Interpretable multi-modal artificial intelligence model for predicting gastric cancer response to neoadjuvant chemotherapy
Neoadjuvant chemotherapy assessment is imperative for prognostication and clinical management of locally advanced gastric cancer. We propose an incremental supervised contrastive learning model (iSCLM), an interpretable artificial intelligence framework integrating pretreatment CT scans and H&E-...
Gespeichert in:
Veröffentlicht in: | Cell reports. Medicine 2024-12, Vol.5 (12), p.101848, Article 101848 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 12 |
container_start_page | 101848 |
container_title | Cell reports. Medicine |
container_volume | 5 |
creator | Gao, Peng Xiao, Qiong Tan, Hui Song, Jiangdian Fu, Yu Xu, Jingao Zhao, Junhua Miao, Yuan Li, Xiaoyan Jing, Yi Feng, Yingying Wang, Zitong Zhang, Yingjie Yao, Enbo Xu, Tongjia Mei, Jipeng Chen, Hanyu Jiang, Xue Yang, Yuchong Wang, Zhengyang Gao, Xianchun Zheng, Minwen Zhang, Liying Jiang, Min Long, Yuying He, Lijie Sun, Jinghua Deng, Yanhong Wang, Bin Zhao, Yan Ba, Yi Wang, Guan Zhang, Yong Deng, Ting Shen, Dinggang Wang, Zhenning |
description | Neoadjuvant chemotherapy assessment is imperative for prognostication and clinical management of locally advanced gastric cancer. We propose an incremental supervised contrastive learning model (iSCLM), an interpretable artificial intelligence framework integrating pretreatment CT scans and H&E-stained biopsy images, for improved decision-making regarding neoadjuvant chemotherapy. We have constructed and tested iSCLM using retrospective data from 2,387 patients across 10 medical centers and evaluated its discriminative ability in a prospective cohort (132 patients; ChiCTR2300068917). iSCLM achieves areas under receiver operating characteristic curves of 0.846–0.876 across different test cohorts. Computed tomography (CT) and pathological attention heatmaps from Shapley additive explanations and global sort pooling illustrate additional benefits for capturing morphological features through supervised contrastive learning. Specifically, pathological top-ranked tiles exhibit decreased distances to tumor-invasive borders and increased inflammatory cell infiltration in responders compared with non-responders. Moreover, CD11c expression is elevated in responders. The developed interpretable model at the molecular pathology level accurately predicts chemotherapy efficacy.
[Display omitted]
•iSCLM is a multi-modal framework to predict neoadjuvant chemotherapy response•iSCLM enables a focus on tumor-invasive borders with multi-modal data•iSCLM is interpreted with increased inflammatory cell infiltration
Gao et al. develop an interpretable AI model (iSCLM) integrating CT scans and biopsy images to predict the response of neoadjuvant chemotherapy in gastric cancer. Validated with a multicenter cohort, iSCLM shows interpretable pathology changes in responders, contributing to the advancement of clinical practices in screening patients for neoadjuvant chemotherapy administration. |
