Interpretable multi-modal artificial intelligence model for predicting gastric cancer response to neoadjuvant chemotherapy

Neoadjuvant chemotherapy assessment is imperative for prognostication and clinical management of locally advanced gastric cancer. We propose an incremental supervised contrastive learning model (iSCLM), an interpretable artificial intelligence framework integrating pretreatment CT scans and H&E-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cell reports. Medicine 2024-12, Vol.5 (12), p.101848, Article 101848
Hauptverfasser: Gao, Peng, Xiao, Qiong, Tan, Hui, Song, Jiangdian, Fu, Yu, Xu, Jingao, Zhao, Junhua, Miao, Yuan, Li, Xiaoyan, Jing, Yi, Feng, Yingying, Wang, Zitong, Zhang, Yingjie, Yao, Enbo, Xu, Tongjia, Mei, Jipeng, Chen, Hanyu, Jiang, Xue, Yang, Yuchong, Wang, Zhengyang, Gao, Xianchun, Zheng, Minwen, Zhang, Liying, Jiang, Min, Long, Yuying, He, Lijie, Sun, Jinghua, Deng, Yanhong, Wang, Bin, Zhao, Yan, Ba, Yi, Wang, Guan, Zhang, Yong, Deng, Ting, Shen, Dinggang, Wang, Zhenning
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 12
container_start_page 101848
container_title Cell reports. Medicine
container_volume 5
creator Gao, Peng
Xiao, Qiong
Tan, Hui
Song, Jiangdian
Fu, Yu
Xu, Jingao
Zhao, Junhua
Miao, Yuan
Li, Xiaoyan
Jing, Yi
Feng, Yingying
Wang, Zitong
Zhang, Yingjie
Yao, Enbo
Xu, Tongjia
Mei, Jipeng
Chen, Hanyu
Jiang, Xue
Yang, Yuchong
Wang, Zhengyang
Gao, Xianchun
Zheng, Minwen
Zhang, Liying
Jiang, Min
Long, Yuying
He, Lijie
Sun, Jinghua
Deng, Yanhong
Wang, Bin
Zhao, Yan
Ba, Yi
Wang, Guan
Zhang, Yong
Deng, Ting
Shen, Dinggang
Wang, Zhenning
description Neoadjuvant chemotherapy assessment is imperative for prognostication and clinical management of locally advanced gastric cancer. We propose an incremental supervised contrastive learning model (iSCLM), an interpretable artificial intelligence framework integrating pretreatment CT scans and H&E-stained biopsy images, for improved decision-making regarding neoadjuvant chemotherapy. We have constructed and tested iSCLM using retrospective data from 2,387 patients across 10 medical centers and evaluated its discriminative ability in a prospective cohort (132 patients; ChiCTR2300068917). iSCLM achieves areas under receiver operating characteristic curves of 0.846–0.876 across different test cohorts. Computed tomography (CT) and pathological attention heatmaps from Shapley additive explanations and global sort pooling illustrate additional benefits for capturing morphological features through supervised contrastive learning. Specifically, pathological top-ranked tiles exhibit decreased distances to tumor-invasive borders and increased inflammatory cell infiltration in responders compared with non-responders. Moreover, CD11c expression is elevated in responders. The developed interpretable model at the molecular pathology level accurately predicts chemotherapy efficacy. [Display omitted] •iSCLM is a multi-modal framework to predict neoadjuvant chemotherapy response•iSCLM enables a focus on tumor-invasive borders with multi-modal data•iSCLM is interpreted with increased inflammatory cell infiltration Gao et al. develop an interpretable AI model (iSCLM) integrating CT scans and biopsy images to predict the response of neoadjuvant chemotherapy in gastric cancer. Validated with a multicenter cohort, iSCLM shows interpretable pathology changes in responders, contributing to the advancement of clinical practices in screening patients for neoadjuvant chemotherapy administration.
