Efficient Formation of Secondary Organic Aerosols from the Aqueous Oxidation of Terpenoic 1,2-Diols by OH

Aqueous oxidation of pinanediol (PND) and camphanediol (CND) by hydroxyl radical (OH) was investigated using gas and liquid chromatography coupled with mass spectrometry. The yields of the products formed were measured with authentic and surrogate standards. This approach quantified >97% of the p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science & technology 2024-12, Vol.58 (50), p.22089-22103
Hauptverfasser: Jain, Priyanka, Witkowski, Bartłomiej, Błaziak, Agata, Gierczak, Tomasz
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 22103
container_issue 50
container_start_page 22089
container_title Environmental science & technology
container_volume 58
creator Jain, Priyanka
Witkowski, Bartłomiej
Błaziak, Agata
Gierczak, Tomasz
description Aqueous oxidation of pinanediol (PND) and camphanediol (CND) by hydroxyl radical (OH) was investigated using gas and liquid chromatography coupled with mass spectrometry. The yields of the products formed were measured with authentic and surrogate standards. This approach quantified >97% of the products for both reactions under investigation. For the first time, the formation of 3-methyl-1,2,3-butanetricarboxylic acid (MBTCA) and other terpenoic acids (TAs) from the aqueous OH reaction with PND was confirmed with authentic standards. Based on the data acquired, mechanisms of OH oxidation of PND and CND were proposed. The yields of aqSOAs were evaluated by combining kinetic and air–water partitioning models developed for the the precursors, PND and CND, and for the first-generation products: cis-pinonic and camphoric acids. Modeled yields of aqSOAs ranged from 0.05 to 2.5. At liquid water content (LWC) from 1 × 10–4 to 4 × 10–3 (g × m–3, haze, and fogs), oxidized TAs were the major components of aqSOAs. In clouds with LWC > 0.06 (g × m–3), the contribution of nonacidic products to the mass of aqSOAs became dominant. Aqueous OH reaction with PND can produce up to 0.3 (Tg × yr–1) of aqSOA, assuming the average flux of the precursor at 0.5 (Tg × yr–1).
doi_str_mv 10.1021/acs.est.4c06347
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3146531136</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3146531136</sourcerecordid><originalsourceid>FETCH-LOGICAL-a245t-7e7d7d42a9d50e90e9dc2606631dc9aa08e989805c6791c263533907470855263</originalsourceid><addsrcrecordid>eNp1kc9LwzAcxYMobk7P3iTgRdDOb5ImaY5j_gRhBxW8lZimGlmbmbSg_70pmzsIQiCEfN77Pr4PoWMCUwKUXGoTpzZ209yAYLncQWPCKWS84GQXjQEIyxQTLyN0EOMHAFAGxT4aMSWYEISOkbuua2ecbTt840OjO-db7Gv8aI1vKx2-8SK86dYZPLPBR7-MuA6-wd27xbPP3vo-4sWXq7bCJxtWtvVJQC5oduUGxWtyuTtEe7VeRnu0uSfo-eb6aX6XPSxu7-ezh0zTnHeZtLKSVU61qjhYlU5lqAAhGKmM0hoKqwpVADdCKpK-GGdMgcwlFJyn5wSdrX1XwaeAsSsbF41dLnU7pC0ZyQVnhLABPf2Dfvg-tCndQCkpmMxVoi7XlEkLiMHW5Sq4Jq2mJFAOLZSphXJQb1pIipONb__a2GrL_649AedrYFBuZ_5n9wP-iZAU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3149763749</pqid></control><display><type>article</type><title>Efficient Formation of Secondary Organic Aerosols from the Aqueous Oxidation of Terpenoic 1,2-Diols by OH</title><source>MEDLINE</source><source>ACS Publications</source><creator>Jain, Priyanka ; Witkowski, Bartłomiej ; Błaziak, Agata ; Gierczak, Tomasz</creator><creatorcontrib>Jain, Priyanka ; Witkowski, Bartłomiej ; Błaziak, Agata ; Gierczak, Tomasz</creatorcontrib><description>Aqueous oxidation of pinanediol (PND) and camphanediol (CND) by hydroxyl radical (OH) was investigated using gas and liquid chromatography coupled with mass spectrometry. The yields of the products formed were measured with authentic and surrogate standards. This approach quantified &gt;97% of the products for both reactions under investigation. For the first time, the formation of 3-methyl-1,2,3-butanetricarboxylic acid (MBTCA) and other terpenoic acids (TAs) from the aqueous OH reaction with PND was confirmed with authentic standards. Based on the data acquired, mechanisms of OH oxidation of PND and CND were proposed. The yields of aqSOAs were evaluated by combining kinetic and air–water partitioning models developed for the the precursors, PND and CND, and for the first-generation products: cis-pinonic and camphoric acids. Modeled yields of aqSOAs ranged from 0.05 to 2.5. At liquid water content (LWC) from 1 × 10–4 to 4 × 10–3 (g × m–3, haze, and fogs), oxidized TAs were the major components of aqSOAs. In clouds with LWC &gt; 0.06 (g × m–3), the contribution of nonacidic products to the mass of aqSOAs became dominant. Aqueous OH reaction with PND can produce up to 0.3 (Tg × yr–1) of aqSOA, assuming the average flux of the precursor at 0.5 (Tg × yr–1).