalsourceid><addsrcrecordid>eNqFkcFu1DAQhi0EoqVw7bGyxIXLLmM7TuJjtQW6UhCo9B7ZzqTryolbOwHtjUfgGXmSerXtVuLCyeOZb379mp-QUwZLBsA_psH7JQdegBQMXpBjVjKxKGuuXh5qBkfkTUq3AILxonpNjoQqC8ZqdkzcFd7MXk9uvKHTBul6nKL2eouRrnI3jPTCpRC7_HcjbXYD7Gjjpo2bh7-__1w5u9mRm9BholOg6-Euhp9IV1vrkX7H2Ic46NHiW_Kq1z7hu8f3hFx__nS9ulw0376sV-fNwnJZw8L0lgEHVmWLUCstwVR1r7Ayplaq6qWpi1Ixi7zrjS2VMkKzUhqEXmRcnJAPe9ls437GNLWDSxa91yOGObWCFaUUJYcio-__QW_DHMdsLlOSF7IqZJ2p5Z6yMaQUsW_voht03LYM2l0G7S6D9pBBXjh7lJ3NgN0Bfzp6BtQe-OU8bv8j1_742jTP4g-Ms5Pz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3152457458</pqid></control><display><type>article</type><title>Regulating the Intralayer Cation Disorder in Layered Lithium‐Rich Cathodes to Improve Cycle Performance</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Cai, Guohong ; Cai, Guanqun ; Cao, Tong ; Qu, Shangqing ; Chu, Shengqi ; Zhang, Daliang ; Xu, Juping ; Yin, Wen ; Liu, Yiding ; Li, Guobao ; Sun, Junliang</creator><creatorcontrib>Cai, Guohong ; Cai, Guanqun ; Cao, Tong ; Qu, Shangqing ; Chu, Shengqi ; Zhang, Daliang ; Xu, Juping ; Yin, Wen ; Liu, Yiding ; Li, Guobao ; Sun, Junliang</creatorcontrib><description>The Li/Mn ordered structure of lithium‐rich (LR) cathodes leads to the heterogeneous Li2MnO3 and LiTMO2 components, readily triggering structural degeneration and performance degradation in long‐term cycling. However, the lack of guiding principles for promoting cation disorder within the transition metal (TM) layers has posed a persistent challenge in designing homogeneous layered LR cathodes. Herein, the (Li + Mn)TM content in the TM layer as a criterion for the design of cation‐disordered layered LR cathodes is proposed. The intralayer cation disorder can be achieved by tuning the (Li + Mn)TM content less than 0.5 combined with incorporating the solute ions with suitable ionic radii. For a multicomponent LR nickel cobalt manganese (LRNCM) oxides system, multiscale structural analyses reveal that cation‐disordered layered Li1.1(Ni0.6Co0.1Mn0.3)0.9O2 (LR613) exhibits enhanced compositional homogeneity and higher R3¯$\bar{3}$m symmetry. The developed LR613 cathode undergoes a solid‐solution reaction during Li+ deintercalation and mitigates voltage decay during cycling. It is elucidated that intralayer cation disorder effectively alleviates microstrain within the cathode structure and enhances overall structural stability. This comprehensive understanding of the composition‐structure‐electrochemical behavior relationship inspires the development of durable cation‐disordered layered LR cathodes through composition tuning. The interlayer and intralayer cationic ordering can be regulated by the incorporation of ions with different ionic radii. A design principle for cation‐disordered layered structure is proposed to guide the synthesis of homogeneous lithium‐rich cathodes. The intralayer cation disorder helps alleviate structural microstrain during Li+‐(de)intercalation process, thus improving the electrochemical cycle performance of lithium‐rich cathodes.</description><identifier>ISSN: 1613-6810</identifier><identifier>ISSN: 1613-6829</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202405310</identifier><identifier>PMID: 39641181</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Cathodes ; Cations ; Composition effects ; cycle performance ; Cycles ; Degeneration ; Electrochemical analysis ; Homogeneity ; intralayer cation disorder ; layered lithium‐rich cathodes ; Lithium ; Manganese ; Microstrain ; Performance degradation ; Structural stability ; Transition metals ; Tuning</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2025-01, Vol.21 (1), p.e2405310-n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><rights>2024 Wiley‐VCH GmbH.</rights><rights>2025 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2580-bfc102017964089a50b78f9e7bb8997f5b84691ce2dfbc699b3a165be0f389a3</cites><orcidid>0000-0003-4074-0962</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.202405310$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.202405310$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39641181$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cai, Guohong</creatorcontrib><creatorcontrib>Cai, Guanqun</creatorcontrib><creatorcontrib>Cao, Tong</creatorcontrib><creatorcontrib>Qu, Shangqing</creatorcontrib><creatorcontrib>Chu, Shengqi</creatorcontrib><creatorcontrib>Zhang, Daliang</creatorcontrib><creatorcontrib>Xu, Juping</creatorcontrib><creatorcontrib>Yin, Wen</creatorcontrib><creatorcontrib>Liu, Yiding</creatorcontrib><creatorcontrib>Li, Guobao</creatorcontrib><creatorcontrib>Sun, Junliang</creatorcontrib><title>Regulating