doi_str_mv 10.1016/j.xcrm.2024.101848
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3146531531</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2666379124006190</els_id><sourcerecordid>3146531531</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1529-949d6893f32875c9c5ed3377c81ed0d90d7d0102308d3541c7d07661ade99293</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMoKrp_wIPk6KVrPtq0AS8ifoHgxXuIyXQ3S9vUJBXXX2_KqngSApmEZ15mHoTOKFlSQsXlZvlhQr9khJXzR1M2e-iYCSEKXku6_6c-QosYN4QQVlHacHKIjrgUvG4qeYw-H4cEYQyQ9GsHuJ-65IreW91hHZJrnXG5dBnqOreCwWTGW-hw6wPObdaZ5IYVXumYgjPY6IwEHCCOfoiAk8cDeG0307seEjZr6H1aQ9Dj9hQdtLqLsPi-T9DL3e3LzUPx9Hz_eHP9VBhaMVnIUlrRSN5y1tSVkaYCy3ldm4aCJVYSW1tCCeOksbwqqcnPWgiqLUjJJD9BF7vYMfi3CWJSvYsmr6PzYFNUnJai4jSfjLIdaoKPMUCrxuB6HbaKEjVbVxs1W1ezdbWznpvOv_On1x7sb8uP4wxc7QDIS747CCoaN5u0LoBJynr3X_4XaKeVKQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3146531531</pqid></control><display><type>article</type><title>Interpretable multi-modal artificial intelligence model for predicting gastric cancer response to neoadjuvant chemotherapy</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Gao, Peng ; Xiao, Qiong ; Tan, Hui ; Song, Jiangdian ; Fu, Yu ; Xu, Jingao ; Zhao, Junhua ; Miao, Yuan ; Li, Xiaoyan ; Jing, Yi ; Feng, Yingying ; Wang, Zitong ; Zhang, Yingjie ; Yao, Enbo ; Xu, Tongjia ; Mei, Jipeng ; Chen, Hanyu ; Jiang, Xue ; Yang, Yuchong ; Wang, Zhengyang ; Gao, Xianchun ; Zheng, Minwen ; Zhang, Liying ; Jiang, Min ; Long, Yuying ; He, Lijie ; Sun, Jinghua ; Deng, Yanhong ; Wang, Bin ; Zhao, Yan ; Ba, Yi ; Wang, Guan ; Zhang, Yong ; Deng, Ting ; Shen, Dinggang ; Wang, Zhenning</creator><creatorcontrib>Gao, Peng ; Xiao, Qiong ; Tan, Hui ; Song, Jiangdian ; Fu, Yu ; Xu, Jingao ; Zhao, Junhua ; Miao, Yuan ; Li, Xiaoyan ; Jing, Yi ; Feng, Yingying ; Wang, Zitong ; Zhang, Yingjie ; Yao, Enbo ; Xu, Tongjia ; Mei, Jipeng ; Chen, Hanyu ; Jiang, Xue ; Yang, Yuchong ; Wang, Zhengyang ; Gao, Xianchun ; Zheng, Minwen ; Zhang, Liying ; Jiang, Min ; Long, Yuying ; He, Lijie ; Sun, Jinghua ; Deng, Yanhong ; Wang, Bin ; Zhao, Yan ; Ba, Yi ; Wang, Guan ; Zhang, Yong ; Deng, Ting ; Shen, Dinggang ; Wang, Zhenning</creatorcontrib><description>Neoadjuvant chemotherapy assessment is imperative for prognostication and clinical management of locally advanced gastric cancer. We propose an incremental supervised contrastive learning model (iSCLM), an interpretable artificial intelligence framework integrating pretreatment CT scans and H&amp;E-stained biopsy images, for improved decision-making regarding neoadjuvant chemotherapy. We have constructed and tested iSCLM using retrospective data from 2,387 patients across 10 medical centers and evaluated its discriminative ability in a prospective cohort (132 patients; ChiCTR2300068917). iSCLM achieves areas under receiver operating characteristic curves of 0.846–0.876 across different test cohorts. Computed tomography (CT) and pathological attention heatmaps from Shapley additive explanations and global sort pooling illustrate additional benefits for capturing morphological features through supervised contrastive learning. Specifically, pathological top-ranked tiles exhibit decreased distances to tumor-invasive borders and increased inflammatory cell infiltration in responders compared with non-responders. Moreover, CD11c expression is elevated in responders. The developed interpretable model at the molecular pathology level accurately predicts chemotherapy efficacy. [Display omitted] •iSCLM is a multi-modal framework to predict neoadjuvant chemotherapy response•iSCLM enables a focus on tumor-invasive borders with multi-modal data•iSCLM is interpreted with increased inflammatory cell infiltration Gao et al. develop an interpretable AI model (iSCLM) integrating CT scans and biopsy images to predict the response of neoadjuvant chemotherapy in gastric cancer. Validated with a multicenter cohort, iSCLM shows interpretable pathology changes in responders, contributing to the advancement of clinical practices in screening patients for neoadjuvant chemotherapy administration.