Autofluorescence Virtual Staining System for H&E Histology and Multiplex Immunofluorescence Applied to Immuno-Oncology Biomarkers in Lung Cancer
Virtual staining for digital pathology has great potential to enable spatial biology research, improve efficiency and reliability in the clinical workflow, as well as conserve tissue samples in a non-destructive manner. In this study, we demonstrate the feasibility of generating virtual stains for h...
Gespeichert in:
Veröffentlicht in: | Cancer research communications 2024-12 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | Cancer research communications |
container_volume | |
creator | Loo, Jessica Robbins, Marc McNeil, Carson Yoshitake, Tadayuki Santori, Charles Shan, Chuanhe Jay Vyawahare, Saurabh Patel, Hardik Wang, Tzu Chien Findlater, Robert Steiner, David F Rao, Sudha Gutierrez, Michael Wang, Yang Sanchez, Adrian C Yin, Raymund Velez, Vanessa Sigman, Julia S Coutinho de Souza, Patricia Chandrupatla, Hareesh Scott, Liam Weaver, Shamira S Lee, Chung-Wein Rivlin, Ehud Goldenberg, Roman Couto, Suzana S Cimermancic, Peter Wong, Pok Fai |
description | Virtual staining for digital pathology has great potential to enable spatial biology research, improve efficiency and reliability in the clinical workflow, as well as conserve tissue samples in a non-destructive manner. In this study, we demonstrate the feasibility of generating virtual stains for hematoxylin and eosin (H&E) and a multiplex immunofluorescence (mIF) immuno-oncology panel (DAPI, PanCK, PD-L1, CD3, CD8) from autofluorescence images of unstained non-small cell lung cancer tissue by combining high-throughput hyperspectral fluorescence microscopy and machine learning. Using domain-specific computational methods, we evaluated the accuracy of virtual H&E for histologic subtyping and virtual mIF for cell segmentation-based measurements, including clinically-relevant measurements such as tumor area, T cell density, and PD-L1 expression (tumor proportion score and combined positive score). The virtual stains reproduce key morphologic features and protein biomarker expressions at both tissue and cell levels compared to real stains, enable the identification of key immune phenotypes important for immuno-oncology, and show moderate to good performance across various evaluation metrics. This study extends our previous work on virtual staining from autofluorescence in liver disease and prostate cancer, further demonstrating the generalizability of this deep learning technique to a different disease (lung cancer) and stain modality (mIF). |
doi_str_mv | 10.1158/2767-9764.CRC-24-0327 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_3146530242</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3146530242</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1037-828bc7d7212e45e393819791d8a6defaef664c785eb9cff932d96ebc05df99ab3</originalsourceid><addsrcrecordid>eNpVUNFKwzAUDaK4MfcJSp7El842aZPmcZbpBpOBU19L2t6OaNrUJgH3F36yhU3Rp3u495xzDwehyyicRVGS3hLOeCA4i2fZUxaQOAgp4Sdo_Ls__YNHaGrtWxiGhPM4YfQcjahglBFCxuhr7p2ptTc92BLaEvCr6p2XGm-dVK1qd3i7tw4aXJseL68XeKmsM9rs9li2FX702qlOwydeNY1v_1vNu04rqLAzx2uwacuD9k6ZRvbv0FusWrz2w59MDpr-Ap3VUluYHucEvdwvnrNlsN48rLL5OuiikPIgJWlR8oqTiECcABU0jQQXUZVKVkEtoWYsLnmaQCHKuhaUVIJBUYZJVQshCzpBNwffrjcfHqzLGzXE1lq2YLzNaRSzhIYkJgP16kj1RQNV3vVqyL7Pf1qk3wDAeRQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3146530242</pqid></control><display><type>article</type><title>Autofluorescence Virtual Staining System for H&E Histology and