</description><identifier>ISSN: 0013-936X</identifier><identifier>ISSN: 1520-5851</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/acs.est.4c06347</identifier><identifier>PMID: 39636612</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Aerosols ; Data acquisition ; Diols ; Energy and Climate ; Hydroxyl Radical - chemistry ; Hydroxyl radicals ; Liquid chromatography ; Mass spectrometry ; Mass spectroscopy ; Moisture content ; Oxidation ; Oxidation-Reduction ; Precursors ; Terpenes - chemistry ; Water ; Water - chemistry ; Water content</subject><ispartof>Environmental science &amp; technology, 2024-12, Vol.58 (50), p.22089-22103</ispartof><rights>2024 American Chemical Society</rights><rights>Copyright American Chemical Society Dec 17, 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a245t-7e7d7d42a9d50e90e9dc2606631dc9aa08e989805c6791c263533907470855263</cites><orcidid>0000-0001-9270-5304 ; 0000-0001-5489-3746 ; 0000-0002-9483-4692 ; 0000-0002-5571-3759</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.est.4c06347$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.est.4c06347$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2763,27075,27923,27924,56737,56787</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39636612$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jain, Priyanka</creatorcontrib><creatorcontrib>Witkowski, Bartłomiej</creatorcontrib><creatorcontrib>Błaziak, Agata</creatorcontrib><creatorcontrib>Gierczak, Tomasz</creatorcontrib><title>Efficient Formation of Secondary Organic Aerosols from the Aqueous Oxidation of Terpenoic 1,2-Diols by OH</title><title>Environmental science &amp; technology</title><addtitle>Environ. Sci. Technol</addtitle><description>Aqueous oxidation of pinanediol (PND) and camphanediol (CND) by hydroxyl radical (OH) was investigated using gas and liquid chromatography coupled with mass spectrometry. The yields of the products formed were measured with authentic and surrogate standards. This approach quantified &gt;97% of the products for both reactions under investigation. For the first time, the formation of 3-methyl-1,2,3-butanetricarboxylic acid (MBTCA) and other terpenoic acids (TAs) from the aqueous OH reaction with PND was confirmed with authentic standards. Based on the data acquired, mechanisms of OH oxidation of PND and CND were proposed. The yields of aqSOAs were evaluated by combining kinetic and air–water partitioning models developed for the the precursors, PND and CND, and for the first-generation products: cis-pinonic and camphoric acids. Modeled yields of aqSOAs ranged from 0.05 to 2.5. At liquid water content (LWC) from 1 × 10–4 to 4 × 10–3 (g × m–3, haze, and fogs), oxidized TAs were the major components of aqSOAs. In clouds with LWC &gt; 0.06 (g × m–3), the contribution of nonacidic products to the mass of aqSOAs became dominant. Aqueous OH reaction with PND can produce up to 0.3 (Tg × yr–1) of aqSOA, assuming the average flux of the precursor at 0.5 (Tg × yr–1).</description><subject>Aerosols</subject><subject>Data acquisition</subject><subject>Diols</subject><subject>Energy and Climate</subject><subject>Hydroxyl Radical - chemistry</subject><subject>Hydroxyl radicals</subject><subject>Liquid chromatography</subject><subject>Mass spectrometry</subject><subject>Mass spectroscopy</subject><subject>Moisture content</subject><subject>Oxidation</subject><subject>Oxidation-Reduction</subject><subject>Precursors</subject><subject>Terpenes - chemistry</subject><subject>Water</subject><subject>Water - chemistry</subject><subject>Water content</subject><issn>0013-936X</issn><issn>1520-5851</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kc9LwzAcxYMobk7P3iTgRdDOb5ImaY5j_gRhBxW8lZimGlmbmbSg_70pmzsIQiCEfN77Pr4PoWMCUwKUXGoTpzZ209yAYLncQWPCKWS84GQXjQEIyxQTLyN0EOMHAFAGxT4aMSWYEISOkbuua2ecbTt840OjO-db7Gv8aI1vKx2-8SK86dYZPLPBR7-MuA6-wd27xbPP3vo-4sWXq7bCJxtWtvVJQC5oduUGxWtyuTtEe7VeRnu0uSfo-eb6aX6XPSxu7-ezh0zTnHeZtLKSVU61qjhYlU5lqAAhGKmM0hoKqwpVADdCKpK-GGdMgcwlFJyn5wSdrX1XwaeAsSsbF41dLnU7pC0ZyQVnhLABPf2Dfvg-tCndQCkpmMxVoi7XlEkLiMHW5Sq4Jq2mJFAOLZSphXJQb1pIipONb__a2GrL_649AedrYFBuZ_5n9wP-iZAU</recordid><startdate>20241217</startdate><enddate>20241217</enddate><creator>Jain, Priyanka</creator><creator>Witkowski, Bartłomiej</creator><creator>Błaziak, Agata</creator><creator>Gierczak, Tomasz</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9270-5304</orcidid><orcidid>https://orcid.org/0000-0001-5489-3746</orcidid><orcidid>https://orcid.org/0000-0002-9483-4692</orcidid><orcidid>https://orcid.org/0000-0002-5571-3759</orcidid></search><sort><creationdate>20241217</creationdate><title>Efficient Formation of