</description><identifier>ISSN: 2666-3791</identifier><identifier>EISSN: 2666-3791</identifier><identifier>DOI: 10.1016/j.xcrm.2024.101848</identifier><identifier>PMID: 39637859</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Adult ; Aged ; Artificial Intelligence ; computed tomography ; Female ; gastric cancer ; Humans ; Male ; Middle Aged ; neoadjuvant chemotherapy ; Neoadjuvant Therapy - methods ; Prognosis ; Retrospective Studies ; ROC Curve ; Stomach Neoplasms - diagnostic imaging ; Stomach Neoplasms - drug therapy ; Stomach Neoplasms - pathology ; Tomography, X-Ray Computed - methods ; Treatment Outcome ; whole-slide image</subject><ispartof>Cell reports. Medicine, 2024-12, Vol.5 (12), p.101848, Article 101848</ispartof><rights>2024 The Authors</rights><rights>Copyright © 2024 The Authors. Published by Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1529-949d6893f32875c9c5ed3377c81ed0d90d7d0102308d3541c7d07661ade99293</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,862,27907,27908</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39637859$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gao, Peng</creatorcontrib><creatorcontrib>Xiao, Qiong</creatorcontrib><creatorcontrib>Tan, Hui</creatorcontrib><creatorcontrib>Song, Jiangdian</creatorcontrib><creatorcontrib>Fu, Yu</creatorcontrib><creatorcontrib>Xu, Jingao</creatorcontrib><creatorcontrib>Zhao, Junhua</creatorcontrib><creatorcontrib>Miao, Yuan</creatorcontrib><creatorcontrib>Li, Xiaoyan</creatorcontrib><creatorcontrib>Jing, Yi</creatorcontrib><creatorcontrib>Feng, Yingying</creatorcontrib><creatorcontrib>Wang, Zitong</creatorcontrib><creatorcontrib>Zhang, Yingjie</creatorcontrib><creatorcontrib>Yao, Enbo</creatorcontrib><creatorcontrib>Xu, Tongjia</creatorcontrib><creatorcontrib>Mei, Jipeng</creatorcontrib><creatorcontrib>Chen, Hanyu</creatorcontrib><creatorcontrib>Jiang, Xue</creatorcontrib><creatorcontrib>Yang, Yuchong</creatorcontrib><creatorcontrib>Wang, Zhengyang</creatorcontrib><creatorcontrib>Gao, Xianchun</creatorcontrib><creatorcontrib>Zheng, Minwen</creatorcontrib><creatorcontrib>Zhang, Liying</creatorcontrib><creatorcontrib>Jiang, Min</creatorcontrib><creatorcontrib>Long, Yuying</creatorcontrib><creatorcontrib>He, Lijie</creatorcontrib><creatorcontrib>Sun, Jinghua</creatorcontrib><creatorcontrib>Deng, Yanhong</creatorcontrib><creatorcontrib>Wang, Bin</creatorcontrib><creatorcontrib>Zhao, Yan</creatorcontrib><creatorcontrib>Ba, Yi</creatorcontrib><creatorcontrib>Wang, Guan</creatorcontrib><creatorcontrib>Zhang, Yong</creatorcontrib><creatorcontrib>Deng, Ting</creatorcontrib><creatorcontrib>Shen, Dinggang</creatorcontrib><creatorcontrib>Wang, Zhenning</creatorcontrib><title>Interpretable multi-modal artificial intelligence model for predicting gastric cancer response to neoadjuvant chemotherapy</title><title>Cell reports. Medicine</title><addtitle>Cell Rep Med</addtitle><description>Neoadjuvant chemotherapy assessment is imperative for prognostication and clinical management of locally advanced gastric cancer. We propose an incremental supervised contrastive learning model (iSCLM), an interpretable artificial intelligence framework integrating pretreatment CT scans and H&amp;E-stained biopsy images, for improved decision-making regarding neoadjuvant chemotherapy. We have constructed and tested iSCLM using retrospective data from 2,387 patients across 10 medical centers and evaluated its discriminative ability in a prospective cohort (132 patients; ChiCTR2300068917). iSCLM achieves areas under receiver operating characteristic curves of 0.846–0.876 across different