Autofluorescence Virtual Staining System for H&E Histology and Multiplex Immunofluorescence Applied to Immuno-Oncology Biomarkers in Lung Cancer

Virtual staining for digital pathology has great potential to enable spatial biology research, improve efficiency and reliability in the clinical workflow, as well as conserve tissue samples in a non-destructive manner. In this study, we demonstrate the feasibility of generating virtual stains for h...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cancer research communications 2024-12
Hauptverfasser: Loo, Jessica, Robbins, Marc, McNeil, Carson, Yoshitake, Tadayuki, Santori, Charles, Shan, Chuanhe Jay, Vyawahare, Saurabh, Patel, Hardik, Wang, Tzu Chien, Findlater, Robert, Steiner, David F, Rao, Sudha, Gutierrez, Michael, Wang, Yang, Sanchez, Adrian C, Yin, Raymund, Velez, Vanessa, Sigman, Julia S, Coutinho de Souza, Patricia, Chandrupatla, Hareesh, Scott, Liam, Weaver, Shamira S, Lee, Chung-Wein, Rivlin, Ehud, Goldenberg, Roman, Couto, Suzana S, Cimermancic, Peter, Wong, Pok Fai
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title Cancer research communications
container_volume
creator Loo, Jessica
Robbins, Marc
McNeil, Carson
Yoshitake, Tadayuki
Santori, Charles
Shan, Chuanhe Jay
Vyawahare, Saurabh
Patel, Hardik
Wang, Tzu Chien
Findlater, Robert
Steiner, David F
Rao, Sudha
Gutierrez, Michael
Wang, Yang
Sanchez, Adrian C
Yin, Raymund
Velez, Vanessa
Sigman, Julia S
Coutinho de Souza, Patricia
Chandrupatla, Hareesh
Scott, Liam
Weaver, Shamira S
Lee, Chung-Wein
Rivlin, Ehud
Goldenberg, Roman
Couto, Suzana S
Cimermancic, Peter
Wong, Pok Fai
description Virtual staining for digital pathology has great potential to enable spatial biology research, improve efficiency and reliability in the clinical workflow, as well as conserve tissue samples in a non-destructive manner. In this study, we demonstrate the feasibility of generating virtual stains for hematoxylin and eosin (H&E) and a multiplex immunofluorescence (mIF) immuno-oncology panel (DAPI, PanCK, PD-L1, CD3, CD8) from autofluorescence images of unstained non-small cell lung cancer tissue by combining high-throughput hyperspectral fluorescence microscopy and machine learning. Using domain-specific computational methods, we evaluated the accuracy of virtual H&E for histologic subtyping and virtual mIF for cell segmentation-based measurements, including clinically-relevant measurements such as tumor area, T cell density, and PD-L1 expression (tumor proportion score and combined positive score). The virtual stains reproduce key morphologic features and protein biomarker expressions at both tissue and cell levels compared to real stains, enable the identification of key immune phenotypes important for immuno-oncology, and show moderate to good performance across various evaluation metrics. This study extends our previous work on virtual staining from autofluorescence in liver disease and prostate cancer, further demonstrating the generalizability of this deep learning technique to a different disease (lung cancer) and stain modality (mIF).
