Engineered β1-3‑N‑Acetylglucosaminyltransferase Facilitating the One-Pot Multienzyme Synthesis of Human Milk Oligosaccharides

β1-3-linked N-acetylglucosaminide is a prevalent carbohydrate motif found in oligosaccharides, polysaccharides, glycoproteins, and glycolipids. It is a crucial component of human milk oligosaccharides (HMOs). Neisseria meningitidis β1-3-N-acetylglucosaminyltransferase (NmLgtA) catalyzes the formatio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of agricultural and food chemistry 2024-12, Vol.72 (50), p.28019-28027
Hauptverfasser: Pu, Pei, Zheng, Jie, Qiao, Meng, Yang, Liu, Tong, Anqi, Zhu, Xiaofeng, Zhang, Xing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 28027
container_issue 50
container_start_page 28019
container_title Journal of agricultural and food chemistry
container_volume 72
creator Pu, Pei
Zheng, Jie
Qiao, Meng
Yang, Liu
Tong, Anqi
Zhu, Xiaofeng
Zhang, Xing
description β1-3-linked N-acetylglucosaminide is a prevalent carbohydrate motif found in oligosaccharides, polysaccharides, glycoproteins, and glycolipids. It is a crucial component of human milk oligosaccharides (HMOs). Neisseria meningitidis β1-3-N-acetylglucosaminyltransferase (NmLgtA) catalyzes the formation of a glycosidic bond and has the potential for use in synthesizing HMOs. However, this application is hindered by challenges such as low levels of enzyme expression, poor stability, and significant aggregation. Since there is no available crystal structure for NmLgtA, we used its AlphaFold 2 predicted structure to identify potential unfavorable factors. We then modified the enzyme by removing the 17 N-terminal amino acids and substituting nine specific residues. The engineered NmLgtA-Opti exhibited improved thermal stability, increased soluble protein expression, complete relief from aggregation, and enhanced catalysis while maintaining its catalytic specificity and substrate promiscuity. Furthermore, NmLgtA-Opti maximizes substrate utilization and can be employed in a sequential one-pot multienzyme platform for high-yield production of HMOs.
doi_str_mv 10.1021/acs.jafc.4c04092
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_3146536156</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3146536156</sourcerecordid><originalsourceid>FETCH-LOGICAL-a178t-acd7b67393f9816a97fca267f8a85a22366a23fe19d3f95497ca36c08964bed13</originalsourceid><addsrcrecordid>eNo1kcFO3DAQQK2qqGxp7z1VPvbQLHYcO_ERISiVgEWiPVuzzmTx1nFo7BzSU9U_6K_wIXwEX4KB5TAaaeZpNDOPkE-cLTkr-SHYuNxCZ5eVZRXT5Ruy4LJkheS8eUsWLDNFIxXfJ-9j3DLGGlmzd2RfaFVxqfWC_DsJGxcQR2zp_R0vxMPf_5c5jiym2W_8ZIcIvQuzTyOE2OEIEekpWOddguTChqYbpKuAxdWQ6MXkk8PwZ-6RXs8ht6KLdOjo2dRDoBfO_6Ir7zZ5qLU3MLoW4wey14GP-HGXD8jP05Mfx2fF-erb9-Oj8wJ43aQCbFuvVS206HTDFei6s1CqumugkVCWQikoRYdct5mQla4tCGVZk29dY8vFAfnyMvd2HH5PGJPpXbToPQQcpmgEr5QUikuV0c87dFr32Jrb0fUwzub1bxn4-gJkA2Y7TGPImxvOzJMW81zMWsxOi3gEniWECQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3146536156</pqid></control><display><type>article</type><title>Engineered β1-3‑N‑Acetylglucosaminyltransferase Facilitating the One-Pot Multienzyme Synthesis of Human Milk Oligosaccharides</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Pu, Pei ; Zheng, Jie ; Qiao, Meng ; Yang, Liu ; Tong, Anqi ; Zhu, Xiaofeng ; Zhang, Xing</creator><creatorcontrib>Pu, Pei ; Zheng, Jie ; Qiao, Meng ; Yang, Liu ; Tong, Anqi ; Zhu, Xiaofeng ; Zhang, Xing</creatorcontrib><description>β1-3-linked N-acetylglucosaminide is a prevalent carbohydrate motif found in oligosaccharides, polysaccharides, glycoproteins, and glycolipids. It is a crucial component of human milk oligosaccharides (HMOs). Neisseria meningitidis