test cohorts. Computed tomography (CT) and pathological attention heatmaps from Shapley additive explanations and global sort pooling illustrate additional benefits for capturing morphological features through supervised contrastive learning. Specifically, pathological top-ranked tiles exhibit decreased distances to tumor-invasive borders and increased inflammatory cell infiltration in responders compared with non-responders. Moreover, CD11c expression is elevated in responders. The developed interpretable model at the molecular pathology level accurately predicts chemotherapy efficacy. [Display omitted] •iSCLM is a multi-modal framework to predict neoadjuvant chemotherapy response•iSCLM enables a focus on tumor-invasive borders with multi-modal data•iSCLM is interpreted with increased inflammatory cell infiltration Gao et al. develop an interpretable AI model (iSCLM) integrating CT scans and biopsy images to predict the response of neoadjuvant chemotherapy in gastric cancer. Validated with a multicenter cohort, iSCLM shows interpretable pathology changes in responders, contributing to the advancement of clinical practices in screening patients for neoadjuvant chemotherapy administration.</description><subject>Adult</subject><subject>Aged</subject><subject>Artificial Intelligence</subject><subject>computed tomography</subject><subject>Female</subject><subject>gastric cancer</subject><subject>Humans</subject><subject>Male</subject><subject>Middle Aged</subject><subject>neoadjuvant chemotherapy</subject><subject>Neoadjuvant Therapy - methods</subject><subject>Prognosis</subject><subject>Retrospective Studies</subject><subject>ROC Curve</subject><subject>Stomach Neoplasms - diagnostic imaging</subject><subject>Stomach Neoplasms - drug therapy</subject><subject>Stomach Neoplasms - pathology</subject><subject>Tomography, X-Ray Computed - methods</subject><subject>Treatment Outcome</subject><subject>whole-slide image</subject><issn>2666-3791</issn><issn>2666-3791</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE1LxDAQhoMoKrp_wIPk6KVrPtq0AS8ifoHgxXuIyXQ3S9vUJBXXX2_KqngSApmEZ15mHoTOKFlSQsXlZvlhQr9khJXzR1M2e-iYCSEKXku6_6c-QosYN4QQVlHacHKIjrgUvG4qeYw-H4cEYQyQ9GsHuJ-65IreW91hHZJrnXG5dBnqOreCwWTGW-hw6wPObdaZ5IYVXumYgjPY6IwEHCCOfoiAk8cDeG0307seEjZr6H1aQ9Dj9hQdtLqLsPi-T9DL3e3LzUPx9Hz_eHP9VBhaMVnIUlrRSN5y1tSVkaYCy3ldm4aCJVYSW1tCCeOksbwqqcnPWgiqLUjJJD9BF7vYMfi3CWJSvYsmr6PzYFNUnJai4jSfjLIdaoKPMUCrxuB6HbaKEjVbVxs1W1ezdbWznpvOv_On1x7sb8uP4wxc7QDIS747CCoaN5u0LoBJynr3X_4XaKeVKQ</recordid><startdate>20241217</startdate><enddate>20241217</enddate><creator>Gao, Peng</creator><creator>Xiao, Qiong</creator><creator>Tan, Hui</creator><creator>Song, Jiangdian</creator><creator>Fu, Yu</creator><creator>Xu, Jingao</creator><creator>Zhao, Junhua</creator><creator>Miao, Yuan</creator><creator>Li, Xiaoyan</creator><creator>Jing, Yi</creator><creator>Feng, Yingying</creator><creator>Wang, Zitong</creator><creator>Zhang, Yingjie</creator><creator>Yao, Enbo</creator><creator>Xu, Tongjia</creator><creator>Mei, Jipeng</creator><creator>Chen, Hanyu</creator><creator>Jiang, Xue</creator><creator>Yang, Yuchong</creator><creator>Wang, Zhengyang</creator><creator>Gao, Xianchun</creator><creator>Zheng, Minwen</creator><creator>Zhang, Liying</creator><creator>Jiang, Min</creator><creator>Long, Yuying</creator><creator>He, Lijie</creator><creator>Sun, Jinghua</creator><creator>Deng, Yanhong</creator><creator>Wang, Bin</creator><creator>Zhao, Yan</creator><creator>Ba, Yi</creator><creator>Wang, Guan</creator><creator>Zhang, Yong</creator><creator>Deng, Ting</creator><creator>Shen, Dinggang</creator><creator>Wang, Zhenning</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20241217</creationdate><title>Interpretable multi-modal artificial intelligence model for predicting gastric cancer response to neoadjuvant