Multiplex Immunofluorescence Applied to Immuno-Oncology Biomarkers in Lung Cancer</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Loo, Jessica ; Robbins, Marc ; McNeil, Carson ; Yoshitake, Tadayuki ; Santori, Charles ; Shan, Chuanhe Jay ; Vyawahare, Saurabh ; Patel, Hardik ; Wang, Tzu Chien ; Findlater, Robert ; Steiner, David F ; Rao, Sudha ; Gutierrez, Michael ; Wang, Yang ; Sanchez, Adrian C ; Yin, Raymund ; Velez, Vanessa ; Sigman, Julia S ; Coutinho de Souza, Patricia ; Chandrupatla, Hareesh ; Scott, Liam ; Weaver, Shamira S ; Lee, Chung-Wein ; Rivlin, Ehud ; Goldenberg, Roman ; Couto, Suzana S ; Cimermancic, Peter ; Wong, Pok Fai</creator><creatorcontrib>Loo, Jessica ; Robbins, Marc ; McNeil, Carson ; Yoshitake, Tadayuki ; Santori, Charles ; Shan, Chuanhe Jay ; Vyawahare, Saurabh ; Patel, Hardik ; Wang, Tzu Chien ; Findlater, Robert ; Steiner, David F ; Rao, Sudha ; Gutierrez, Michael ; Wang, Yang ; Sanchez, Adrian C ; Yin, Raymund ; Velez, Vanessa ; Sigman, Julia S ; Coutinho de Souza, Patricia ; Chandrupatla, Hareesh ; Scott, Liam ; Weaver, Shamira S ; Lee, Chung-Wein ; Rivlin, Ehud ; Goldenberg, Roman ; Couto, Suzana S ; Cimermancic, Peter ; Wong, Pok Fai</creatorcontrib><description>Virtual staining for digital pathology has great potential to enable spatial biology research, improve efficiency and reliability in the clinical workflow, as well as conserve tissue samples in a non-destructive manner. In this study, we demonstrate the feasibility of generating virtual stains for hematoxylin and eosin (H&E) and a multiplex immunofluorescence (mIF) immuno-oncology panel (DAPI, PanCK, PD-L1, CD3, CD8) from autofluorescence images of unstained non-small cell lung cancer tissue by combining high-throughput hyperspectral fluorescence microscopy and machine learning. Using domain-specific computational methods, we evaluated the accuracy of virtual H&E for histologic subtyping and virtual mIF for cell segmentation-based measurements, including clinically-relevant measurements such as tumor area, T cell density, and PD-L1 expression (tumor proportion score and combined positive score). The virtual stains reproduce key morphologic features and protein biomarker expressions at both tissue and cell levels compared to real stains, enable the identification of key immune phenotypes important for immuno-oncology, and show moderate to good performance across various evaluation metrics. This study extends our previous work on virtual staining from autofluorescence in liver disease and prostate cancer, further demonstrating the generalizability of this deep learning technique to a different disease (lung cancer) and stain modality (mIF).</description><identifier>ISSN: 2767-9764</identifier><identifier>EISSN: 2767-9764</identifier><identifier>DOI: 10.1158/2767-9764.CRC-24-0327</identifier><identifier>PMID: 39636222</identifier><language>eng</language><publisher>United States</publisher><ispartof>Cancer research communications, 2024-12</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0009-0000-8791-0661 ; 0000-0002-6114-6324 ; 0000-0002-6162-3768 ; 0009-0007-6158-6294 ; 0000-0001-8185-9762 ; 0009-0007-2378-8178 ; 0000-0003-1297-0023 ; 0000-0002-3001-6471 ; 0009-0006-2845-5543 ; 0000-0002-0470-5492 ; 0009-0001-3470-9363 ; 0009-0004-3287-7314 ; 0000-0003-4156-6484 ; 0009-0004-6124-3214 ; 0000-0002-5538-772X ; 0000-0002-7054-2310 ; 0000-0002-2802-7649 ; 0009-0008-6432-9127 ; 0009-0007-9457-4898 ; 0000-0001-6932-5442 ; 0000-0002-5484-9339 ; 0009-0009-1568-4912 ; 