doi_str_mv | 10.1016/j.xcrm.2024.101848 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3146531531</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2666379124006190</els_id><sourcerecordid>3146531531</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1529-949d6893f32875c9c5ed3377c81ed0d90d7d0102308d3541c7d07661ade99293</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMoKrp_wIPk6KVrPtq0AS8ifoHgxXuIyXQ3S9vUJBXXX2_KqngSApmEZ15mHoTOKFlSQsXlZvlhQr9khJXzR1M2e-iYCSEKXku6_6c-QosYN4QQVlHacHKIjrgUvG4qeYw-H4cEYQyQ9GsHuJ-65IreW91hHZJrnXG5dBnqOreCwWTGW-hw6wPObdaZ5IYVXumYgjPY6IwEHCCOfoiAk8cDeG0307seEjZr6H1aQ9Dj9hQdtLqLsPi-T9DL3e3LzUPx9Hz_eHP9VBhaMVnIUlrRSN5y1tSVkaYCy3ldm4aCJVYSW1tCCeOksbwqqcnPWgiqLUjJJD9BF7vYMfi3CWJSvYsmr6PzYFNUnJai4jSfjLIdaoKPMUCrxuB6HbaKEjVbVxs1W1ezdbWznpvOv_On1x7sb8uP4wxc7QDIS747CCoaN5u0LoBJynr3X_4XaKeVKQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3146531531</pqid></control><display><type>article</type><title>Interpretable multi-modal artificial intelligence model for predicting gastric cancer response to neoadjuvant chemotherapy</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Gao, Peng ; Xiao, Qiong ; Tan, Hui ; Song, Jiangdian ; Fu, Yu ; Xu, Jingao ; Zhao, Junhua ; Miao, Yuan ; Li, Xiaoyan ; Jing, Yi ; Feng, Yingying ; Wang, Zitong ; Zhang, Yingjie ; Yao, Enbo ; Xu, Tongjia ; Mei, Jipeng ; Chen, Hanyu ; Jiang, Xue ; Yang, Yuchong ; Wang, Zhengyang ; Gao, Xianchun ; Zheng, Minwen ; Zhang, Liying ; Jiang, Min ; Long, Yuying ; He, Lijie ; Sun, Jinghua ; Deng, Yanhong ; Wang, Bin ; Zhao, Yan ; Ba, Yi ; Wang, Guan ; Zhang, Yong ; Deng, Ting ; Shen, Dinggang ; Wang, Zhenning</creator><creatorcontrib>Gao, Peng ; Xiao, Qiong ; Tan, Hui ; Song, Jiangdian ; Fu, Yu ; Xu, Jingao ; Zhao, Junhua ; Miao, Yuan ; Li, Xiaoyan ; Jing, Yi ; Feng, Yingying ; Wang, Zitong ; Zhang, Yingjie ; Yao, Enbo ; Xu, Tongjia ; Mei, Jipeng ; Chen, Hanyu ; Jiang, Xue ; Yang, Yuchong ; Wang, Zhengyang ; Gao, Xianchun ; Zheng, Minwen ; Zhang, Liying ; Jiang, Min ; Long, Yuying ; He, Lijie ; Sun, Jinghua ; Deng, Yanhong ; Wang, Bin ; Zhao, Yan ; Ba, Yi ; Wang, Guan ; Zhang, Yong ; Deng, Ting ; Shen, Dinggang ; Wang, Zhenning</creatorcontrib><description>Neoadjuvant chemotherapy assessment is imperative for prognostication and clinical management of locally advanced gastric cancer. We propose an incremental supervised contrastive learning model (iSCLM), an interpretable artificial intelligence framework integrating pretreatment CT scans and H&E-stained biopsy images, for improved decision-making regarding neoadjuvant chemotherapy. We have constructed and tested iSCLM using retrospective data from 2,387 patients across 10 medical centers and evaluated its discriminative ability in a prospective cohort (132 patients; ChiCTR2300068917). iSCLM achieves areas under receiver operating characteristic curves of 0.846–0.876 across different test cohorts. Computed tomography (CT) and pathological attention heatmaps from Shapley additive explanations and global sort pooling illustrate additional benefits for capturing morphological features through supervised contrastive learning. Specifically, pathological top-ranked tiles exhibit decreased distances to tumor-invasive borders and increased inflammatory cell infiltration in responders compared with non-responders. Moreover, CD11c expression is elevated in responders. The developed interpretable model at the molecular pathology level accurately predicts chemotherapy efficacy.