doi_str_mv 10.1158/2767-9764.CRC-24-0327
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_3146530242</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3146530242</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1037-828bc7d7212e45e393819791d8a6defaef664c785eb9cff932d96ebc05df99ab3</originalsourceid><addsrcrecordid>eNpVUNFKwzAUDaK4MfcJSp7El842aZPmcZbpBpOBU19L2t6OaNrUJgH3F36yhU3Rp3u495xzDwehyyicRVGS3hLOeCA4i2fZUxaQOAgp4Sdo_Ls__YNHaGrtWxiGhPM4YfQcjahglBFCxuhr7p2ptTc92BLaEvCr6p2XGm-dVK1qd3i7tw4aXJseL68XeKmsM9rs9li2FX702qlOwydeNY1v_1vNu04rqLAzx2uwacuD9k6ZRvbv0FusWrz2w59MDpr-Ap3VUluYHucEvdwvnrNlsN48rLL5OuiikPIgJWlR8oqTiECcABU0jQQXUZVKVkEtoWYsLnmaQCHKuhaUVIJBUYZJVQshCzpBNwffrjcfHqzLGzXE1lq2YLzNaRSzhIYkJgP16kj1RQNV3vVqyL7Pf1qk3wDAeRQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3146530242</pqid></control><display><type>article</type><title>Autofluorescence Virtual Staining System for H&amp;E Histology and Multiplex Immunofluorescence Applied to Immuno-Oncology Biomarkers in Lung Cancer</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Loo, Jessica ; Robbins, Marc ; McNeil, Carson ; Yoshitake, Tadayuki ; Santori, Charles ; Shan, Chuanhe Jay ; Vyawahare, Saurabh ; Patel, Hardik ; Wang, Tzu Chien ; Findlater, Robert ; Steiner, David F ; Rao, Sudha ; Gutierrez, Michael ; Wang, Yang ; Sanchez, Adrian C ; Yin, Raymund ; Velez, Vanessa ; Sigman, Julia S ; Coutinho de Souza, Patricia ; Chandrupatla, Hareesh ; Scott, Liam ; Weaver, Shamira S ; Lee, Chung-Wein ; Rivlin, Ehud ; Goldenberg, Roman ; Couto, Suzana S ; Cimermancic, Peter ; Wong, Pok Fai</creator><creatorcontrib>Loo, Jessica ; Robbins, Marc ; McNeil, Carson ; Yoshitake, Tadayuki ; Santori, Charles ; Shan, Chuanhe Jay ; Vyawahare, Saurabh ; Patel, Hardik ; Wang, Tzu Chien ; Findlater, Robert ; Steiner, David F ; Rao, Sudha ; Gutierrez, Michael ; Wang, Yang ; Sanchez, Adrian C ; Yin, Raymund ; Velez, Vanessa ; Sigman, Julia S ; Coutinho de Souza, Patricia ; Chandrupatla, Hareesh ; Scott, Liam ; Weaver, Shamira S ; Lee, Chung-Wein ; Rivlin, Ehud ; Goldenberg, Roman ; Couto, Suzana S ; Cimermancic, Peter ; Wong, Pok Fai</creatorcontrib><description>Virtual staining for digital pathology has great potential to enable spatial biology research, improve efficiency and reliability in the clinical workflow, as well as conserve tissue samples in a non-destructive manner. In this study, we demonstrate the feasibility of generating virtual stains for hematoxylin and eosin (H&amp;E) and a multiplex immunofluorescence (mIF) immuno-oncology panel (DAPI, PanCK, PD-L1, CD3, CD8) from autofluorescence images of unstained non-small cell lung cancer tissue by combining high-throughput hyperspectral fluorescence microscopy and machine learning. Using domain-specific computational methods, we evaluated the accuracy of virtual H&amp;E for histologic subtyping and virtual mIF for cell segmentation-based measurements, including clinically-relevant measurements such as tumor area, T cell density, and PD-L1 expression (tumor proportion score and combined positive score). The virtual stains reproduce key morphologic features and protein biomarker expressions at both tissue and cell levels compared to real stains, enable the identification of key immune phenotypes important for immuno-oncology, and show moderate to good performance across various evaluation metrics. This study extends our previous work on virtual staining from autofluorescence in liver disease and prostate cancer, further demonstrating the generalizability of this deep learning technique to a different disease (lung cancer) and stain modality (mIF).