β1-3-N-acetylglucosaminyltransferase (NmLgtA) catalyzes the formation of a glycosidic bond and has the potential for use in synthesizing HMOs. However, this application is hindered by challenges such as low levels of enzyme expression, poor stability, and significant aggregation. Since there is no available crystal structure for NmLgtA, we used its AlphaFold 2 predicted structure to identify potential unfavorable factors. We then modified the enzyme by removing the 17 N-terminal amino acids and substituting nine specific residues. The engineered NmLgtA-Opti exhibited improved thermal stability, increased soluble protein expression, complete relief from aggregation, and enhanced catalysis while maintaining its catalytic specificity and substrate promiscuity. Furthermore, NmLgtA-Opti maximizes substrate utilization and can be employed in a sequential one-pot multienzyme platform for high-yield production of HMOs.</description><identifier>ISSN: 0021-8561</identifier><identifier>ISSN: 1520-5118</identifier><identifier>EISSN: 1520-5118</identifier><identifier>DOI: 10.1021/acs.jafc.4c04092</identifier><identifier>PMID: 39641599</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Bacterial Proteins - chemistry ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; Biotechnology and Biological Transformations ; Enzyme Stability ; Humans ; Milk, Human - chemistry ; N-Acetylglucosaminyltransferases - chemistry ; N-Acetylglucosaminyltransferases - genetics ; N-Acetylglucosaminyltransferases - metabolism ; Neisseria meningitidis - chemistry ; Neisseria meningitidis - enzymology ; Neisseria meningitidis - genetics ; Oligosaccharides - biosynthesis ; Oligosaccharides - chemistry ; Oligosaccharides - metabolism ; Protein Engineering ; Substrate Specificity</subject><ispartof>Journal of agricultural and food chemistry, 2024-12, Vol.72 (50), p.28019-28027</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-2699-3448</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jafc.4c04092$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jafc.4c04092$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39641599$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pu, Pei</creatorcontrib><creatorcontrib>Zheng, Jie</creatorcontrib><creatorcontrib>Qiao, Meng</creatorcontrib><creatorcontrib>Yang, Liu</creatorcontrib><creatorcontrib>Tong, Anqi</creatorcontrib><creatorcontrib>Zhu, Xiaofeng</creatorcontrib><creatorcontrib>Zhang, Xing</creatorcontrib><title>Engineered β1-3‑N‑Acetylglucosaminyltransferase Facilitating the One-Pot Multienzyme Synthesis of Human Milk Oligosaccharides</title><title>Journal of agricultural and food chemistry</title><addtitle>J. Agric. Food Chem</addtitle><description>β1-3-linked N-acetylglucosaminide is a prevalent carbohydrate motif found in oligosaccharides, polysaccharides, glycoproteins, and glycolipids. It is a crucial component of human milk oligosaccharides (HMOs). Neisseria meningitidis β1-3-N-acetylglucosaminyltransferase (NmLgtA) catalyzes the formation of a glycosidic bond and has the potential for use in synthesizing HMOs. However, this application is hindered by challenges such as low levels of enzyme expression, poor stability, and significant aggregation. Since there is no available crystal structure for NmLgtA, we used its AlphaFold 2 predicted structure to identify potential unfavorable factors. We then modified the enzyme by removing the 17 N-terminal amino acids and substituting nine specific residues. The engineered NmLgtA-Opti exhibited improved thermal stability, increased soluble protein expression, complete relief from aggregation, and enhanced catalysis while maintaining its catalytic specificity and substrate promiscuity. Furthermore, NmLgtA-Opti maximizes substrate utilization and can be employed in a sequential one-pot multienzyme platform for high-yield production of HMOs.