AI-driven Patient-Selection For Preoperative Portal Vein Embolization For Patients With Colorectal Cancer Liver Metastases
To develop a machine-learning algorithm to improve hepatic resection selection for metastatic colorectal cancer patients by predicting post-PVE outcomes. This multicenter retrospective study (2000-2020) included 200 consecutive patients with CRC liver-metastases planned for PVE before surgery. Radio...
Gespeichert in:
Veröffentlicht in: | Journal of vascular and interventional radiology 2024-12 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | Journal of vascular and interventional radiology |
container_volume | |
creator | Kuhn, Tom N Engelhardt, William D Kahl, Vinzent H Alkukhun, Abedalrazaq Gross, Moritz Iseke, Simon Onofrey, John Covey, Anne Camacho Vasquez, Juan C Kawaguchi, Yoshikuni Hasegawa, Kiyoshi Odisio, Bruno C Vauthey, Jean Nicolas Antoch, Gerald Chapiro, Julius Madoff, David C |
description | To develop a machine-learning algorithm to improve hepatic resection selection for metastatic colorectal cancer patients by predicting post-PVE outcomes.
This multicenter retrospective study (2000-2020) included 200 consecutive patients with CRC liver-metastases planned for PVE before surgery. Radiomic features and lab values were collected. Patient-specific eigenvalues for each liver shape were calculated using a statistical shape model approach. After semi-automatic segmentation and review by a board-certified radiologist, the data was split 70/30% for training and testing. Three machine learning algorithms predicting the total liver volume (TLV) after PVE, sufficient FLR%, and the kinetic growth rate % (KGR%) were trained with performance assessed using accuracy, sensitivty, specifity, AUC or RMSE. Significance between the internal and external test sets was assessed by the student's t-test. One institution was kept separate as an external testing set.
A total of 114 (76m; 56y ±12) and 37 (19m; 50y ±11) patients met the inclusion criteria for the internal and external validation. Prediction accuracy (SD) and AUC (SD) for sufficient FLR% or liver growth potential (KGR%> 0%) were high in the internal testing set 0.91 (±0.01), 85.81% (±1.01%) or 0.66 (±0.03), 87.44% (±0.10%)). Similar results occurred on the external testing set 0.88 (±0.00), 79.66% (±0.60%) or 0.69 (±0.01), 72.06% (±0.30%)). TLV prediction showed a discrepancy of 12.56% (95% CI: ±4.20%, p=0.86) internally and 13.57% (95% CI: ±3.76%, p=0.91) externally.
These machine learning-based models can help predict the FLR%, KGR%, and TLV as metrics for successful PVE. |