</description><identifier>ISSN: 2767-9764</identifier><identifier>EISSN: 2767-9764</identifier><identifier>DOI: 10.1158/2767-9764.CRC-24-0327</identifier><identifier>PMID: 39636222</identifier><language>eng</language><publisher>United States</publisher><ispartof>Cancer research communications, 2024-12</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0009-0000-8791-0661 ; 0000-0002-6114-6324 ; 0000-0002-6162-3768 ; 0009-0007-6158-6294 ; 0000-0001-8185-9762 ; 0009-0007-2378-8178 ; 0000-0003-1297-0023 ; 0000-0002-3001-6471 ; 0009-0006-2845-5543 ; 0000-0002-0470-5492 ; 0009-0001-3470-9363 ; 0009-0004-3287-7314 ; 0000-0003-4156-6484 ; 0009-0004-6124-3214 ; 0000-0002-5538-772X ; 0000-0002-7054-2310 ; 0000-0002-2802-7649 ; 0009-0008-6432-9127 ; 0009-0007-9457-4898 ; 0000-0001-6932-5442 ; 0000-0002-5484-9339 ; 0009-0009-1568-4912 ; 0009-0003-0758-1776 ; 0009-0008-4283-662X ; 0009-0002-7917-3635 ; 0000-0003-3819-4691 ; 0009-0002-2074-1124 ; 0009-0008-2832-090X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39636222$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Loo, Jessica</creatorcontrib><creatorcontrib>Robbins, Marc</creatorcontrib><creatorcontrib>McNeil, Carson</creatorcontrib><creatorcontrib>Yoshitake, Tadayuki</creatorcontrib><creatorcontrib>Santori, Charles</creatorcontrib><creatorcontrib>Shan, Chuanhe Jay</creatorcontrib><creatorcontrib>Vyawahare, Saurabh</creatorcontrib><creatorcontrib>Patel, Hardik</creatorcontrib><creatorcontrib>Wang, Tzu Chien</creatorcontrib><creatorcontrib>Findlater, Robert</creatorcontrib><creatorcontrib>Steiner, David F</creatorcontrib><creatorcontrib>Rao, Sudha</creatorcontrib><creatorcontrib>Gutierrez, Michael</creatorcontrib><creatorcontrib>Wang, Yang</creatorcontrib><creatorcontrib>Sanchez, Adrian C</creatorcontrib><creatorcontrib>Yin, Raymund</creatorcontrib><creatorcontrib>Velez, Vanessa</creatorcontrib><creatorcontrib>Sigman, Julia S</creatorcontrib><creatorcontrib>Coutinho de Souza, Patricia</creatorcontrib><creatorcontrib>Chandrupatla, Hareesh</creatorcontrib><creatorcontrib>Scott, Liam</creatorcontrib><creatorcontrib>Weaver, Shamira S</creatorcontrib><creatorcontrib>Lee, Chung-Wein</creatorcontrib><creatorcontrib>Rivlin, Ehud</creatorcontrib><creatorcontrib>Goldenberg, Roman</creatorcontrib><creatorcontrib>Couto, Suzana S</creatorcontrib><creatorcontrib>Cimermancic, Peter</creatorcontrib><creatorcontrib>Wong, Pok Fai</creatorcontrib><title>Autofluorescence Virtual Staining System for H&amp;E Histology and Multiplex Immunofluorescence Applied to Immuno-Oncology Biomarkers in Lung Cancer</title><title>Cancer research communications</title><addtitle>Cancer Res Commun</addtitle><description>Virtual staining for digital pathology has great potential to enable spatial biology research, improve efficiency and reliability in the clinical workflow, as well as conserve tissue samples in a non-destructive manner. In this study, we demonstrate the feasibility of generating virtual stains for hematoxylin and eosin (H&amp;E) and a multiplex immunofluorescence (mIF) immuno-oncology panel (DAPI, PanCK, PD-L1, CD3, CD8) from autofluorescence images of unstained non-small cell lung cancer tissue by combining high-throughput hyperspectral fluorescence microscopy and machine learning. Using domain-specific computational methods, we evaluated the accuracy of virtual H&amp;E for histologic subtyping and virtual mIF for cell segmentation-based measurements, including clinically-relevant measurements such as tumor area, T cell density, and PD-L1 expression (tumor proportion score and combined positive score). The virtual stains reproduce key morphologic features and protein biomarker expressions at both tissue and cell levels compared to real stains, enable the identification of key immune phenotypes important for immuno-oncology, and show moderate to good performance across various evaluation metrics. This study extends our previous work on virtual staining from autofluorescence in liver disease and prostate cancer, further demonstrating the generalizability of this deep learning technique to a different disease (lung cancer) and stain modality (mIF).