</description><subject>Bacterial Proteins - chemistry</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>Biotechnology and Biological Transformations</subject><subject>Enzyme Stability</subject><subject>Humans</subject><subject>Milk, Human - chemistry</subject><subject>N-Acetylglucosaminyltransferases - chemistry</subject><subject>N-Acetylglucosaminyltransferases - genetics</subject><subject>N-Acetylglucosaminyltransferases - metabolism</subject><subject>Neisseria meningitidis - chemistry</subject><subject>Neisseria meningitidis - enzymology</subject><subject>Neisseria meningitidis - genetics</subject><subject>Oligosaccharides - biosynthesis</subject><subject>Oligosaccharides - chemistry</subject><subject>Oligosaccharides - metabolism</subject><subject>Protein Engineering</subject><subject>Substrate Specificity</subject><issn>0021-8561</issn><issn>1520-5118</issn><issn>1520-5118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo1kcFO3DAQQK2qqGxp7z1VPvbQLHYcO_ERISiVgEWiPVuzzmTx1nFo7BzSU9U_6K_wIXwEX4KB5TAaaeZpNDOPkE-cLTkr-SHYuNxCZ5eVZRXT5Ruy4LJkheS8eUsWLDNFIxXfJ-9j3DLGGlmzd2RfaFVxqfWC_DsJGxcQR2zp_R0vxMPf_5c5jiym2W_8ZIcIvQuzTyOE2OEIEekpWOddguTChqYbpKuAxdWQ6MXkk8PwZ-6RXs8ht6KLdOjo2dRDoBfO_6Ir7zZ5qLU3MLoW4wey14GP-HGXD8jP05Mfx2fF-erb9-Oj8wJ43aQCbFuvVS206HTDFei6s1CqumugkVCWQikoRYdct5mQla4tCGVZk29dY8vFAfnyMvd2HH5PGJPpXbToPQQcpmgEr5QUikuV0c87dFr32Jrb0fUwzub1bxn4-gJkA2Y7TGPImxvOzJMW81zMWsxOi3gEniWECQ</recordid><startdate>20241218</startdate><enddate>20241218</enddate><creator>Pu, Pei</creator><creator>Zheng, Jie</creator><creator>Qiao, Meng</creator><creator>Yang, Liu</creator><creator>Tong, Anqi</creator><creator>Zhu, Xiaofeng</creator><creator>Zhang, Xing</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2699-3448</orcidid></search><sort><creationdate>20241218</creationdate><title>Engineered β1-3‑N‑Acetylglucosaminyltransferase Facilitating the One-Pot Multienzyme Synthesis of Human Milk Oligosaccharides</title><author>Pu, Pei ; Zheng, Jie ; Qiao, Meng ; Yang, Liu ; Tong, Anqi ; Zhu, Xiaofeng ; Zhang, Xing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a178t-acd7b67393f9816a97fca267f8a85a22366a23fe19d3f95497ca36c08964bed13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Bacterial Proteins - chemistry</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>Biotechnology and Biological Transformations</topic><topic>Enzyme Stability</topic><topic>Humans</topic><topic>Milk, Human - chemistry</topic><topic>N-Acetylglucosaminyltransferases - chemistry</topic><topic>N-Acetylglucosaminyltransferases - genetics</topic><topic>N-Acetylglucosaminyltransferases - metabolism</topic><topic>Neisseria meningitidis - chemistry</topic><topic>Neisseria meningitidis - enzymology</topic><topic>Neisseria meningitidis - genetics</topic><topic>Oligosaccharides - biosynthesis</topic><topic>Oligosaccharides - chemistry</topic><topic>Oligosaccharides - metabolism</topic><topic>Protein Engineering</topic><topic>Substrate Specificity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pu, Pei</creatorcontrib><creatorcontrib>Zheng, Jie</creatorcontrib><creatorcontrib>Qiao, Meng</creatorcontrib><creatorcontrib>Yang, Liu</creatorcontrib><creatorcontrib>Tong, Anqi</creatorcontrib><creatorcontrib>Zhu, Xiaofeng</creatorcontrib><creatorcontrib>Zhang, Xing</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of agricultural and food chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pu, Pei</au><au>Zheng, Jie</au><au>Qiao, Meng</au><au>Yang, Liu</au><au>Tong, Anqi</au><au>Zhu, Xiaofeng</au><au>Zhang, Xing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Engineered β1-3‑N‑Acetylglucosaminyltransferase Facilitating the One-Pot Multienzyme Synthesis of Human Milk Oligosaccharides</atitle><jtitle>Journal of agricultural and food chemistry</jtitle><addtitle>J. Agric. Food Chem</addtitle><date>2024-12-18</date><risdate>2024</risdate><volume>72</volume><issue>50</issue><spage>28019</spage><epage>28027</epage><pages>28019-28027</pages><issn>0021-8561</issn><issn>1520-5118</issn><eissn>1520-5118</eissn><abstract>β1-3-linked N-acetylglucosaminide is a prevalent carbohydrate motif found in oligosaccharides, polysaccharides, glycoproteins, and glycolipids. It is a crucial component of human milk oligosaccharides (HMOs). Neisseria meningitidis β1-3-N-acetylglucosaminyltransferase (NmLgtA) catalyzes the formation of a glycosidic bond and has the potential for use in synthesizing HMOs. However, this application is hindered by challenges such as low levels of enzyme expression, poor stability, and significant aggregation. Since there is no available crystal structure for NmLgtA, we used its AlphaFold 2 predicted structure to identify potential unfavorable factors. We then modified the enzyme by removing the 17 N-terminal amino acids and substituting nine specific residues. The engineered NmLgtA-Opti exhibited improved thermal stability, increased soluble protein expression, complete relief from aggregation, and enhanced catalysis while maintaining its catalytic specificity and substrate promiscuity. Furthermore, NmLgtA-Opti maximizes substrate utilization and can be employed in a sequential one-pot multienzyme platform for high-yield production of HMOs.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>39641599</pmid><doi>10.1021/acs.jafc.4c04092</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-2699-3448</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0021-8561
ispartof Journal of agricultural and food chemistry, 2024-12, Vol.72 (50), p.28019-28027
issn 0021-8561
1520-5118
1520-5118
language eng
recordid cdi_proquest_miscellaneous_3146536156
source MEDLINE; American Chemical Society Journals
subjects Bacterial Proteins - chemistry
Bacterial Proteins - genetics
Bacterial Proteins - metabolism
Biotechnology and Biological Transformations
Enzyme Stability
Humans
Milk, Human - chemistry
N-Acetylglucosaminyltransferases - chemistry
N-Acetylglucosaminyltransferases - genetics
N-Acetylglucosaminyltransferases - metabolism
Neisseria meningitidis - chemistry
Neisseria meningitidis - enzymology
Neisseria meningitidis - genetics
Oligosaccharides - biosynthesis
Oligosaccharides - chemistry
Oligosaccharides - metabolism
Protein Engineering
Substrate Specificity
title Engineered β1-3‑N‑Acetylglucosaminyltransferase Facilitating the One-Pot Multienzyme Synthesis of Human Milk Oligosaccharides
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T10%3A06%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Engineered%20%CE%B21-3%E2%80%91N%E2%80%91Acetylglucosaminyltransferase%20Facilitating%20the%20One-Pot%20Multienzyme%20Synthesis%20of%20Human%20Milk%20Oligosaccharides&rft.jtitle=Journal%20of%20agricultural%20and%20food%20chemistry&rft.au=Pu,%20Pei&rft.date=2024-12-18&rft.volume=72&rft.issue=50&rft.spage=28019&rft.epage=28027&rft.pages=28019-28027&rft.issn=0021-8561&rft.eissn=1520-5118&rft_id=info:doi/10.1021/acs.jafc.4c04092&rft_dat=%3Cproquest_pubme%3E3146536156%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3146536156&rft_id=info:pmid/39641599&rfr_iscdi=true