[Display omitted]
•iSCLM is a multi-modal framework to predict neoadjuvant chemotherapy response•iSCLM enables a focus on tumor-invasive borders with multi-modal data•iSCLM is interpreted with increased inflammatory cell infiltration
Gao et al. develop an interpretable AI model (iSCLM) integrating CT scans and biopsy images to predict the response of neoadjuvant chemotherapy in gastric cancer. Validated with a multicenter cohort, iSCLM shows interpretable pathology changes in responders, contributing to the advancement of clinical practices in screening patients for neoadjuvant chemotherapy administration.</description><identifier>ISSN: 2666-3791</identifier><identifier>EISSN: 2666-3791</identifier><identifier>DOI: 10.1016/j.xcrm.2024.101848</identifier><identifier>PMID: 39637859</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Adult ; Aged ; Artificial Intelligence ; computed tomography ; Female ; gastric cancer ; Humans ; Male ; Middle Aged ; neoadjuvant chemotherapy ; Neoadjuvant Therapy - methods ; Prognosis ; Retrospective Studies ; ROC Curve ; Stomach Neoplasms - diagnostic imaging ; Stomach Neoplasms - drug therapy ; Stomach Neoplasms - pathology ; Tomography, X-Ray Computed - methods ; Treatment Outcome ; whole-slide image</subject><ispartof>Cell reports. Medicine, 2024-12, Vol.5 (12), p.101848, Article 101848</ispartof><rights>2024 The Authors</rights><rights>Copyright © 2024 The Authors. Published by Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1529-949d6893f32875c9c5ed3377c81ed0d90d7d0102308d3541c7d07661ade99293</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,862,27907,27908</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39637859$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gao, Peng</creatorcontrib><creatorcontrib>Xiao, Qiong</creatorcontrib><creatorcontrib>Tan, Hui</creatorcontrib><creatorcontrib>Song, Jiangdian</creatorcontrib><creatorcontrib>Fu, Yu</creatorcontrib><creatorcontrib>Xu, Jingao</creatorcontrib><creatorcontrib>Zhao, Junhua</creatorcontrib><creatorcontrib>Miao, Yuan</creatorcontrib><creatorcontrib>Li, Xiaoyan</creatorcontrib><creatorcontrib>Jing, Yi</creatorcontrib><creatorcontrib>Feng, Yingying</creatorcontrib><creatorcontrib>Wang, Zitong</creatorcontrib><creatorcontrib>Zhang, Yingjie</creatorcontrib><creatorcontrib>Yao, Enbo</creatorcontrib><creatorcontrib>Xu, Tongjia</creatorcontrib><creatorcontrib>Mei, Jipeng</creatorcontrib><creatorcontrib>Chen, Hanyu</creatorcontrib><creatorcontrib>Jiang, Xue</creatorcontrib><creatorcontrib>Yang, Yuchong</creatorcontrib><creatorcontrib>Wang, Zhengyang</creatorcontrib><creatorcontrib>Gao, Xianchun</creatorcontrib><creatorcontrib>Zheng, Minwen</creatorcontrib><creatorcontrib>Zhang, Liying</creatorcontrib><creatorcontrib>Jiang, Min</creatorcontrib><creatorcontrib>Long, Yuying</creatorcontrib><creatorcontrib>He, Lijie</creatorcontrib><creatorcontrib>Sun, Jinghua</creatorcontrib><creatorcontrib>Deng, Yanhong</creatorcontrib><creatorcontrib>Wang, Bin</creatorcontrib><creatorcontrib>Zhao, Yan</creatorcontrib><creatorcontrib>Ba, Yi</creatorcontrib><creatorcontrib>Wang, Guan</creatorcontrib><creatorcontrib>Zhang, Yong</creatorcontrib><creatorcontrib>Deng, Ting</creatorcontrib><creatorcontrib>Shen, Dinggang</creatorcontrib><creatorcontrib>Wang, Zhenning</creatorcontrib><title>Interpretable multi-modal artificial intelligence model for predicting gastric cancer response to neoadjuvant chemotherapy</title><title>Cell reports. Medicine</title><addtitle>Cell Rep Med</addtitle><description>Neoadjuvant chemotherapy assessment is imperative for prognostication and clinical management of locally advanced gastric cancer. We propose an incremental supervised contrastive learning model (iSCLM), an interpretable artificial intelligence framework integrating pretreatment CT scans and H&E-stained biopsy images, for improved decision-making regarding neoadjuvant chemotherapy. We have constructed and tested iSCLM using retrospective data from 2,387 patients across 10 medical centers and evaluated its discriminative ability in a prospective cohort (132 patients; ChiCTR2300068917). iSCLM achieves areas under receiver operating characteristic curves of 0.846–0.876 across different test cohorts. Computed tomography (CT) and pathological attention heatmaps from Shapley additive explanations and global sort pooling illustrate additional benefits for capturing morphological features through supervised contrastive learning. Specifically, pathological top-ranked tiles exhibit decreased distances to tumor-invasive borders and increased inflammatory cell infiltration in responders compared with non-responders. Moreover, CD11c expression is elevated in responders. The developed interpretable model at the molecular pathology level accurately predicts chemotherapy efficacy.