0009-0003-0758-1776 ; 0009-0008-4283-662X ; 0009-0002-7917-3635 ; 0000-0003-3819-4691 ; 0009-0002-2074-1124 ; 0009-0008-2832-090X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39636222$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Loo, Jessica</creatorcontrib><creatorcontrib>Robbins, Marc</creatorcontrib><creatorcontrib>McNeil, Carson</creatorcontrib><creatorcontrib>Yoshitake, Tadayuki</creatorcontrib><creatorcontrib>Santori, Charles</creatorcontrib><creatorcontrib>Shan, Chuanhe Jay</creatorcontrib><creatorcontrib>Vyawahare, Saurabh</creatorcontrib><creatorcontrib>Patel, Hardik</creatorcontrib><creatorcontrib>Wang, Tzu Chien</creatorcontrib><creatorcontrib>Findlater, Robert</creatorcontrib><creatorcontrib>Steiner, David F</creatorcontrib><creatorcontrib>Rao, Sudha</creatorcontrib><creatorcontrib>Gutierrez, Michael</creatorcontrib><creatorcontrib>Wang, Yang</creatorcontrib><creatorcontrib>Sanchez, Adrian C</creatorcontrib><creatorcontrib>Yin, Raymund</creatorcontrib><creatorcontrib>Velez, Vanessa</creatorcontrib><creatorcontrib>Sigman, Julia S</creatorcontrib><creatorcontrib>Coutinho de Souza, Patricia</creatorcontrib><creatorcontrib>Chandrupatla, Hareesh</creatorcontrib><creatorcontrib>Scott, Liam</creatorcontrib><creatorcontrib>Weaver, Shamira S</creatorcontrib><creatorcontrib>Lee, Chung-Wein</creatorcontrib><creatorcontrib>Rivlin, Ehud</creatorcontrib><creatorcontrib>Goldenberg, Roman</creatorcontrib><creatorcontrib>Couto, Suzana S</creatorcontrib><creatorcontrib>Cimermancic, Peter</creatorcontrib><creatorcontrib>Wong, Pok Fai</creatorcontrib><title>Autofluorescence Virtual Staining System for H&E Histology and Multiplex Immunofluorescence Applied to Immuno-Oncology Biomarkers in Lung Cancer</title><title>Cancer research communications</title><addtitle>Cancer Res Commun</addtitle><description>Virtual staining for digital pathology has great potential to enable spatial biology research, improve efficiency and reliability in the clinical workflow, as well as conserve tissue samples in a non-destructive manner. In this study, we demonstrate the feasibility of generating virtual stains for hematoxylin and eosin (H&E) and a multiplex immunofluorescence (mIF) immuno-oncology panel (DAPI, PanCK, PD-L1, CD3, CD8) from autofluorescence images of unstained non-small cell lung cancer tissue by combining high-throughput hyperspectral fluorescence microscopy and machine learning. Using domain-specific computational methods, we evaluated the accuracy of virtual H&E for histologic subtyping and virtual mIF for cell segmentation-based measurements, including clinically-relevant measurements such as tumor area, T cell density, and PD-L1 expression (tumor proportion score and combined positive score). The virtual stains reproduce key morphologic features and protein biomarker expressions at both tissue and cell levels compared to real stains, enable the identification of key immune phenotypes important for immuno-oncology, and show moderate to good performance across various evaluation metrics. This study extends our previous work on virtual staining from autofluorescence in liver disease and prostate cancer, further demonstrating the generalizability of this deep learning technique to a different disease (lung cancer) and stain modality (mIF).