chemotherapy</title><author>Gao, Peng ; Xiao, Qiong ; Tan, Hui ; Song, Jiangdian ; Fu, Yu ; Xu, Jingao ; Zhao, Junhua ; Miao, Yuan ; Li, Xiaoyan ; Jing, Yi ; Feng, Yingying ; Wang, Zitong ; Zhang, Yingjie ; Yao, Enbo ; Xu, Tongjia ; Mei, Jipeng ; Chen, Hanyu ; Jiang, Xue ; Yang, Yuchong ; Wang, Zhengyang ; Gao, Xianchun ; Zheng, Minwen ; Zhang, Liying ; Jiang, Min ; Long, Yuying ; He, Lijie ; Sun, Jinghua ; Deng, Yanhong ; Wang, Bin ; Zhao, Yan ; Ba, Yi ; Wang, Guan ; Zhang, Yong ; Deng, Ting ; Shen, Dinggang ; Wang, Zhenning</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1529-949d6893f32875c9c5ed3377c81ed0d90d7d0102308d3541c7d07661ade99293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adult</topic><topic>Aged</topic><topic>Artificial Intelligence</topic><topic>computed tomography</topic><topic>Female</topic><topic>gastric cancer</topic><topic>Humans</topic><topic>Male</topic><topic>Middle Aged</topic><topic>neoadjuvant chemotherapy</topic><topic>Neoadjuvant Therapy - methods</topic><topic>Prognosis</topic><topic>Retrospective Studies</topic><topic>ROC Curve</topic><topic>Stomach Neoplasms - diagnostic imaging</topic><topic>Stomach Neoplasms - drug therapy</topic><topic>Stomach Neoplasms - pathology</topic><topic>Tomography, X-Ray Computed - methods</topic><topic>Treatment Outcome</topic><topic>whole-slide image</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gao, Peng</creatorcontrib><creatorcontrib>Xiao, Qiong</creatorcontrib><creatorcontrib>Tan, Hui</creatorcontrib><creatorcontrib>Song, Jiangdian</creatorcontrib><creatorcontrib>Fu, Yu</creatorcontrib><creatorcontrib>Xu, Jingao</creatorcontrib><creatorcontrib>Zhao, Junhua</creatorcontrib><creatorcontrib>Miao, Yuan</creatorcontrib><creatorcontrib>Li, Xiaoyan</creatorcontrib><creatorcontrib>Jing, Yi</creatorcontrib><creatorcontrib>Feng, Yingying</creatorcontrib><creatorcontrib>Wang, Zitong</creatorcontrib><creatorcontrib>Zhang, Yingjie</creatorcontrib><creatorcontrib>Yao, Enbo</creatorcontrib><creatorcontrib>Xu, Tongjia</creatorcontrib><creatorcontrib>Mei, Jipeng</creatorcontrib><creatorcontrib>Chen, Hanyu</creatorcontrib><creatorcontrib>Jiang, Xue</creatorcontrib><creatorcontrib>Yang, Yuchong</creatorcontrib><creatorcontrib>Wang, Zhengyang</creatorcontrib><creatorcontrib>Gao, Xianchun</creatorcontrib><creatorcontrib>Zheng, Minwen</creatorcontrib><creatorcontrib>Zhang, Liying</creatorcontrib><creatorcontrib>Jiang, Min</creatorcontrib><creatorcontrib>Long, Yuying</creatorcontrib><creatorcontrib>He, Lijie</creatorcontrib><creatorcontrib>Sun, Jinghua</creatorcontrib><creatorcontrib>Deng, Yanhong</creatorcontrib><creatorcontrib>Wang, Bin</creatorcontrib><creatorcontrib>Zhao, Yan</creatorcontrib><creatorcontrib>Ba, Yi</creatorcontrib><creatorcontrib>Wang, Guan</creatorcontrib><creatorcontrib>Zhang, Yong</creatorcontrib><creatorcontrib>Deng, Ting</creatorcontrib><creatorcontrib>Shen, Dinggang</creatorcontrib><creatorcontrib>Wang, Zhenning</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Cell reports. Medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gao, Peng</au><au>Xiao, Qiong</au><au>Tan, Hui</au><au>Song, Jiangdian</au><au>Fu, Yu</au><au>Xu, Jingao</au><au>Zhao, Junhua</au><au>Miao, Yuan</au><au>Li, Xiaoyan</au><au>Jing, Yi</au><au>Feng, Yingying</au><au>Wang, Zitong</au><au>Zhang, Yingjie</au><au>Yao, Enbo</au><au>Xu, Tongjia</au><au>Mei, Jipeng</au><au>Chen, Hanyu</au><au>Jiang, Xue</au><au>Yang, Yuchong</au><au>Wang, Zhengyang</au><au>Gao, Xianchun</au><au>Zheng, Minwen</au><au>Zhang, Liying</au><au>Jiang, Min</au><au>Long, Yuying</au><au>He, Lijie</au><au>Sun, Jinghua</au><au>Deng, Yanhong</au><au>Wang, Bin</au><au>Zhao, Yan</au><au>Ba, Yi</au><au>Wang, Guan</au><au>Zhang, Yong</au><au>Deng, Ting</au><au>Shen, Dinggang</au><au>Wang, Zhenning</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interpretable multi-modal