doi_str_mv | 10.1016/j.jvir.2024.11.025 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3146531867</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3146531867</sourcerecordid><originalsourceid>FETCH-LOGICAL-c997-f2b024415f64bbae81bcd7ef68ebfcf13c34ea4acf0b12e922f46b1ea8449a853</originalsourceid><addsrcrecordid>eNpFkMtqIzEQRUXIkPcPZDFoOZvuqCT1axlMnAQcYhgzsxSSXCIy7ZZHahvir4-MMwlVUAV174U6hNwCK4FBfbcqVzsfS864LAFKxqsTcgGVqIqmEfw076yCgkkpzsllSivGWJvrjJyLrhZ5bS7I_v65WEa_w4HO9ehxGIvf2KMdfRjoNEQ6jxg2GPNth3Qe4qh7-gf9QB_WJvR-r7-VR3-if_34RiehDzHnZPlEDxYjneWESF9w1Ck3pmvyw-k-4c3nvCKL6cNi8lTMXh-fJ_ezwnZdUzhu8n8SKldLYzS2YOyyQVe3aJx1IKyQqKW2jhng2HHuZG0AdStlp9tKXJFfx9hNDP-2mEa19sli3-sBwzYpAbKuBLR1k6X8KLUxpBTRqU30ax3fFTB1QK5W6oBcHZArAJWRZ9PPz_ytWePyy_KfsfgA11uAYQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3146531867</pqid></control><display><type>article</type><title>AI-driven Patient-Selection For Preoperative Portal Vein Embolization For Patients With Colorectal Cancer Liver Metastases</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Kuhn, Tom N ; Engelhardt, William D ; Kahl, Vinzent H ; Alkukhun, Abedalrazaq ; Gross, Moritz ; Iseke, Simon ; Onofrey, John ; Covey, Anne ; Camacho Vasquez, Juan C ; Kawaguchi, Yoshikuni ; Hasegawa, Kiyoshi ; Odisio, Bruno C ; Vauthey, Jean Nicolas ; Antoch, Gerald ; Chapiro, Julius ; Madoff, David C</creator><creatorcontrib>Kuhn, Tom N ; Engelhardt, William D ; Kahl, Vinzent H ; Alkukhun, Abedalrazaq ; Gross, Moritz ; Iseke, Simon ; Onofrey, John ; Covey, Anne ; Camacho Vasquez, Juan C ; Kawaguchi, Yoshikuni ; Hasegawa, Kiyoshi ; Odisio, Bruno C ; Vauthey, Jean Nicolas ; Antoch, Gerald ; Chapiro, Julius ; Madoff, David C</creatorcontrib><description>To develop a machine-learning algorithm to improve hepatic resection selection for metastatic colorectal cancer patients by predicting post-PVE outcomes.
This multicenter retrospective study (2000-2020) included 200 consecutive patients with CRC liver-metastases planned for PVE before surgery. Radiomic features and lab values were collected. Patient-specific eigenvalues for each liver shape were calculated using a statistical shape model approach. After semi-automatic segmentation and review by a board-certified radiologist, the data was split 70/30% for training and testing. Three machine learning algorithms predicting the total liver volume (TLV) after PVE, sufficient FLR%, and the kinetic growth rate % (KGR%) were trained with performance assessed using accuracy, sensitivty, specifity, AUC or RMSE. Significance between the internal and external test sets was assessed by the student's t-test. One institution was kept separate as an external testing set.
A total of 114 (76m; 56y ±12) and 37 (19m; 50y ±11) patients met the inclusion criteria for the internal and external validation. Prediction accuracy (SD) and AUC (SD) for sufficient FLR% or liver growth potential (KGR%> 0%) were high in the internal testing set 0.91 (±0.01), 85.81% (±1.01%) or 0.66 (±0.03), 87.44% (±0.10%)). Similar results occurred on the external testing set 0.88 (±0.00), 79.66% (±0.60%) or 0.69 (±0.01), 72.06% (±0.30%)). TLV prediction showed a discrepancy of 12.56% (95% CI: ±4.20%, p=0.86) internally and 13.57% (95% CI: ±3.76%, p=0.91) externally.