</description><issn>2767-9764</issn><issn>2767-9764</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpVUNFKwzAUDaK4MfcJSp7El842aZPmcZbpBpOBU19L2t6OaNrUJgH3F36yhU3Rp3u495xzDwehyyicRVGS3hLOeCA4i2fZUxaQOAgp4Sdo_Ls__YNHaGrtWxiGhPM4YfQcjahglBFCxuhr7p2ptTc92BLaEvCr6p2XGm-dVK1qd3i7tw4aXJseL68XeKmsM9rs9li2FX702qlOwydeNY1v_1vNu04rqLAzx2uwacuD9k6ZRvbv0FusWrz2w59MDpr-Ap3VUluYHucEvdwvnrNlsN48rLL5OuiikPIgJWlR8oqTiECcABU0jQQXUZVKVkEtoWYsLnmaQCHKuhaUVIJBUYZJVQshCzpBNwffrjcfHqzLGzXE1lq2YLzNaRSzhIYkJgP16kj1RQNV3vVqyL7Pf1qk3wDAeRQ</recordid><startdate>20241205</startdate><enddate>20241205</enddate><creator>Loo, Jessica</creator><creator>Robbins, Marc</creator><creator>McNeil, Carson</creator><creator>Yoshitake, Tadayuki</creator><creator>Santori, Charles</creator><creator>Shan, Chuanhe Jay</creator><creator>Vyawahare, Saurabh</creator><creator>Patel, Hardik</creator><creator>Wang, Tzu Chien</creator><creator>Findlater, Robert</creator><creator>Steiner, David F</creator><creator>Rao, Sudha</creator><creator>Gutierrez, Michael</creator><creator>Wang, Yang</creator><creator>Sanchez, Adrian C</creator><creator>Yin, Raymund</creator><creator>Velez, Vanessa</creator><creator>Sigman, Julia S</creator><creator>Coutinho de Souza, Patricia</creator><creator>Chandrupatla, Hareesh</creator><creator>Scott, Liam</creator><creator>Weaver, Shamira S</creator><creator>Lee, Chung-Wein</creator><creator>Rivlin, Ehud</creator><creator>Goldenberg, Roman</creator><creator>Couto, Suzana S</creator><creator>Cimermancic, Peter</creator><creator>Wong, Pok Fai</creator><scope>NPM</scope><scope>7X8</scope><orcidid>https://orcid.org/0009-0000-8791-0661</orcidid><orcidid>https://orcid.org/0000-0002-6114-6324</orcidid><orcidid>https://orcid.org/0000-0002-6162-3768</orcidid><orcidid>https://orcid.org/0009-0007-6158-6294</orcidid><orcidid>https://orcid.org/0000-0001-8185-9762</orcidid><orcidid>https://orcid.org/0009-0007-2378-8178</orcidid><orcidid>https://orcid.org/0000-0003-1297-0023</orcidid><orcidid>https://orcid.org/0000-0002-3001-6471</orcidid><orcidid>https://orcid.org/0009-0006-2845-5543</orcidid><orcidid>https://orcid.org/0000-0002-0470-5492</orcidid><orcidid>https://orcid.org/0009-0001-3470-9363</orcidid><orcidid>https://orcid.org/0009-0004-3287-7314</orcidid><orcidid>https://orcid.org/0000-0003-4156-6484</orcidid><orcidid>https://orcid.org/0009-0004-6124-3214</orcidid><orcidid>https://orcid.org/0000-0002-5538-772X</orcidid><orcidid>https://orcid.org/0000-0002-7054-2310</orcidid><orcidid>https://orcid.org/0000-0002-2802-7649</orcidid><orcidid>https://orcid.org/0009-0008-6432-9127</orcidid><orcidid>https://orcid.org/0009-0007-9457-4898</orcidid><orcidid>https://orcid.org/0000-0001-6932-5442</orcidid><orcidid>https://orcid.org/0000-0002-5484-9339</orcidid><orcidid>https://orcid.org/0009-0009-1568-4912</orcidid><orcidid>https://orcid.org/0009-0003-0758-1776</orcidid><orcidid>https://orcid.org/0009-0008-4283-662X</orcidid><orcidid>https://orcid.org/0009-0002-7917-3635</orcidid><orcidid>https://orcid.org/0000-0003-3819-4691</orcidid><orcidid>https://orcid.org/0009-0002-2074-1124</orcidid><orcidid>https://orcid.org/0009-0008-2832-090X</orcidid></search><sort><creationdate>20241205</creationdate><title>Autofluorescence Virtual Staining System for H&E Histology and Multiplex Immunofluorescence Applied to Immuno-Oncology Biomarkers in Lung Cancer</title><author>Loo, Jessica ; Robbins, Marc ; McNeil, Carson ; Yoshitake, Tadayuki ; Santori, Charles ; Shan, Chuanhe Jay ; Vyawahare, Saurabh ; Patel, Hardik ; Wang, Tzu Chien ; Findlater, Robert ; Steiner, David F ; Rao, Sudha ; Gutierrez, Michael ; Wang, Yang ; Sanchez, Adrian C ; Yin, Raymund ; Velez, Vanessa ; Sigman, Julia S ; Coutinho de Souza, Patricia ; Chandrupatla, Hareesh ; Scott, Liam ; Weaver, Shamira S ; Lee, Chung-Wein ; Rivlin, Ehud ; Goldenberg, Roman ; Couto, Suzana S ; Cimermancic, Peter ; Wong, Pok Fai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1037-828bc7d7212e45e393819791d8a6defaef664c785eb9cff932d96ebc05df99ab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Loo, Jessica</creatorcontrib><creatorcontrib>Robbins, Marc</creatorcontrib><creatorcontrib>McNeil, Carson</creatorcontrib><creatorcontrib>Yoshitake, Tadayuki</creatorcontrib><creatorcontrib>Santori, Charles</creatorcontrib><creatorcontrib>Shan, Chuanhe Jay</creatorcontrib><creatorcontrib>Vyawahare, Saurabh</creatorcontrib><creatorcontrib>Patel, Hardik</creatorcontrib><creatorcontrib>Wang, Tzu Chien</creatorcontrib><creatorcontrib>Findlater, Robert</creatorcontrib><creatorcontrib>Steiner, David F</creatorcontrib><creatorcontrib>Rao, Sudha</creatorcontrib><creatorcontrib>Gutierrez, Michael</creatorcontrib><creatorcontrib>Wang, Yang</creatorcontrib><creatorcontrib>Sanchez, Adrian C</creatorcontrib><creatorcontrib>Yin, Raymund</creatorcontrib><creatorcontrib>Velez, Vanessa</creatorcontrib><creatorcontrib>Sigman, Julia S</creatorcontrib><creatorcontrib>Coutinho de Souza, Patricia</creatorcontrib><creatorcontrib>Chandrupatla, Hareesh</creatorcontrib><creatorcontrib>Scott, Liam</creatorcontrib><creatorcontrib>Weaver, Shamira S</creatorcontrib><creatorcontrib>Lee, Chung-Wein</creatorcontrib><creatorcontrib>Rivlin, Ehud</creatorcontrib><creatorcontrib>Goldenberg, Roman</creatorcontrib><creatorcontrib>Couto, Suzana S</creatorcontrib><creatorcontrib>Cimermancic, Peter</creatorcontrib><creatorcontrib>Wong, Pok Fai</creatorcontrib><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>Cancer research communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Loo, Jessica</au><au>Robbins, Marc</au><au>McNeil, Carson</au><au>Yoshitake, Tadayuki</au><au>Santori, Charles</au><au>Shan, Chuanhe Jay</au><au>Vyawahare, Saurabh</au><au>Patel, Hardik</au><au>Wang, Tzu Chien</au><au>Findlater, Robert</au><au>Steiner, David F</au><au>Rao, Sudha</au><au>Gutierrez, Michael</au><au>Wang, Yang</au><au>Sanchez, Adrian C</au><au>Yin, Raymund</au><au>Velez, Vanessa</au><au>Sigman, Julia S</au><au>Coutinho de Souza, Patricia</au><au>Chandrupatla, Hareesh</au><au>Scott, Liam</au><au>Weaver, Shamira S</au><au>Lee, Chung-Wein</au><au>Rivlin, Ehud</au><au>Goldenberg, Roman</au><au>Couto, Suzana S</au><au>Cimermancic, Peter</au><au>Wong, Pok Fai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Autofluorescence Virtual Staining System for H&E Histology and Multiplex Immunofluorescence Applied to Immuno-Oncology Biomarkers in Lung Cancer</atitle><jtitle>Cancer research communications</jtitle><addtitle>Cancer Res Commun</addtitle><date>2024-12-05</date><risdate>2024</risdate><issn>2767-9764</issn><eissn>2767-9764</eissn><abstract>Virtual staining for digital pathology has great potential to enable spatial biology research, improve efficiency and reliability in the clinical workflow, as well as conserve tissue samples in a non-destructive manner. In this study, we demonstrate the feasibility of generating virtual stains for hematoxylin and eosin (H&E) and a multiplex immunofluorescence (mIF) immuno-oncology panel (DAPI, PanCK, PD-L1, CD3, CD8) from autofluorescence images of unstained non-small cell lung cancer tissue by combining high-throughput hyperspectral fluorescence microscopy and machine learning. Using domain-specific computational methods, we evaluated the