artificial intelligence model for predicting gastric cancer response to neoadjuvant chemotherapy</atitle><jtitle>Cell reports. Medicine</jtitle><addtitle>Cell Rep Med</addtitle><date>2024-12-17</date><risdate>2024</risdate><volume>5</volume><issue>12</issue><spage>101848</spage><pages>101848-</pages><artnum>101848</artnum><issn>2666-3791</issn><eissn>2666-3791</eissn><abstract>Neoadjuvant chemotherapy assessment is imperative for prognostication and clinical management of locally advanced gastric cancer. We propose an incremental supervised contrastive learning model (iSCLM), an interpretable artificial intelligence framework integrating pretreatment CT scans and H&amp;E-stained biopsy images, for improved decision-making regarding neoadjuvant chemotherapy. We have constructed and tested iSCLM using retrospective data from 2,387 patients across 10 medical centers and evaluated its discriminative ability in a prospective cohort (132 patients; ChiCTR2300068917). iSCLM achieves areas under receiver operating characteristic curves of 0.846–0.876 across different test cohorts. Computed tomography (CT) and pathological attention heatmaps from Shapley additive explanations and global sort pooling illustrate additional benefits for capturing morphological features through supervised contrastive learning. Specifically, pathological top-ranked tiles exhibit decreased distances to tumor-invasive borders and increased inflammatory cell infiltration in responders compared with non-responders. Moreover, CD11c expression is elevated in responders. The developed interpretable model at the molecular pathology level accurately predicts chemotherapy efficacy. [Display omitted] •iSCLM is a multi-modal framework to predict neoadjuvant chemotherapy response•iSCLM enables a focus on tumor-invasive borders with multi-modal data•iSCLM is interpreted with increased inflammatory cell infiltration Gao et al. develop an interpretable AI model (iSCLM) integrating CT scans and biopsy images to predict the response of neoadjuvant chemotherapy in gastric cancer. Validated with a multicenter cohort, iSCLM shows interpretable pathology changes in responders, contributing to the advancement of clinical practices in screening patients for neoadjuvant chemotherapy administration.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>39637859</pmid><doi>10.1016/j.xcrm.2024.101848</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2666-3791
ispartof Cell reports. Medicine, 2024-12, Vol.5 (12), p.101848, Article 101848
issn 2666-3791
2666-3791
language eng
recordid cdi_proquest_miscellaneous_3146531531
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection
subjects Adult
Aged
Artificial Intelligence
computed tomography
Female
gastric cancer
Humans
Male
Middle Aged
neoadjuvant chemotherapy
Neoadjuvant Therapy - methods
Prognosis
Retrospective Studies
ROC Curve
Stomach Neoplasms - diagnostic imaging
Stomach Neoplasms - drug therapy
Stomach Neoplasms - pathology
Tomography, X-Ray Computed - methods
Treatment Outcome
whole-slide image
title Interpretable multi-modal artificial intelligence model for predicting gastric cancer response to neoadjuvant chemotherapy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T10%3A16%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interpretable%20multi-modal%20artificial%20intelligence%20model%20for%20predicting%20gastric%20cancer%20response%20to%20neoadjuvant%20chemotherapy&rft.jtitle=Cell%20reports.%20Medicine&rft.au=Gao,%20Peng&rft.date=2024-12-17&rft.volume=5&rft.issue=12&rft.spage=101848&rft.pages=101848-&rft.artnum=101848&rft.issn=2666-3791&rft.eissn=2666-3791&rft_id=info:doi/10.1016/j.xcrm.2024.101848&rft_dat=%3Cproquest_cross%3E3146531531%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3146531531&rft_id=info:pmid/39637859&rft_els_id=S2666379124006190&rfr_iscdi=true