These machine learning-based models can help predict the FLR%, KGR%, and TLV as metrics for successful PVE.</description><identifier>ISSN: 1051-0443</identifier><identifier>ISSN: 1535-7732</identifier><identifier>EISSN: 1535-7732</identifier><identifier>DOI: 10.1016/j.jvir.2024.11.025</identifier><identifier>PMID: 39638087</identifier><language>eng</language><publisher>United States</publisher><ispartof>Journal of vascular and interventional radiology, 2024-12</ispartof><rights>Copyright © 2024. Published by Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-4593-3723 ; 0000-0001-8734-740X ; 0000-0002-6831-5004 ; 0000-0003-3461-437X ; 0000-0002-5647-0242 ; 0000-0002-9432-0448 ; 0009-0006-5222-3582 ; 0000-0001-8033-2555 ; 0000-0003-1275-7935</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39638087$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kuhn, Tom N</creatorcontrib><creatorcontrib>Engelhardt, William D</creatorcontrib><creatorcontrib>Kahl, Vinzent H</creatorcontrib><creatorcontrib>Alkukhun, Abedalrazaq</creatorcontrib><creatorcontrib>Gross, Moritz</creatorcontrib><creatorcontrib>Iseke, Simon</creatorcontrib><creatorcontrib>Onofrey, John</creatorcontrib><creatorcontrib>Covey, Anne</creatorcontrib><creatorcontrib>Camacho Vasquez, Juan C</creatorcontrib><creatorcontrib>Kawaguchi, Yoshikuni</creatorcontrib><creatorcontrib>Hasegawa, Kiyoshi</creatorcontrib><creatorcontrib>Odisio, Bruno C</creatorcontrib><creatorcontrib>Vauthey, Jean Nicolas</creatorcontrib><creatorcontrib>Antoch, Gerald</creatorcontrib><creatorcontrib>Chapiro, Julius</creatorcontrib><creatorcontrib>Madoff, David C</creatorcontrib><title>AI-driven Patient-Selection For Preoperative Portal Vein Embolization For Patients With Colorectal Cancer Liver Metastases</title><title>Journal of vascular and interventional radiology</title><addtitle>J Vasc Interv Radiol</addtitle><description>To develop a machine-learning algorithm to improve hepatic resection selection for metastatic colorectal cancer patients by predicting post-PVE outcomes.
This multicenter retrospective study (2000-2020) included 200 consecutive patients with CRC liver-metastases planned for PVE before surgery. Radiomic features and lab values were collected. Patient-specific eigenvalues for each liver shape were calculated using a statistical shape model approach. After semi-automatic segmentation and review by a board-certified radiologist, the data was split 70/30% for training and testing. Three machine learning algorithms predicting the total liver volume (TLV) after PVE, sufficient FLR%, and the kinetic growth rate % (KGR%) were trained with performance assessed using accuracy, sensitivty, specifity, AUC or RMSE. Significance between the internal and external test sets was assessed by the student's t-test. One institution was kept separate as an external testing set.
A total of 114 (76m; 56y ±12) and 37 (19m; 50y ±11) patients met the inclusion criteria for the internal and external validation. Prediction accuracy (SD) and AUC (SD) for sufficient FLR% or liver growth potential (KGR%> 0%) were high in the internal testing set 0.91 (±0.01), 85.81% (±1.01%) or 0.66 (±0.03), 87.44% (±0.10%)). Similar results occurred on the external testing set 0.88 (±0.00), 79.66% (±0.60%) or 0.69 (±0.01), 72.06% (±0.30%)). TLV prediction showed a discrepancy of 12.56% (95% CI: ±4.20%, p=0.86) internally and 13.57% (95% CI: ±3.76%, p=0.91) externally.