accuracy of virtual H&E for histologic subtyping and virtual mIF for cell segmentation-based measurements, including clinically-relevant measurements such as tumor area, T cell density, and PD-L1 expression (tumor proportion score and combined positive score). The virtual stains reproduce key morphologic features and protein biomarker expressions at both tissue and cell levels compared to real stains, enable the identification of key immune phenotypes important for immuno-oncology, and show moderate to good performance across various evaluation metrics. This study extends our previous work on virtual staining from autofluorescence in liver disease and prostate cancer, further demonstrating the generalizability of this deep learning technique to a different disease (lung cancer) and stain modality (mIF).</abstract><cop>United States</cop><pmid>39636222</pmid><doi>10.1158/2767-9764.CRC-24-0327</doi><orcidid>https://orcid.org/0009-0000-8791-0661</orcidid><orcidid>https://orcid.org/0000-0002-6114-6324</orcidid><orcidid>https://orcid.org/0000-0002-6162-3768</orcidid><orcidid>https://orcid.org/0009-0007-6158-6294</orcidid><orcidid>https://orcid.org/0000-0001-8185-9762</orcidid><orcidid>https://orcid.org/0009-0007-2378-8178</orcidid><orcidid>https://orcid.org/0000-0003-1297-0023</orcidid><orcidid>https://orcid.org/0000-0002-3001-6471</orcidid><orcidid>https://orcid.org/0009-0006-2845-5543</orcidid><orcidid>https://orcid.org/0000-0002-0470-5492</orcidid><orcidid>https://orcid.org/0009-0001-3470-9363</orcidid><orcidid>https://orcid.org/0009-0004-3287-7314</orcidid><orcidid>https://orcid.org/0000-0003-4156-6484</orcidid><orcidid>https://orcid.org/0009-0004-6124-3214</orcidid><orcidid>https://orcid.org/0000-0002-5538-772X</orcidid><orcidid>https://orcid.org/0000-0002-7054-2310</orcidid><orcidid>https://orcid.org/0000-0002-2802-7649</orcidid><orcidid>https://orcid.org/0009-0008-6432-9127</orcidid><orcidid>https://orcid.org/0009-0007-9457-4898</orcidid><orcidid>https://orcid.org/0000-0001-6932-5442</orcidid><orcidid>https://orcid.org/0000-0002-5484-9339</orcidid><orcidid>https://orcid.org/0009-0009-1568-4912</orcidid><orcidid>https://orcid.org/0009-0003-0758-1776</orcidid><orcidid>https://orcid.org/0009-0008-4283-662X</orcidid><orcidid>https://orcid.org/0009-0002-7917-3635</orcidid><orcidid>https://orcid.org/0000-0003-3819-4691</orcidid><orcidid>https://orcid.org/0009-0002-2074-1124</orcidid><orcidid>https://orcid.org/0009-0008-2832-090X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2767-9764 |
ispartof | Cancer research communications, 2024-12 |
issn | 2767-9764 2767-9764 |
language | eng |
recordid | cdi_proquest_miscellaneous_3146530242 |
source | DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central |
title | Autofluorescence Virtual Staining System for H&E Histology and Multiplex Immunofluorescence Applied to Immuno-Oncology Biomarkers in Lung Cancer |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T03%3A49%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Autofluorescence%20Virtual%20Staining%20System%20for%20H&E%20Histology%20and%20Multiplex%20Immunofluorescence%20Applied%20to%20Immuno-Oncology%20Biomarkers%20in%20Lung%20Cancer&rft.jtitle=Cancer%20research%20communications&rft.au=Loo,%20Jessica&rft.date=2024-12-05&rft.issn=2767-9764&rft.eissn=2767-9764&rft_id=info:doi/10.1158/2767-9764.CRC-24-0327&rft_dat=%3Cproquest_pubme%3E3146530242%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3146530242&rft_id=info:pmid/39636222&rfr_iscdi=true |