Plasma-enhanced chemical vapor deposition of nanocrystalline diamond
Nanocrystalline diamond films have attracted considerable attention because they have a low coefficient of friction and a low electron emission threshold voltage. In this paper, the author reviews the plasma-enhanced chemical vapor deposition (PE-CVD) of nanocrystalline diamond and mainly focuses on...
Gespeichert in:
Veröffentlicht in: | Science and technology of advanced materials 2007-10, Vol.8 (7), p.624-634 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 634 |
---|---|
container_issue | 7 |
container_start_page | 624 |
container_title | Science and technology of advanced materials |
container_volume | 8 |
creator | Okada, Katsuyuki |
description | Nanocrystalline diamond films have attracted considerable attention because they have a low coefficient of friction and a low electron emission threshold voltage. In this paper, the author reviews the plasma-enhanced chemical vapor deposition (PE-CVD) of nanocrystalline diamond and mainly focuses on the growth of nanocrystalline diamond by low-pressure PE-CVD. Nanocrystalline diamond particles of 200–700
nm diameter have been prepared in a 13.56
MHz low-pressure inductively coupled CH
4/CO/H
2 plasma. The bonding state of carbon atoms was investigated by ultraviolet-excited Raman spectroscopy. Electron energy loss spectroscopy identified sp
2-bonded carbons around the 20–50
nm subgrains of nanocrystalline diamond particles. Plasma diagnostics using a Langmuir probe and the comparison with plasma simulation are also reviewed. The electron energy distribution functions are discussed by considering different inelastic interaction channels between electrons and heavy particles in a molecular CH
4/H
2 plasma. |
doi_str_mv | 10.1016/j.stam.2007.08.008 |
format | Article |
fullrecord | <record><control><sourceid>proquest_O3W</sourceid><recordid>TN_cdi_proquest_miscellaneous_31436057</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1468699607001416</els_id><sourcerecordid>31436057</sourcerecordid><originalsourceid>FETCH-LOGICAL-c601t-5d0b79a7dea6ee1e4f45e23f76e173b60d80b05d56359194ca90039055b779a83</originalsourceid><addsrcrecordid>eNp9kU1L5TAUhsvgwKgzf2BWXYkMtHPSNl_gLETnCwRd6DrkJqeYS5rUpCr335tyhdkMdxGSxfOeQ563qr4SaAkQ9n3b5kVPbQfAWxAtgPhQHRPBRUMpGY7Ke2CiYVKyT9VJzlsAYKQbjqvrO6_zpBsMjzoYtLV5xMkZ7esXPcdUW5xjdouLoY5jHXSIJu3KLu9dwNo6PcVgP1cfR-0zfnm_T6uHXz_vr_40N7e__15d3jSGAVkaamHDpeYWNUMkOIwDxa4fOUPC-w0DK2AD1FLWU0nkYLQE6CVQuuElJ_rT6mw_d07x6RnzoiaXDXqvA8bnrHoy9AwoL-D5QZCA6IgsrCxot0dNijknHNWc3KTTrkBqdau2anWrVrcKhCpuS-jbPuTi_I8vitWqWAnFy7kknZrtWODmP_Ch4T_e-TDGNOnXmLxVi975mMZUWnLrTw_lL_Z5LFW8OEwqG4druS6hWZSN7tD6N5lHsv8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1082193609</pqid></control><display><type>article</type><title>Plasma-enhanced chemical vapor deposition of nanocrystalline diamond</title><source>Institute of Physics Open Access Journal Titles</source><creator>Okada, Katsuyuki</creator><creatorcontrib>Okada, Katsuyuki</creatorcontrib><description>Nanocrystalline diamond films have attracted considerable attention because they have a low coefficient of friction and a low electron emission threshold voltage. In this paper, the author reviews the plasma-enhanced chemical vapor deposition (PE-CVD) of nanocrystalline diamond and mainly focuses on the growth of nanocrystalline diamond by low-pressure PE-CVD. Nanocrystalline diamond particles of 200–700
nm diameter have been prepared in a 13.56
MHz low-pressure inductively coupled CH
4/CO/H
2 plasma. The bonding state of carbon atoms was investigated by ultraviolet-excited Raman spectroscopy. Electron energy loss spectroscopy identified sp
2-bonded carbons around the 20–50
nm subgrains of nanocrystalline diamond particles. Plasma diagnostics using a Langmuir probe and the comparison with plasma simulation are also reviewed. The electron energy distribution functions are discussed by considering different inelastic interaction channels between electrons and heavy particles in a molecular CH
4/H