the Intralayer Cation Disorder in Layered Lithium‐Rich Cathodes to Improve Cycle Performance</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>The Li/Mn ordered structure of lithium‐rich (LR) cathodes leads to the heterogeneous Li2MnO3 and LiTMO2 components, readily triggering structural degeneration and performance degradation in long‐term cycling. However, the lack of guiding principles for promoting cation disorder within the transition metal (TM) layers has posed a persistent challenge in designing homogeneous layered LR cathodes. Herein, the (Li + Mn)TM content in the TM layer as a criterion for the design of cation‐disordered layered LR cathodes is proposed. The intralayer cation disorder can be achieved by tuning the (Li + Mn)TM content less than 0.5 combined with incorporating the solute ions with suitable ionic radii. For a multicomponent LR nickel cobalt manganese (LRNCM) oxides system, multiscale structural analyses reveal that cation‐disordered layered Li1.1(Ni0.6Co0.1Mn0.3)0.9O2 (LR613) exhibits enhanced compositional homogeneity and higher R3¯$\bar{3}$m symmetry. The developed LR613 cathode undergoes a solid‐solution reaction during Li+ deintercalation and mitigates voltage decay during cycling. It is elucidated that intralayer cation disorder effectively alleviates microstrain within the cathode structure and enhances overall structural stability. This comprehensive understanding of the composition‐structure‐electrochemical behavior relationship inspires the development of durable cation‐disordered layered LR cathodes through composition tuning. The interlayer and intralayer cationic ordering can be regulated by the incorporation of ions with different ionic radii. A design principle for cation‐disordered layered structure is proposed to guide the synthesis of homogeneous lithium‐rich cathodes. The intralayer cation disorder helps alleviate structural microstrain during Li+‐(de)intercalation process, thus improving the electrochemical cycle performance of lithium‐rich cathodes.</description><subject>Cathodes</subject><subject>Cations</subject><subject>Composition effects</subject><subject>cycle performance</subject><subject>Cycles</subject><subject>Degeneration</subject><subject>Electrochemical analysis</subject><subject>Homogeneity</subject><subject>intralayer cation disorder</subject><subject>layered lithium‐rich cathodes</subject><subject>Lithium</subject><subject>Manganese</subject><subject>Microstrain</subject><subject>Performance degradation</subject><subject>Structural stability</subject><subject>Transition metals</subject><subject>Tuning</subject><issn>1613-6810</issn><issn>1613-6829</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNqFkcFu1DAQhi0EoqVw7bGyxIXLLmM7TuJjtQW6UhCo9B7ZzqTryolbOwHtjUfgGXmSerXtVuLCyeOZb379mp-QUwZLBsA_psH7JQdegBQMXpBjVjKxKGuuXh5qBkfkTUq3AILxonpNjoQqC8ZqdkzcFd7MXk9uvKHTBul6nKL2eouRrnI3jPTCpRC7_HcjbXYD7Gjjpo2bh7-__1w5u9mRm9BholOg6-Euhp9IV1vrkX7H2Ic46NHiW_Kq1z7hu8f3hFx__nS9ulw0376sV-fNwnJZw8L0lgEHVmWLUCstwVR1r7Ayplaq6qWpi1Ixi7zrjS2VMkKzUhqEXmRcnJAPe9ls437GNLWDSxa91yOGObWCFaUUJYcio-__QW_DHMdsLlOSF7IqZJ2p5Z6yMaQUsW_voht03LYM2l0G7S6D9pBBXjh7lJ3NgN0Bfzp6BtQe-OU8bv8j1_742jTP4g-Ms5Pz</recordid><startdate>202501</startdate><enddate>202501</enddate><creator>Cai, Guohong</creator><creator>Cai, Guanqun</creator><creator>Cao, Tong</creator><creator>Qu, Shangqing</creator><creator>Chu, Shengqi</creator><creator>Zhang, Daliang</creator><creator>Xu, Juping</creator><creator>Yin, Wen</creator><creator>Liu, Yiding</creator><creator>Li, Guobao</creator><creator>Sun, Junliang</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4074-0962</orcidid></search><sort><creationdate>202501</creationdate><title>Regulating the Intralayer Cation Disorder in Layered Lithium‐Rich Cathodes to Improve Cycle Performance</title><author>Cai, Guohong ; Cai, Guanqun ; Cao, Tong ; Qu, Shangqing ; Chu, Shengqi ; Zhang, Daliang ; Xu, Juping ; Yin, Wen ; Liu, Yiding ; Li, Guobao ; Sun, Junliang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2580-bfc102017964089a50b78f9e7bb8997f5b84691ce2dfbc699b3a165be0f389a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Cathodes</topic><topic>Cations</topic><topic>Composition effects</topic><topic>cycle performance</topic><topic>Cycles</topic><topic>Degeneration</topic><topic>Electrochemical analysis</topic><topic>Homogeneity</topic><topic>intralayer cation disorder</topic><topic>layered lithium‐rich cathodes</topic><topic>Lithium</topic><topic>Manganese</topic><topic>Microstrain</topic><topic>Performance degradation</topic><topic>Structural