These machine learning-based models can help predict the FLR%, KGR%, and TLV as metrics for successful PVE.</description><issn>1051-0443</issn><issn>1535-7732</issn><issn>1535-7732</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpFkMtqIzEQRUXIkPcPZDFoOZvuqCT1axlMnAQcYhgzsxSSXCIy7ZZHahvir4-MMwlVUAV174U6hNwCK4FBfbcqVzsfS864LAFKxqsTcgGVqIqmEfw076yCgkkpzsllSivGWJvrjJyLrhZ5bS7I_v65WEa_w4HO9ehxGIvf2KMdfRjoNEQ6jxg2GPNth3Qe4qh7-gf9QB_WJvR-r7-VR3-if_34RiehDzHnZPlEDxYjneWESF9w1Ck3pmvyw-k-4c3nvCKL6cNi8lTMXh-fJ_ezwnZdUzhu8n8SKldLYzS2YOyyQVe3aJx1IKyQqKW2jhng2HHuZG0AdStlp9tKXJFfx9hNDP-2mEa19sli3-sBwzYpAbKuBLR1k6X8KLUxpBTRqU30ax3fFTB1QK5W6oBcHZArAJWRZ9PPz_ytWePyy_KfsfgA11uAYQ</recordid><startdate>20241203</startdate><enddate>20241203</enddate><creator>Kuhn, Tom N</creator><creator>Engelhardt, William D</creator><creator>Kahl, Vinzent H</creator><creator>Alkukhun, Abedalrazaq</creator><creator>Gross, Moritz</creator><creator>Iseke, Simon</creator><creator>Onofrey, John</creator><creator>Covey, Anne</creator><creator>Camacho Vasquez, Juan C</creator><creator>Kawaguchi, Yoshikuni</creator><creator>Hasegawa, Kiyoshi</creator><creator>Odisio, Bruno C</creator><creator>Vauthey, Jean Nicolas</creator><creator>Antoch, Gerald</creator><creator>Chapiro, Julius</creator><creator>Madoff, David C</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4593-3723</orcidid><orcidid>https://orcid.org/0000-0001-8734-740X</orcidid><orcidid>https://orcid.org/0000-0002-6831-5004</orcidid><orcidid>https://orcid.org/0000-0003-3461-437X</orcidid><orcidid>https://orcid.org/0000-0002-5647-0242</orcidid><orcidid>https://orcid.org/0000-0002-9432-0448</orcidid><orcidid>https://orcid.org/0009-0006-5222-3582</orcidid><orcidid>https://orcid.org/0000-0001-8033-2555</orcidid><orcidid>https://orcid.org/0000-0003-1275-7935</orcidid></search><sort><creationdate>20241203</creationdate><title>AI-driven Patient-Selection For Preoperative Portal Vein Embolization For Patients With Colorectal Cancer Liver Metastases</title><author>Kuhn, Tom N ; Engelhardt, William D ; Kahl, Vinzent H ; Alkukhun, Abedalrazaq ; Gross, Moritz ; Iseke, Simon ; Onofrey, John ; Covey, Anne ; Camacho Vasquez, Juan C ; Kawaguchi, Yoshikuni ; Hasegawa, Kiyoshi ; Odisio, Bruno C ; Vauthey, Jean Nicolas ; Antoch, Gerald ; Chapiro, Julius ; Madoff, David C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c997-f2b024415f64bbae81bcd7ef68ebfcf13c34ea4acf0b12e922f46b1ea8449a853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kuhn, Tom N</creatorcontrib><creatorcontrib>Engelhardt, William D</creatorcontrib><creatorcontrib>Kahl, Vinzent H</creatorcontrib><creatorcontrib>Alkukhun, Abedalrazaq</creatorcontrib><creatorcontrib>Gross, Moritz</creatorcontrib><creatorcontrib>Iseke, Simon</creatorcontrib><creatorcontrib>Onofrey, John</creatorcontrib><creatorcontrib>Covey, Anne</creatorcontrib><creatorcontrib>Camacho Vasquez, Juan C</creatorcontrib><creatorcontrib>Kawaguchi, Yoshikuni</creatorcontrib><creatorcontrib>Hasegawa, Kiyoshi</creatorcontrib><creatorcontrib>Odisio, Bruno C</creatorcontrib><creatorcontrib>Vauthey, Jean Nicolas</creatorcontrib><creatorcontrib>Antoch, Gerald</creatorcontrib><creatorcontrib>Chapiro, Julius</creatorcontrib><creatorcontrib>Madoff, David C</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of vascular and interventional radiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kuhn, Tom N</au><au>Engelhardt, William D</au><au>Kahl, Vinzent H</au><au>Alkukhun, Abedalrazaq</au><au>Gross, Moritz</au><au>Iseke, Simon</au><au>Onofrey, John</au><au>Covey, Anne</au><au>Camacho Vasquez, Juan C</au><au>Kawaguchi, Yoshikuni</au><au>Hasegawa, Kiyoshi</au><au>Odisio, Bruno C</au><au>Vauthey, Jean Nicolas</au><au>Antoch, Gerald</au><au>Chapiro, Julius</au><au>Madoff, David C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>AI-driven Patient-Selection For Preoperative Portal Vein Embolization For Patients With Colorectal Cancer Liver Metastases</atitle><jtitle>Journal of vascular and interventional radiology</jtitle><addtitle>J Vasc Interv Radiol</addtitle><date>2024-12-03</date><risdate>2024</risdate><issn>1051-0443</issn><issn>1535-7732</issn><eissn>1535-7732</eissn><abstract>To develop a machine-learning algorithm to improve hepatic resection selection for metastatic colorectal cancer patients by predicting post-PVE outcomes.