2 plasma.</description><identifier>ISSN: 1468-6996</identifier><identifier>EISSN: 1878-5514</identifier><identifier>DOI: 10.1016/j.stam.2007.08.008</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Atomic beam spectroscopy ; Carbon ; Channels ; chemical mapping ; Chemical vapor deposition ; Direct simulation Monte Carlo ; Electron energy distribution ; Electron energy distribution function ; Electron energy loss spectroscopy ; High-resolution electron energy loss spectroscopy ; Langmuir probe ; Low-pressure inductively coupled plasma ; Nanocrystalline diamond ; Nanocrystals ; Plasma diagnostics ; Resonance Raman scattering ; sp ; sp 2/sp 3 chemical mapping ; Threshold voltage ; UV Raman spectroscopy</subject><ispartof>Science and technology of advanced materials, 2007-10, Vol.8 (7), p.624-634</ispartof><rights>2007 NIMS and Elsevier Ltd</rights><rights>2007 Elsevier Science Ltd 2007</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c601t-5d0b79a7dea6ee1e4f45e23f76e173b60d80b05d56359194ca90039055b779a83</citedby><cites>FETCH-LOGICAL-c601t-5d0b79a7dea6ee1e4f45e23f76e173b60d80b05d56359194ca90039055b779a83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1016/j.stam.2007.08.008/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,864,1553,27628,27924,27925,53904,53931</link.rule.ids><linktorsrc>$$Uhttp://iopscience.iop.org/1468-6996/8/7-8/A12$$EView_record_in_IOP_Publishing$$FView_record_in_$$GIOP_Publishing</linktorsrc></links><search><creatorcontrib>Okada, Katsuyuki</creatorcontrib><title>Plasma-enhanced chemical vapor deposition of nanocrystalline diamond</title><title>Science and technology of advanced materials</title><description>Nanocrystalline diamond films have attracted considerable attention because they have a low coefficient of friction and a low electron emission threshold voltage. In this paper, the author reviews the plasma-enhanced chemical vapor deposition (PE-CVD) of nanocrystalline diamond and mainly focuses on the growth of nanocrystalline diamond by low-pressure PE-CVD. Nanocrystalline diamond particles of 200–700
nm diameter have been prepared in a 13.56
MHz low-pressure inductively coupled CH
4/CO/H
2 plasma. The bonding state of carbon atoms was investigated by ultraviolet-excited Raman spectroscopy. Electron energy loss spectroscopy identified sp
2-bonded carbons around the 20–50
nm subgrains of nanocrystalline diamond particles. Plasma diagnostics using a Langmuir probe and the comparison with plasma simulation are also reviewed. The electron energy distribution functions are discussed by considering different inelastic interaction channels between electrons and heavy particles in a molecular CH
4/H
2 plasma.</description><subject>Atomic beam spectroscopy</subject><subject>Carbon</subject><subject>Channels</subject><subject>chemical mapping</subject><subject>Chemical vapor deposition</subject><subject>Direct simulation Monte Carlo</subject><subject>Electron energy distribution</subject><subject>Electron energy distribution function</subject><subject>Electron energy loss spectroscopy</subject><subject>High-resolution electron energy loss spectroscopy</subject><subject>Langmuir probe</subject><subject>Low-pressure inductively coupled plasma</subject><subject>Nanocrystalline diamond</subject><subject>Nanocrystals</subject><subject>Plasma diagnostics</subject><subject>Resonance Raman scattering</subject><subject>sp</subject><subject>sp 2/sp 3 chemical mapping</subject><subject>Threshold voltage</subject><subject>UV Raman spectroscopy</subject><issn>1468-6996</issn><issn>1878-5514</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNp9kU1L5TAUhsvgwKgzf2BWXYkMtHPSNl_gLETnCwRd6DrkJqeYS5rUpCr335tyhdkMdxGSxfOeQ563qr4SaAkQ9n3b5kVPbQfAWxAtgPhQHRPBRUMpGY7Ke2CiYVKyT9VJzlsAYKQbjqvrO6_zpBsMjzoYtLV5xMkZ7esXPcdUW5xjdouLoY5jHXSIJu3KLu9dwNo6PcVgP1cfR-0zfnm_T6uHXz_vr_40N7e__15d3jSGAVkaamHDpeYWNUMkOIwDxa4fOUPC-w0DK2AD1FLWU0nkYLQE6CVQuuElJ_rT6mw_d07x6RnzoiaXDXqvA8bnrHoy9AwoL-D5QZCA6IgsrCxot0dNijknHNWc3KTTrkBqdau2anWrVrcKhCpuS-jbPuTi_I8vitWqWAnFy7kknZrtWODmP_Ch4T_e-TDGNOnXmLxVi975mMZUWnLrTw_lL_Z5LFW8OEwqG4druS6hWZSN7tD6N5lHsv8</recordid><startdate>20071001</startdate><enddate>20071001</enddate><creator>Okada, Katsuyuki</creator><general>Elsevier Ltd</general><general>Taylor & Francis</general><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20071001</creationdate><title>Plasma-enhanced chemical vapor deposition of