stability</topic><topic>Transition metals</topic><topic>Tuning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cai, Guohong</creatorcontrib><creatorcontrib>Cai, Guanqun</creatorcontrib><creatorcontrib>Cao, Tong</creatorcontrib><creatorcontrib>Qu, Shangqing</creatorcontrib><creatorcontrib>Chu, Shengqi</creatorcontrib><creatorcontrib>Zhang, Daliang</creatorcontrib><creatorcontrib>Xu, Juping</creatorcontrib><creatorcontrib>Yin, Wen</creatorcontrib><creatorcontrib>Liu, Yiding</creatorcontrib><creatorcontrib>Li, Guobao</creatorcontrib><creatorcontrib>Sun, Junliang</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cai, Guohong</au><au>Cai, Guanqun</au><au>Cao, Tong</au><au>Qu, Shangqing</au><au>Chu, Shengqi</au><au>Zhang, Daliang</au><au>Xu, Juping</au><au>Yin, Wen</au><au>Liu, Yiding</au><au>Li, Guobao</au><au>Sun, Junliang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Regulating the Intralayer Cation Disorder in Layered Lithium‐Rich Cathodes to Improve Cycle Performance</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2025-01</date><risdate>2025</risdate><volume>21</volume><issue>1</issue><spage>e2405310</spage><epage>n/a</epage><pages>e2405310-n/a</pages><issn>1613-6810</issn><issn>1613-6829</issn><eissn>1613-6829</eissn><abstract>The Li/Mn ordered structure of lithium‐rich (LR) cathodes leads to the heterogeneous Li2MnO3 and LiTMO2 components, readily triggering structural degeneration and performance degradation in long‐term cycling. However, the lack of guiding principles for promoting cation disorder within the transition metal (TM) layers has posed a persistent challenge in designing homogeneous layered LR cathodes. Herein, the (Li + Mn)TM content in the TM layer as a criterion for the design of cation‐disordered layered LR cathodes is proposed. The intralayer cation disorder can be achieved by tuning the (Li + Mn)TM content less than 0.5 combined with incorporating the solute ions with suitable ionic radii. For a multicomponent LR nickel cobalt manganese (LRNCM) oxides system, multiscale structural analyses reveal that cation‐disordered layered Li1.1(Ni0.6Co0.1Mn0.3)0.9O2 (LR613) exhibits enhanced compositional homogeneity and higher R3¯$\bar{3}$m symmetry. The developed LR613 cathode undergoes a solid‐solution reaction during Li+ deintercalation and mitigates voltage decay during cycling. It is elucidated that intralayer cation disorder effectively alleviates microstrain within the cathode structure and enhances overall structural stability. This comprehensive understanding of the composition‐structure‐electrochemical behavior relationship inspires the development of durable cation‐disordered layered LR cathodes through composition tuning. The interlayer and intralayer cationic ordering can be regulated by the incorporation of ions with different ionic radii. A design principle for cation‐disordered layered structure is proposed to guide the synthesis of homogeneous lithium‐rich cathodes. The intralayer cation disorder helps alleviate structural microstrain during Li+‐(de)intercalation process, thus improving the electrochemical cycle performance of lithium‐rich cathodes.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>39641181</pmid><doi>10.1002/smll.202405310</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-4074-0962</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1613-6810
ispartof Small (Weinheim an der Bergstrasse, Germany), 2025-01, Vol.21 (1), p.e2405310-n/a
issn 1613-6810
1613-6829
1613-6829
language eng
recordid cdi_proquest_miscellaneous_3146536204
source Wiley Online Library Journals Frontfile Complete
subjects Cathodes
Cations
Composition effects
cycle performance
Cycles
Degeneration
Electrochemical analysis
Homogeneity
intralayer cation disorder
layered lithium‐rich cathodes
Lithium
Manganese
Microstrain
Performance degradation
Structural stability
Transition metals
Tuning
title Regulating the Intralayer Cation Disorder in Layered Lithium‐Rich Cathodes to Improve Cycle Performance
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T00%3A03%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Regulating%20the%20Intralayer%20Cation%20Disorder%20in%20Layered%20Lithium%E2%80%90Rich%20Cathodes%20to%20Improve%20Cycle%20Performance&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Cai,%20Guohong&rft.date=2025-01&rft.volume=21&rft.issue=1&rft.spage=e2405310&rft.epage=n/a&rft.pages=e2405310-n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202405310&rft_dat=%3Cproquest_cross%3E3152457458%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3152457458&rft_id=info:pmid/39641181&rfr_iscdi=true