This multicenter retrospective study (2000-2020) included 200 consecutive patients with CRC liver-metastases planned for PVE before surgery. Radiomic features and lab values were collected. Patient-specific eigenvalues for each liver shape were calculated using a statistical shape model approach. After semi-automatic segmentation and review by a board-certified radiologist, the data was split 70/30% for training and testing. Three machine learning algorithms predicting the total liver volume (TLV) after PVE, sufficient FLR%, and the kinetic growth rate % (KGR%) were trained with performance assessed using accuracy, sensitivty, specifity, AUC or RMSE. Significance between the internal and external test sets was assessed by the student's t-test. One institution was kept separate as an external testing set.
A total of 114 (76m; 56y ±12) and 37 (19m; 50y ±11) patients met the inclusion criteria for the internal and external validation. Prediction accuracy (SD) and AUC (SD) for sufficient FLR% or liver growth potential (KGR%> 0%) were high in the internal testing set 0.91 (±0.01), 85.81% (±1.01%) or 0.66 (±0.03), 87.44% (±0.10%)). Similar results occurred on the external testing set 0.88 (±0.00), 79.66% (±0.60%) or 0.69 (±0.01), 72.06% (±0.30%)). TLV prediction showed a discrepancy of 12.56% (95% CI: ±4.20%, p=0.86) internally and 13.57% (95% CI: ±3.76%, p=0.91) externally.
These machine learning-based models can help predict the FLR%, KGR%, and TLV as metrics for successful PVE.</abstract><cop>United States</cop><pmid>39638087</pmid><doi>10.1016/j.jvir.2024.11.025</doi><orcidid>https://orcid.org/0000-0002-4593-3723</orcidid><orcidid>https://orcid.org/0000-0001-8734-740X</orcidid><orcidid>https://orcid.org/0000-0002-6831-5004</orcidid><orcidid>https://orcid.org/0000-0003-3461-437X</orcidid><orcidid>https://orcid.org/0000-0002-5647-0242</orcidid><orcidid>https://orcid.org/0000-0002-9432-0448</orcidid><orcidid>https://orcid.org/0009-0006-5222-3582</orcidid><orcidid>https://orcid.org/0000-0001-8033-2555</orcidid><orcidid>https://orcid.org/0000-0003-1275-7935</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1051-0443 |
ispartof | Journal of vascular and interventional radiology, 2024-12 |
issn | 1051-0443 1535-7732 1535-7732 |
language | eng |
recordid | cdi_proquest_miscellaneous_3146531867 |
source | ScienceDirect Journals (5 years ago - present) |
title | AI-driven Patient-Selection For Preoperative Portal Vein Embolization For Patients With Colorectal Cancer Liver Metastases |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T03%3A07%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=AI-driven%20Patient-Selection%20For%20Preoperative%20Portal%20Vein%20Embolization%20For%20Patients%20With%20Colorectal%20Cancer%20Liver%20Metastases&rft.jtitle=Journal%20of%20vascular%20and%20interventional%20radiology&rft.au=Kuhn,%20Tom%20N&rft.date=2024-12-03&rft.issn=1051-0443&rft.eissn=1535-7732&rft_id=info:doi/10.1016/j.jvir.2024.11.025&rft_dat=%3Cproquest_cross%3E3146531867%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3146531867&rft_id=info:pmid/39638087&rfr_iscdi=true |