</description><issn>2767-9764</issn><issn>2767-9764</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpVUNFKwzAUDaK4MfcJSp7El842aZPmcZbpBpOBU19L2t6OaNrUJgH3F36yhU3Rp3u495xzDwehyyicRVGS3hLOeCA4i2fZUxaQOAgp4Sdo_Ls__YNHaGrtWxiGhPM4YfQcjahglBFCxuhr7p2ptTc92BLaEvCr6p2XGm-dVK1qd3i7tw4aXJseL68XeKmsM9rs9li2FX702qlOwydeNY1v_1vNu04rqLAzx2uwacuD9k6ZRvbv0FusWrz2w59MDpr-Ap3VUluYHucEvdwvnrNlsN48rLL5OuiikPIgJWlR8oqTiECcABU0jQQXUZVKVkEtoWYsLnmaQCHKuhaUVIJBUYZJVQshCzpBNwffrjcfHqzLGzXE1lq2YLzNaRSzhIYkJgP16kj1RQNV3vVqyL7Pf1qk3wDAeRQ</recordid><startdate>20241205</startdate><enddate>20241205</enddate><creator>Loo, Jessica</creator><creator>Robbins, Marc</creator><creator>McNeil, Carson</creator><creator>Yoshitake, Tadayuki</creator><creator>Santori, Charles</creator><creator>Shan, Chuanhe Jay</creator><creator>Vyawahare, Saurabh</creator><creator>Patel, Hardik</creator><creator>Wang, Tzu Chien</creator><creator>Findlater, Robert</creator><creator>Steiner, David F</creator><creator>Rao, Sudha</creator><creator>Gutierrez, Michael</creator><creator>Wang, Yang</creator><creator>Sanchez, Adrian C</creator><creator>Yin, Raymund</creator><creator>Velez, Vanessa</creator><creator>Sigman, Julia S</creator><creator>Coutinho de Souza, Patricia</creator><creator>Chandrupatla, Hareesh</creator><creator>Scott, Liam</creator><creator>Weaver, Shamira S</creator><creator>Lee, Chung-Wein</creator><creator>Rivlin, Ehud</creator><creator>Goldenberg, Roman</creator><creator>Couto, Suzana S</creator><creator>Cimermancic, Peter</creator><creator>Wong, Pok Fai</creator><scope>NPM</scope><scope>7X8</scope><orcidid>https://orcid.org/0009-0000-8791-0661</orcidid><orcidid>https://orcid.org/0000-0002-6114-6324</orcidid><orcidid>https://orcid.org/0000-0002-6162-3768</orcidid><orcidid>https://orcid.org/0009-0007-6158-6294</orcidid><orcidid>https://orcid.org/0000-0001-8185-9762</orcidid><orcidid>https://orcid.org/0009-0007-2378-8178</orcidid><orcidid>https://orcid.org/0000-0003-1297-0023</orcidid><orcidid>https://orcid.org/0000-0002-3001-6471</orcidid><orcidid>https://orcid.org/0009-0006-2845-5543</orcidid><orcidid>https://orcid.org/0000-0002-0470-5492</orcidid><orcidid>https://orcid.org/0009-0001-3470-9363</orcidid><orcidid>https://orcid.org/0009-0004-3287-7314</orcidid><orcidid>https://orcid.org/0000-0003-4156-6484</orcidid><orcidid>https://orcid.org/0009-0004-6124-3214</orcidid><orcidid>https://orcid.org/0000-0002-5538-772X</orcidid><orcidid>https://orcid.org/0000-0002-7054-2310</orcidid><orcidid>https://orcid.org/0000-0002-2802-7649</orcidid><orcidid>https://orcid.org/0009-0008-6432-9127</orcidid><orcidid>https://orcid.org/0009-0007-9457-4898</orcidid><orcidid>https://orcid.org/0000-0001-6932-5442</orcidid><orcidid>https://orcid.org/0000-0002-5484-9339</orcidid><orcidid>https://orcid.org/0009-0009-1568-4912</orcidid><orcidid>https://orcid.org/0009-0003-0758-1776</orcidid><orcidid>https://orcid.org/0009-0008-4283-662X</orcidid><orcidid>https://orcid.org/0009-0002-7917-3635</orcidid><orcidid>https://orcid.org/0000-0003-3819-4691</orcidid><orcidid>https://orcid.org/0009-0002-2074-1124</orcidid><orcidid>https://orcid.org/0009-0008-2832-090X</orcidid></search><sort><creationdate>20241205</creationdate><title>Autofluorescence Virtual Staining System for H&amp;E Histology and Multiplex Immunofluorescence Applied to Immuno-Oncology