nanocrystalline diamond</title><author>Okada, Katsuyuki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c601t-5d0b79a7dea6ee1e4f45e23f76e173b60d80b05d56359194ca90039055b779a83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Atomic beam spectroscopy</topic><topic>Carbon</topic><topic>Channels</topic><topic>chemical mapping</topic><topic>Chemical vapor deposition</topic><topic>Direct simulation Monte Carlo</topic><topic>Electron energy distribution</topic><topic>Electron energy distribution function</topic><topic>Electron energy loss spectroscopy</topic><topic>High-resolution electron energy loss spectroscopy</topic><topic>Langmuir probe</topic><topic>Low-pressure inductively coupled plasma</topic><topic>Nanocrystalline diamond</topic><topic>Nanocrystals</topic><topic>Plasma diagnostics</topic><topic>Resonance Raman scattering</topic><topic>sp</topic><topic>sp 2/sp 3 chemical mapping</topic><topic>Threshold voltage</topic><topic>UV Raman spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Okada, Katsuyuki</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Science and technology of advanced materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Okada, Katsuyuki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Plasma-enhanced chemical vapor deposition of nanocrystalline diamond</atitle><jtitle>Science and technology of advanced materials</jtitle><date>2007-10-01</date><risdate>2007</risdate><volume>8</volume><issue>7</issue><spage>624</spage><epage>634</epage><pages>624-634</pages><issn>1468-6996</issn><eissn>1878-5514</eissn><abstract>Nanocrystalline diamond films have attracted considerable attention because they have a low coefficient of friction and a low electron emission threshold voltage. In this paper, the author reviews the plasma-enhanced chemical vapor deposition (PE-CVD) of nanocrystalline diamond and mainly focuses on the growth of nanocrystalline diamond by low-pressure PE-CVD. Nanocrystalline diamond particles of 200–700
nm diameter have been prepared in a 13.56
MHz low-pressure inductively coupled CH
4/CO/H
2 plasma. The bonding state of carbon atoms was investigated by ultraviolet-excited Raman spectroscopy. Electron energy loss spectroscopy identified sp
2-bonded carbons around the 20–50
nm subgrains of nanocrystalline diamond particles. Plasma diagnostics using a Langmuir probe and the comparison with plasma simulation are also reviewed. The electron energy distribution functions are discussed by considering different inelastic interaction channels between electrons and heavy particles in a molecular CH
4/H
2 plasma.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.stam.2007.08.008</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1468-6996 |
ispartof | Science and technology of advanced materials, 2007-10, Vol.8 (7), p.624-634 |
issn | 1468-6996 1878-5514 |
language | eng |
recordid | cdi_proquest_miscellaneous_31436057 |
source | Institute of Physics Open Access Journal Titles |
subjects | Atomic beam spectroscopy Carbon Channels chemical mapping Chemical vapor deposition Direct simulation Monte Carlo Electron energy distribution Electron energy distribution function Electron energy loss spectroscopy High-resolution electron energy loss spectroscopy Langmuir probe Low-pressure inductively coupled plasma Nanocrystalline diamond Nanocrystals Plasma diagnostics Resonance Raman scattering sp sp 2/sp 3 chemical mapping Threshold voltage UV Raman spectroscopy |
title | Plasma-enhanced chemical vapor deposition of nanocrystalline diamond |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T08%3A34%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_O3W&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Plasma-enhanced%20chemical%20vapor%20deposition%20of%20nanocrystalline%20diamond&rft.jtitle=Science%20and%20technology%20of%20advanced%20materials&rft.au=Okada,%20Katsuyuki&rft.date=2007-10-01&rft.volume=8&rft.issue=7&rft.spage=624&rft.epage=634&rft.pages=624-634&rft.issn=1468-6996&rft.eissn=1878-5514&rft_id=info:doi/10.1016/j.stam.2007.08.008&rft_dat=%3Cproquest_O3W%3E31436057%3C/proquest_O3W%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1082193609&rft_id=info:pmid/&rft_els_id=S1468699607001416&rfr_iscdi=true |