[Display omitted]
•iSCLM is a multi-modal framework to predict neoadjuvant chemotherapy response•iSCLM enables a focus on tumor-invasive borders with multi-modal data•iSCLM is interpreted with increased inflammatory cell infiltration
Gao et al. develop an interpretable AI model (iSCLM) integrating CT scans and biopsy images to predict the response of neoadjuvant chemotherapy in gastric cancer. Validated with a multicenter cohort, iSCLM shows interpretable pathology changes in responders, contributing to the advancement of clinical practices in screening patients for neoadjuvant chemotherapy administration.</description><subject>Adult</subject><subject>Aged</subject><subject>Artificial Intelligence</subject><subject>computed tomography</subject><subject>Female</subject><subject>gastric cancer</subject><subject>Humans</subject><subject>Male</subject><subject>Middle Aged</subject><subject>neoadjuvant chemotherapy</subject><subject>Neoadjuvant Therapy - methods</subject><subject>Prognosis</subject><subject>Retrospective Studies</subject><subject>ROC Curve</subject><subject>Stomach Neoplasms - diagnostic imaging</subject><subject>Stomach Neoplasms - drug therapy</subject><subject>Stomach Neoplasms - pathology</subject><subject>Tomography, X-Ray Computed - methods</subject><subject>Treatment Outcome</subject><subject>whole-slide image</subject><issn>2666-3791</issn><issn>2666-3791</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE1LxDAQhoMoKrp_wIPk6KVrPtq0AS8ifoHgxXuIyXQ3S9vUJBXXX2_KqngSApmEZ15mHoTOKFlSQsXlZvlhQr9khJXzR1M2e-iYCSEKXku6_6c-QosYN4QQVlHacHKIjrgUvG4qeYw-H4cEYQyQ9GsHuJ-65IreW91hHZJrnXG5dBnqOreCwWTGW-hw6wPObdaZ5IYVXumYgjPY6IwEHCCOfoiAk8cDeG0307seEjZr6H1aQ9Dj9hQdtLqLsPi-T9DL3e3LzUPx9Hz_eHP9VBhaMVnIUlrRSN5y1tSVkaYCy3ldm4aCJVYSW1tCCeOksbwqqcnPWgiqLUjJJD9BF7vYMfi3CWJSvYsmr6PzYFNUnJai4jSfjLIdaoKPMUCrxuB6HbaKEjVbVxs1W1ezdbWznpvOv_On1x7sb8uP4wxc7QDIS747CCoaN5u0LoBJynr3X_4XaKeVKQ</recordid><startdate>20241217</startdate><enddate>20241217</enddate><creator>Gao, Peng</creator><creator>Xiao, Qiong</creator><creator>Tan, Hui</creator><creator>Song, Jiangdian</creator><creator>Fu, Yu</creator><creator>Xu, Jingao</creator><creator>Zhao, Junhua</creator><creator>Miao, Yuan</creator><creator>Li, Xiaoyan</creator><creator>Jing, Yi</creator><creator>Feng, Yingying</creator><creator>Wang, Zitong</creator><creator>Zhang, Yingjie</creator><creator>Yao, Enbo</creator><creator>Xu, Tongjia</creator><creator>Mei, Jipeng</creator><creator>Chen, Hanyu</creator><creator>Jiang, Xue</creator><creator>Yang, Yuchong</creator><creator>Wang, Zhengyang</creator><creator>Gao, Xianchun</creator><creator>Zheng, Minwen</creator><creator>Zhang, Liying</creator><creator>Jiang, Min</creator><creator>Long, Yuying</creator><creator>He, Lijie</creator><creator>Sun, Jinghua</creator><creator>Deng, Yanhong</creator><creator>Wang, Bin</creator><creator>Zhao, Yan</creator><creator>Ba, Yi</creator><creator>Wang, Guan</creator><creator>Zhang, Yong</creator><creator>Deng, Ting</creator><creator>Shen, Dinggang</creator><creator>Wang, Zhenning</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20241217</creationdate><title>Interpretable multi-modal artificial intelligence model for predicting gastric cancer response to neoadjuvant chemotherapy</title><author>Gao, Peng ; Xiao, Qiong ; Tan, Hui ; Song, Jiangdian ; Fu, Yu ; Xu, Jingao ; Zhao, Junhua ; Miao, Yuan ; Li, Xiaoyan ; Jing, Yi ; Feng, Yingying ; Wang, Zitong ; Zhang, Yingjie ; Yao, Enbo ; Xu, Tongjia ; Mei, Jipeng ; Chen, Hanyu ; Jiang, Xue ; Yang, Yuchong ; Wang, Zhengyang ; Gao, Xianchun ; Zheng, Minwen ; Zhang, Liying ; Jiang, Min ; Long, Yuying ; He, Lijie ; Sun, Jinghua ; Deng, Yanhong ; Wang, Bin ; Zhao, Yan ; Ba, Yi ; Wang, Guan ; Zhang, Yong ; Deng, Ting ; Shen, Dinggang ; Wang, Zhenning</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1529-949d6893f32875c9c5ed3377c81ed0d90d7d0102308d3541c7d07661ade99293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adult</topic><topic>Aged</topic><topic>Artificial Intelligence</topic><topic>computed tomography</topic><topic>Female</topic><topic>gastric cancer</topic><topic>Humans</topic><topic>Male</topic><topic>Middle Aged</topic><topic>neoadjuvant chemotherapy</topic><topic>Neoadjuvant Therapy - methods</topic><topic>Prognosis</topic><topic>Retrospective Studies</topic><topic>ROC Curve</topic><topic>Stomach Neoplasms - diagnostic imaging</topic><topic>Stomach Neoplasms - drug therapy</topic><topic>Stomach Neoplasms - pathology</topic><topic>Tomography, X-Ray Computed - methods</topic><topic>Treatment Outcome</topic><topic>whole-slide image</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gao, Peng</creatorcontrib><creatorcontrib>Xiao, Qiong</creatorcontrib><creatorcontrib>Tan, Hui</creatorcontrib><creatorcontrib>Song, Jiangdian</creatorcontrib><creatorcontrib>Fu, Yu</creatorcontrib><creatorcontrib>Xu, Jingao</creatorcontrib><creatorcontrib>Zhao, Junhua</creatorcontrib><creatorcontrib>Miao, Yuan</creatorcontrib><creatorcontrib>Li, Xiaoyan</creatorcontrib><creatorcontrib>Jing, Yi</creatorcontrib><creatorcontrib>Feng, Yingying</creatorcontrib><creatorcontrib>Wang, Zitong</creatorcontrib><creatorcontrib>Zhang, Yingjie</creatorcontrib><creatorcontrib>Yao, Enbo</creatorcontrib><creatorcontrib>Xu, Tongjia</creatorcontrib><creatorcontrib>Mei, Jipeng</creatorcontrib><creatorcontrib>Chen, Hanyu</creatorcontrib><creatorcontrib>Jiang, Xue</creatorcontrib><creatorcontrib>Yang, Yuchong</creatorcontrib><creatorcontrib>Wang, Zhengyang</creatorcontrib><creatorcontrib>Gao, Xianchun</creatorcontrib><creatorcontrib>Zheng, Minwen</creatorcontrib><creatorcontrib>Zhang, Liying</creatorcontrib><creatorcontrib>Jiang, Min</creatorcontrib><creatorcontrib>Long, Yuying</creatorcontrib><creatorcontrib>He, Lijie</creatorcontrib><creatorcontrib>Sun, Jinghua</creatorcontrib><creatorcontrib>Deng, Yanhong</creatorcontrib><creatorcontrib>Wang, Bin</creatorcontrib><creatorcontrib>Zhao, Yan</creatorcontrib><creatorcontrib>Ba, Yi</creatorcontrib><creatorcontrib>Wang, Guan</creatorcontrib><creatorcontrib>Zhang, Yong</creatorcontrib><creatorcontrib>Deng, Ting</creatorcontrib><creatorcontrib>Shen, Dinggang</creatorcontrib><creatorcontrib>Wang, Zhenning</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Cell reports. Medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gao, Peng</au><au>Xiao, Qiong</au><au>Tan, Hui</au><au>Song, Jiangdian</au><au>Fu, Yu</au><au>Xu, Jingao</au><au>Zhao, Junhua</au><au>Miao, Yuan</au><au>Li, Xiaoyan</au><au>Jing, Yi</au><au>Feng, Yingying</au><au>Wang, Zitong</au><au>Zhang, Yingjie</au><au>Yao, Enbo</au><au>Xu, Tongjia</au><au>Mei, Jipeng</au><au>Chen, Hanyu</au><au>Jiang, Xue</au><au>Yang, Yuchong</au><au>Wang, Zhengyang</au><au>Gao, Xianchun</au><au>Zheng, Minwen</au><au>Zhang, Liying</au><au>Jiang, Min</au><au>Long, Yuying</au><au>He, Lijie</au><au>Sun, Jinghua</au><au>Deng, Yanhong</au><au>Wang, Bin</au><au>Zhao, Yan</au><au>Ba, Yi</au><au>Wang, Guan</au><au>Zhang, Yong</au><au>Deng, Ting</au><au>Shen, Dinggang</au><au>Wang, Zhenning</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interpretable multi-modal artificial intelligence model for predicting gastric cancer response to neoadjuvant chemotherapy</atitle><jtitle>Cell reports. Medicine</jtitle><addtitle>Cell Rep