Secondary Organic Aerosols from the Aqueous Oxidation of Terpenoic 1,2-Diols by OH</title><author>Jain, Priyanka ; Witkowski, Bartłomiej ; Błaziak, Agata ; Gierczak, Tomasz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a245t-7e7d7d42a9d50e90e9dc2606631dc9aa08e989805c6791c263533907470855263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Aerosols</topic><topic>Data acquisition</topic><topic>Diols</topic><topic>Energy and Climate</topic><topic>Hydroxyl Radical - chemistry</topic><topic>Hydroxyl radicals</topic><topic>Liquid chromatography</topic><topic>Mass spectrometry</topic><topic>Mass spectroscopy</topic><topic>Moisture content</topic><topic>Oxidation</topic><topic>Oxidation-Reduction</topic><topic>Precursors</topic><topic>Terpenes - chemistry</topic><topic>Water</topic><topic>Water - chemistry</topic><topic>Water content</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jain, Priyanka</creatorcontrib><creatorcontrib>Witkowski, Bartłomiej</creatorcontrib><creatorcontrib>Błaziak, Agata</creatorcontrib><creatorcontrib>Gierczak, Tomasz</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Environmental science &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jain, Priyanka</au><au>Witkowski, Bartłomiej</au><au>Błaziak, Agata</au><au>Gierczak, Tomasz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient Formation of Secondary Organic Aerosols from the Aqueous Oxidation of Terpenoic 1,2-Diols by OH</atitle><jtitle>Environmental science &amp; technology</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>2024-12-17</date><risdate>2024</risdate><volume>58</volume><issue>50</issue><spage>22089</spage><epage>22103</epage><pages>22089-22103</pages><issn>0013-936X</issn><issn>1520-5851</issn><eissn>1520-5851</eissn><abstract>Aqueous oxidation of pinanediol (PND) and camphanediol (CND) by hydroxyl radical (OH) was investigated using gas and liquid chromatography coupled with mass spectrometry. The yields of the products formed were measured with authentic and surrogate standards. This approach quantified &gt;97% of the products for both reactions under investigation. For the first time, the formation of 3-methyl-1,2,3-butanetricarboxylic acid (MBTCA) and other terpenoic acids (TAs) from the aqueous OH reaction with PND was confirmed with authentic standards. Based on the data acquired, mechanisms of OH oxidation of PND and CND were proposed. The yields of aqSOAs were evaluated by combining kinetic and air–water partitioning models developed for the the precursors, PND and CND, and for the first-generation products: cis-pinonic and camphoric acids. Modeled yields of aqSOAs ranged from 0.05 to 2.5. At liquid water content (LWC) from 1 × 10–4 to 4 × 10–3 (g × m–3, haze, and fogs), oxidized TAs were the major components of aqSOAs. In clouds with LWC &gt; 0.06 (g × m–3), the contribution of nonacidic products to the mass of aqSOAs became dominant. Aqueous OH reaction with PND can produce up to 0.3 (Tg × yr–1) of aqSOA, assuming the average flux of the precursor at 0.5 (Tg × yr–1).</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>39636612</pmid><doi>10.1021/acs.est.4c06347</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-9270-5304</orcidid><orcidid>https://orcid.org/0000-0001-5489-3746</orcidid><orcidid>https://orcid.org/0000-0002-9483-4692</orcidid><orcidid>https://orcid.org/0000-0002-5571-3759</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0013-936X
ispartof Environmental science & technology, 2024-12, Vol.58 (50), p.22089-22103
issn 0013-936X
1520-5851
1520-5851
language eng
recordid cdi_proquest_miscellaneous_3146531136
source MEDLINE; ACS Publications
subjects Aerosols
Data acquisition
Diols
Energy and Climate
Hydroxyl Radical - chemistry
Hydroxyl radicals
Liquid chromatography
Mass spectrometry
Mass spectroscopy
Moisture content
Oxidation
Oxidation-Reduction
Precursors
Terpenes - chemistry
Water
Water - chemistry
Water content
title Efficient Formation of Secondary Organic Aerosols from the Aqueous Oxidation of Terpenoic 1,2-Diols by OH
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T10%3A40%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20Formation%20of%20Secondary%20Organic%20Aerosols%20from%20the%20Aqueous%20Oxidation%20of%20Terpenoic%201,2-Diols%20by%20OH&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Jain,%20Priyanka&rft.date=2024-12-17&rft.volume=58&rft.issue=50&rft.spage=22089&rft.epage=22103&rft.pages=22089-22103&rft.issn=0013-936X&rft.eissn=1520-5851&rft_id=info:doi/10.1021/acs.est.4c06347&rft_dat=%3Cproquest_cross%3E3146531136%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3149763749&rft_id=info:pmid/39636612&rfr_iscdi=true