Biomarkers in Lung Cancer</title><author>Loo, Jessica ; Robbins, Marc ; McNeil, Carson ; Yoshitake, Tadayuki ; Santori, Charles ; Shan, Chuanhe Jay ; Vyawahare, Saurabh ; Patel, Hardik ; Wang, Tzu Chien ; Findlater, Robert ; Steiner, David F ; Rao, Sudha ; Gutierrez, Michael ; Wang, Yang ; Sanchez, Adrian C ; Yin, Raymund ; Velez, Vanessa ; Sigman, Julia S ; Coutinho de Souza, Patricia ; Chandrupatla, Hareesh ; Scott, Liam ; Weaver, Shamira S ; Lee, Chung-Wein ; Rivlin, Ehud ; Goldenberg, Roman ; Couto, Suzana S ; Cimermancic, Peter ; Wong, Pok Fai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1037-828bc7d7212e45e393819791d8a6defaef664c785eb9cff932d96ebc05df99ab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Loo, Jessica</creatorcontrib><creatorcontrib>Robbins, Marc</creatorcontrib><creatorcontrib>McNeil, Carson</creatorcontrib><creatorcontrib>Yoshitake, Tadayuki</creatorcontrib><creatorcontrib>Santori, Charles</creatorcontrib><creatorcontrib>Shan, Chuanhe Jay</creatorcontrib><creatorcontrib>Vyawahare, Saurabh</creatorcontrib><creatorcontrib>Patel, Hardik</creatorcontrib><creatorcontrib>Wang, Tzu Chien</creatorcontrib><creatorcontrib>Findlater, Robert</creatorcontrib><creatorcontrib>Steiner, David F</creatorcontrib><creatorcontrib>Rao, Sudha</creatorcontrib><creatorcontrib>Gutierrez, Michael</creatorcontrib><creatorcontrib>Wang, Yang</creatorcontrib><creatorcontrib>Sanchez, Adrian C</creatorcontrib><creatorcontrib>Yin, Raymund</creatorcontrib><creatorcontrib>Velez, Vanessa</creatorcontrib><creatorcontrib>Sigman, Julia S</creatorcontrib><creatorcontrib>Coutinho de Souza, Patricia</creatorcontrib><creatorcontrib>Chandrupatla, Hareesh</creatorcontrib><creatorcontrib>Scott, Liam</creatorcontrib><creatorcontrib>Weaver, Shamira S</creatorcontrib><creatorcontrib>Lee, Chung-Wein</creatorcontrib><creatorcontrib>Rivlin, Ehud</creatorcontrib><creatorcontrib>Goldenberg, Roman</creatorcontrib><creatorcontrib>Couto, Suzana S</creatorcontrib><creatorcontrib>Cimermancic, Peter</creatorcontrib><creatorcontrib>Wong, Pok Fai</creatorcontrib><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>Cancer research communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Loo, Jessica</au><au>Robbins, Marc</au><au>McNeil, Carson</au><au>Yoshitake, Tadayuki</au><au>Santori, Charles</au><au>Shan, Chuanhe Jay</au><au>Vyawahare, Saurabh</au><au>Patel, Hardik</au><au>Wang, Tzu Chien</au><au>Findlater, Robert</au><au>Steiner, David F</au><au>Rao, Sudha</au><au>Gutierrez, Michael</au><au>Wang, Yang</au><au>Sanchez, Adrian C</au><au>Yin, Raymund</au><au>Velez, Vanessa</au><au>Sigman, Julia S</au><au>Coutinho de Souza, Patricia</au><au>Chandrupatla, Hareesh</au><au>Scott, Liam</au><au>Weaver, Shamira S</au><au>Lee, Chung-Wein</au><au>Rivlin, Ehud</au><au>Goldenberg, Roman</au><au>Couto, Suzana S</au><au>Cimermancic, Peter</au><au>Wong, Pok Fai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Autofluorescence Virtual Staining System for H&amp;E Histology and Multiplex Immunofluorescence Applied to Immuno-Oncology Biomarkers in Lung Cancer</atitle><jtitle>Cancer research communications</jtitle><addtitle>Cancer Res Commun</addtitle><date>2024-12-05</date><risdate>2024</risdate><issn>2767-9764</issn><eissn>2767-9764</eissn><abstract>Virtual staining for digital pathology has great potential to enable spatial biology research, improve efficiency and reliability in the clinical workflow, as well as conserve tissue samples in a non-destructive manner. In this study, we demonstrate the feasibility of generating virtual stains for hematoxylin and eosin (H&amp;E) and a multiplex immunofluorescence (mIF) immuno-oncology panel (DAPI, PanCK, PD-L1, CD3, CD8) from autofluorescence