Med</addtitle><date>2024-12-17</date><risdate>2024</risdate><volume>5</volume><issue>12</issue><spage>101848</spage><pages>101848-</pages><artnum>101848</artnum><issn>2666-3791</issn><eissn>2666-3791</eissn><abstract>Neoadjuvant chemotherapy assessment is imperative for prognostication and clinical management of locally advanced gastric cancer. We propose an incremental supervised contrastive learning model (iSCLM), an interpretable artificial intelligence framework integrating pretreatment CT scans and H&E-stained biopsy images, for improved decision-making regarding neoadjuvant chemotherapy. We have constructed and tested iSCLM using retrospective data from 2,387 patients across 10 medical centers and evaluated its discriminative ability in a prospective cohort (132 patients; ChiCTR2300068917). iSCLM achieves areas under receiver operating characteristic curves of 0.846–0.876 across different test cohorts. Computed tomography (CT) and pathological attention heatmaps from Shapley additive explanations and global sort pooling illustrate additional benefits for capturing morphological features through supervised contrastive learning. Specifically, pathological top-ranked tiles exhibit decreased distances to tumor-invasive borders and increased inflammatory cell infiltration in responders compared with non-responders. Moreover, CD11c expression is elevated in responders. The developed interpretable model at the molecular pathology level accurately predicts chemotherapy efficacy.
[Display omitted]
•iSCLM is a multi-modal framework to predict neoadjuvant chemotherapy response•iSCLM enables a focus on tumor-invasive borders with multi-modal data•iSCLM is interpreted with increased inflammatory cell infiltration
Gao et al. develop an interpretable AI model (iSCLM) integrating CT scans and biopsy images to predict the response of neoadjuvant chemotherapy in gastric cancer. Validated with a multicenter cohort, iSCLM shows interpretable pathology changes in responders, contributing to the advancement of clinical practices in screening patients for neoadjuvant chemotherapy administration.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>39637859</pmid><doi>10.1016/j.xcrm.2024.101848</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2666-3791 |
ispartof | Cell reports. Medicine, 2024-12, Vol.5 (12), p.101848, Article 101848 |
issn | 2666-3791 2666-3791 |
language | eng |
recordid | cdi_proquest_miscellaneous_3146531531 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection |
subjects | Adult Aged Artificial Intelligence computed tomography Female gastric cancer Humans Male Middle Aged neoadjuvant chemotherapy Neoadjuvant Therapy - methods Prognosis Retrospective Studies ROC Curve Stomach Neoplasms - diagnostic imaging Stomach Neoplasms - drug therapy Stomach Neoplasms - pathology Tomography, X-Ray Computed - methods Treatment Outcome whole-slide image |
title | Interpretable multi-modal artificial intelligence model for predicting gastric cancer response to neoadjuvant chemotherapy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T10%3A16%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interpretable%20multi-modal%20artificial%20intelligence%20model%20for%20predicting%20gastric%20cancer%20response%20to%20neoadjuvant%20chemotherapy&rft.jtitle=Cell%20reports.%20Medicine&rft.au=Gao,%20Peng&rft.date=2024-12-17&rft.volume=5&rft.issue=12&rft.spage=101848&rft.pages=101848-&rft.artnum=101848&rft.issn=2666-3791&rft.eissn=2666-3791&rft_id=info:doi/10.1016/j.xcrm.2024.101848&rft_dat=%3Cproquest_cross%3E3146531531%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3146531531&rft_id=info:pmid/39637859&rft_els_id=S2666379124006190&rfr_iscdi=true |