Dynamics of Ferroelectric Flux Closure Array in Oxide Superlattices

Topological polar soliton such as skyrmions, merons, vortices, flux closures represent topologically nontrivial structures with their stability governed by specific boundary conditions. These polar solitons can be utilized in enhancing memory density and reducing energy consumption in nanoelectronic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Small (Weinheim an der Bergstrasse, Germany) Germany), 2024-12, Vol.21 (4), p.e2405688-n/a
Hauptverfasser: Tanwani, Mohit, Gupta, Pushpendra, Powar, Sadanand, Das, Sujit
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 4
container_start_page e2405688
container_title Small (Weinheim an der Bergstrasse, Germany)
container_volume 21
creator Tanwani, Mohit
Gupta, Pushpendra
Powar, Sadanand
Das, Sujit
description Topological polar soliton such as skyrmions, merons, vortices, flux closures represent topologically nontrivial structures with their stability governed by specific boundary conditions. These polar solitons can be utilized in enhancing memory density and reducing energy consumption in nanoelectronic devices. Flux closure domains exhibit high density and thermal stability, with a strain gradient as large as ≈106 m−1 at the core, which is tunable by adjusting the materials thickness, periodicity. The practical utilization of topological structures like flux closure in advanced applications requires the ability to manipulate them using external stimuli and ensuring their stability under thermal excitation. In this study, piezo‐force microscopy is employed to investigate the manipulation of flux closure nano‐domains through external electric field and temperature to observe their evolution. The findings demonstrate that the application of electric field can create or annihilate these nano‐domains and modify their density. Temperature variations significantly affect the density of flux closure domains, domain walls, correlating with enhanced capacitance of the system. This is crucial for improving the memory density of storage devices. Thus, by adjusting the density of these domains, it is possible to tailor the functional properties of nanoelectronic devices, such as capacitance and electromechanical response, enabling advanced application. Vector piezo‐force microscopy (PFM) map illustrating the out‐of‐plane polarization component (background) and the in‐plane polarization direction (white arrows), with a zoomed‐in section (orange dashed box) highlighting flux closure domain characteristics.
doi_str_mv 10.1002/smll.202405688
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3146531861</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3146531861</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2308-7d61a00f096bab590f44b28af47470ff8734e725b93d6309586cf4e036b8ca2d3</originalsourceid><addsrcrecordid>eNqFkD1PwzAQQC0EoqWwMiKPLCnnjzjOWBUKSEEdCnPkOLZk5DTFTkTz72nVUkamu-Hdk-4hdEtgSgDoQ2y8n1KgHFIh5RkaE0FYIiTNz087gRG6ivETgBHKs0s0YrlgMudkjOaPw1o1TkfcWrwwIbTGG90Fp_HC91s8923sg8GzENSA3Rovt642eNVvTPCq65w28RpdWOWjuTnOCfpYPL3PX5Ji-fw6nxWJpgxkktWCKAALuahUleZgOa-oVJZnPANrZca4yWha5awWDPJUCm25ASYqqRWt2QTdH7yb0H71JnZl46I23qu1aftYMsJFyojcfT1B0wOqQxtjMLbcBNeoMJQEyn24ch-uPIXbHdwd3X3VmPqE_5baAfkB-HbeDP_oytVbUfzJfwDBn3ml</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3146531861</pqid></control><display><type>article</type><title>Dynamics of Ferroelectric Flux Closure Array in Oxide Superlattices</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Tanwani, Mohit ; Gupta, Pushpendra ; Powar, Sadanand ; Das, Sujit</creator><creatorcontrib>Tanwani, Mohit ; Gupta, Pushpendra ; Powar, Sadanand ; Das, Sujit</creatorcontrib><description>Topological polar soliton such as skyrmions, merons, vortices, flux closures represent topologically nontrivial structures with their stability governed by specific boundary conditions. These polar solitons can be utilized in enhancing memory density and reducing energy consumption in nanoelectronic devices. Flux closure domains exhibit high density and thermal stability, with a strain gradient as large as ≈106 m−1 at the core, which is tunable by adjusting the materials thickness, periodicity. The practical utilization of topological structures like flux closure in advanced applications requires the ability to manipulate them using external stimuli and ensuring their stability under