images of unstained non-small cell lung cancer tissue by combining high-throughput hyperspectral fluorescence microscopy and machine learning. Using domain-specific computational methods, we evaluated the accuracy of virtual H&amp;E for histologic subtyping and virtual mIF for cell segmentation-based measurements, including clinically-relevant measurements such as tumor area, T cell density, and PD-L1 expression (tumor proportion score and combined positive score). The virtual stains reproduce key morphologic features and protein biomarker expressions at both tissue and cell levels compared to real stains, enable the identification of key immune phenotypes important for immuno-oncology, and show moderate to good performance across various evaluation metrics. This study extends our previous work on virtual staining from autofluorescence in liver disease and prostate cancer, further demonstrating the generalizability of this deep learning technique to a different disease (lung cancer) and stain modality (mIF).</abstract><cop>United States</cop><pmid>39636222</pmid><doi>10.1158/2767-9764.CRC-24-0327</doi><orcidid>https://orcid.org/0009-0000-8791-0661</orcidid><orcidid>https://orcid.org/0000-0002-6114-6324</orcidid><orcidid>https://orcid.org/0000-0002-6162-3768</orcidid><orcidid>https://orcid.org/0009-0007-6158-6294</orcidid><orcidid>https://orcid.org/0000-0001-8185-9762</orcidid><orcidid>https://orcid.org/0009-0007-2378-8178</orcidid><orcidid>https://orcid.org/0000-0003-1297-0023</orcidid><orcidid>https://orcid.org/0000-0002-3001-6471</orcidid><orcidid>https://orcid.org/0009-0006-2845-5543</orcidid><orcidid>https://orcid.org/0000-0002-0470-5492</orcidid><orcidid>https://orcid.org/0009-0001-3470-9363</orcidid><orcidid>https://orcid.org/0009-0004-3287-7314</orcidid><orcidid>https://orcid.org/0000-0003-4156-6484</orcidid><orcidid>https://orcid.org/0009-0004-6124-3214</orcidid><orcidid>https://orcid.org/0000-0002-5538-772X</orcidid><orcidid>https://orcid.org/0000-0002-7054-2310</orcidid><orcidid>https://orcid.org/0000-0002-2802-7649</orcidid><orcidid>https://orcid.org/0009-0008-6432-9127</orcidid><orcidid>https://orcid.org/0009-0007-9457-4898</orcidid><orcidid>https://orcid.org/0000-0001-6932-5442</orcidid><orcidid>https://orcid.org/0000-0002-5484-9339</orcidid><orcidid>https://orcid.org/0009-0009-1568-4912</orcidid><orcidid>https://orcid.org/0009-0003-0758-1776</orcidid><orcidid>https://orcid.org/0009-0008-4283-662X</orcidid><orcidid>https://orcid.org/0009-0002-7917-3635</orcidid><orcidid>https://orcid.org/0000-0003-3819-4691</orcidid><orcidid>https://orcid.org/0009-0002-2074-1124</orcidid><orcidid>https://orcid.org/0009-0008-2832-090X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2767-9764
ispartof Cancer research communications, 2024-12
issn 2767-9764
2767-9764
language eng
recordid cdi_proquest_miscellaneous_3146530242
source DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central
title Autofluorescence Virtual Staining System for H&E Histology and Multiplex Immunofluorescence Applied to Immuno-Oncology Biomarkers in Lung Cancer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T03%3A49%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Autofluorescence%20Virtual%20Staining%20System%20for%20H&E%20Histology%20and%20Multiplex%20Immunofluorescence%20Applied%20to%20Immuno-Oncology%20Biomarkers%20in%20Lung%20Cancer&rft.jtitle=Cancer%20research%20communications&rft.au=Loo,%20Jessica&rft.date=2024-12-05&rft.issn=2767-9764&rft.eissn=2767-9764&rft_id=info:doi/10.1158/2767-9764.CRC-24-0327&rft_dat=%3Cproquest_pubme%3E3146530242%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3146530242&rft_id=info:pmid/39636222&rfr_iscdi=true