thermal excitation. In this study, piezo‐force microscopy is employed to investigate the manipulation of flux closure nano‐domains through external electric field and temperature to observe their evolution. The findings demonstrate that the application of electric field can create or annihilate these nano‐domains and modify their density. Temperature variations significantly affect the density of flux closure domains, domain walls, correlating with enhanced capacitance of the system. This is crucial for improving the memory density of storage devices. Thus, by adjusting the density of these domains, it is possible to tailor the functional properties of nanoelectronic devices, such as capacitance and electromechanical response, enabling advanced application. Vector piezo‐force microscopy (PFM) map illustrating the out‐of‐plane polarization component (background) and the in‐plane polarization direction (white arrows), with a zoomed‐in section (orange dashed box) highlighting flux closure domain characteristics.</description><identifier>ISSN: 1613-6810</identifier><identifier>ISSN: 1613-6829</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202405688</identifier><identifier>PMID: 39638941</identifier><language>eng</language><publisher>Germany</publisher><subject>ferroelectric topology ; flux closure domain</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2024-12, Vol.21 (4), p.e2405688-n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><rights>2024 Wiley‐VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2308-7d61a00f096bab590f44b28af47470ff8734e725b93d6309586cf4e036b8ca2d3</cites><orcidid>0000-0001-9823-0207</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.202405688$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.202405688$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39638941$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tanwani, Mohit</creatorcontrib><creatorcontrib>Gupta, Pushpendra</creatorcontrib><creatorcontrib>Powar, Sadanand</creatorcontrib><creatorcontrib>Das, Sujit</creatorcontrib><title>Dynamics of Ferroelectric Flux Closure Array in Oxide Superlattices</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>Topological polar soliton such as skyrmions, merons, vortices, flux closures represent topologically nontrivial structures with their stability governed by specific boundary conditions. These polar solitons can be utilized in enhancing memory density and reducing energy consumption in nanoelectronic devices. Flux closure domains exhibit high density and thermal stability, with a strain gradient as large as ≈106 m−1 at the core, which is tunable by adjusting the materials thickness, periodicity. The practical utilization of topological structures like flux closure in advanced applications requires the ability to manipulate them using external stimuli and ensuring their stability under thermal excitation. In this study, piezo‐force microscopy is employed to investigate the manipulation of flux closure nano‐domains through external electric field and temperature to observe their evolution. The findings demonstrate that the application of electric field can create or annihilate these nano‐domains and modify their density. Temperature variations significantly affect the density of flux closure domains, domain walls, correlating with enhanced capacitance of the system. This is crucial for improving the memory density of storage devices. Thus, by adjusting the density of these domains, it is possible to tailor the functional properties of nanoelectronic devices, such as capacitance and electromechanical response, enabling advanced application. Vector piezo‐force microscopy (PFM) map illustrating the out‐of‐plane polarization component (background) and the in‐plane polarization direction (white arrows), with a zoomed‐in section (orange dashed box) highlighting flux closure domain characteristics.</description><subject>ferroelectric topology</subject><subject>flux closure domain</subject><issn>1613-6810</issn><issn>1613-6829</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkD1PwzAQQC0EoqWwMiKPLCnnjzjOWBUKSEEdCnPkOLZk5DTFTkTz72nVUkamu-Hdk-4hdEtgSgDoQ2y8n1KgHFIh5RkaE0FYIiTNz087gRG6ivETgBHKs0s0YrlgMudkjOaPw1o1TkfcWrwwIbTGG90Fp_HC91s8923sg8GzENSA3Rovt642eNVvTPCq65w28RpdWOWjuTnOCfpYPL3PX5Ji-fw6nxWJpgxkktWCKAALuahUleZgOa-oVJZnPANrZca4yWha5awWDPJUCm25ASYqqRWt2QTdH7yb0H71JnZl46I23qu1aftYMsJFyojcfT1B0wOqQxtjMLbcBNeoMJQEyn24ch-uPIXbHdwd3X3VmPqE_5baAfkB-HbeDP_oytVbUfzJfwDBn3ml</recordid><startdate>20241205</startdate><enddate>20241205</enddate><creator>Tanwani, Mohit</creator><creator>Gupta, Pushpendra</creator><creator>Powar, Sadanand</creator><creator>Das, Sujit</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9823-0207</orcidid></search><sort><creationdate>20241205</creationdate><title>Dynamics of Ferroelectric Flux Closure Array in Oxide Superlattices</title><author>Tanwani, Mohit ; Gupta, Pushpendra ; Powar, Sadanand ; Das, Sujit</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2308-7d61a00f096bab590f44b28af47470ff8734e725b93d6309586cf4e036b8ca2d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>ferroelectric topology</topic><topic>flux closure domain</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tanwani, Mohit</creatorcontrib><creatorcontrib>Gupta, Pushpendra</creatorcontrib><creatorcontrib>Powar, Sadanand</creatorcontrib><creatorcontrib>Das, Sujit</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tanwani, Mohit</au><au>Gupta, Pushpendra</au><au>Powar, Sadanand</au><au>Das, Sujit</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamics of Ferroelectric Flux Closure Array in Oxide Superlattices</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2024-12-05</date><risdate>2024</risdate><volume>21</volume><issue>4</issue><spage>e2405688</spage><epage>n/a</epage><pages>e2405688-n/a</pages><issn>1613-6810</issn><issn>1613-6829</issn><eissn>1613-6829</eissn><abstract>Topological polar soliton such as skyrmions, merons, vortices, flux closures represent topologically nontrivial structures with their stability governed by specific boundary conditions. These polar solitons can be utilized in enhancing memory density and reducing energy consumption in nanoelectronic devices. Flux closure domains exhibit high density and thermal stability, with a strain gradient as large as ≈106 m−1 at the core, which is tunable by adjusting the materials thickness, periodicity. The practical utilization of topological structures like flux closure in advanced applications requires the ability to manipulate them using external stimuli and ensuring their stability under thermal excitation. In this study, piezo‐force microscopy is employed to investigate the manipulation of flux closure nano‐domains through external electric field and temperature to observe their evolution. The findings demonstrate that the application of electric field can create or annihilate these nano‐domains and modify their density. Temperature variations significantly affect the density of flux closure domains, domain walls, correlating with enhanced capacitance of the system. This is crucial for improving the memory density of storage devices. Thus, by adjusting the density of these domains, it is possible to tailor the functional properties of nanoelectronic devices, such as capacitance and electromechanical response, enabling advanced application. Vector piezo‐force microscopy (PFM) map illustrating the out‐of‐plane polarization component (background) and the in‐plane polarization direction (white arrows), with a zoomed‐in section (orange dashed box) highlighting flux closure domain characteristics.</abstract><cop>Germany</cop><pmid>39638941</pmid><doi>10.1002/smll.202405688</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-9823-0207</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1613-6810
ispartof Small (Weinheim an der Bergstrasse, Germany), 2024-12, Vol.21 (4), p.e2405688-n/a
issn 1613-6810
1613-6829
1613-6829
language eng
recordid cdi_proquest_miscellaneous_3146531861
source Wiley Online Library Journals Frontfile Complete
subjects ferroelectric topology
flux closure domain
title Dynamics of Ferroelectric Flux Closure Array in Oxide Superlattices
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T19%3A16%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamics%20of%20Ferroelectric%20Flux%20Closure%20Array%20in%20Oxide%20Superlattices&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Tanwani,%20Mohit&rft.date=2024-12-05&rft.volume=21&rft.issue=4&rft.spage=e2405688&rft.epage=n/a&rft.pages=e2405688-n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202405688&rft_dat=%3Cproquest_cross%3E3146531861%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3146531861&rft_id=info:pmid/39638941&rfr_iscdi=true