Quantum spin Hall states in MX2 (M = Ru, Os; X = As, Sb) monolayers
The quantum spin Hall (QSH) effect has attracted extensive research interest due to its great promise in topological quantum computing and novel low-energy electronic devices. Here, using first-principles calculations, we find that MX2 (M = Ru and Os; X = As and Sb) monolayers are 2D topological ins...
Gespeichert in:
Veröffentlicht in: | Physical chemistry chemical physics : PCCP 2024-12, Vol.27 (1), p.156-163 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 163 |
---|---|
container_issue | 1 |
container_start_page | 156 |
container_title | Physical chemistry chemical physics : PCCP |
container_volume | 27 |
creator | Tao, Jing Liang, Dongmei Xiong, Yongchen Zhang, Jun Hu, Yongjin Zhang, Qin Lv, Dongyan He, Zhi Deng, Mingsen |
description | The quantum spin Hall (QSH) effect has attracted extensive research interest due to its great promise in topological quantum computing and novel low-energy electronic devices. Here, using first-principles calculations, we find that MX2 (M = Ru and Os; X = As and Sb) monolayers are 2D topological insulators (TIs). The spin–orbit coupling (SOC) band gaps for RuAs2, RuSb2, OsAs2, and OsSb2 monolayers are predicted to be 80, 131, 118, and 221 meV, respectively. Additionally, the nontrivial topological states are further confirmed by calculating the topological invariant and the appearance of gapless edge states. More interestingly, for RuSb2 and OsSb2 monolayers, the position of node points in energy can be effectively tuned by applying in-plane strain. Our results consistently indicate that all MX2 monolayers can serve as an effective platform for achieving the room-temperature QSH effect. |
doi_str_mv | 10.1039/d4cp04025b |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_3140930879</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3140930879</sourcerecordid><originalsourceid>FETCH-LOGICAL-p146t-353e551068aca41fe6b231c1b5c9094eb3bf9929da75deb9bb2a318aea9162933</originalsourceid><addsrcrecordid>eNpdjs9LwzAcxYMoOKcX_4KAlwmrfpNvkjaIh1HUCRvDX7DbSNoUNrK2Ns1h_70VxYOn9x58eO8RcsnghgHq21IULQjg0h6RERMKEw2ZOP7zqTolZyHsAIBJhiOSv0RT93FPQ7ut6dx4T0NvehfoEJdrTidLek9f45Suwh1dD34WpvTNXtN9UzfeHFwXzslJZXxwF786Jh-PD-_5PFmsnp7z2SJph_U-QYlOSgYqM4URrHLKcmQFs7LQoIWzaCutuS5NKktntbXcIMuMM5oprhHHZPLT23bNZ3Sh3-y3oXDem9o1MWyQCdAIWaoH9OofumtiVw_vviklUEgh8Qs_w1Xc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3146434545</pqid></control><display><type>article</type><title>Quantum spin Hall states in MX2 (M = Ru, Os; X = As, Sb) monolayers</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Tao, Jing ; Liang, Dongmei ; Xiong, Yongchen ; Zhang, Jun ; Hu, Yongjin ; Zhang, Qin ; Lv, Dongyan ; He, Zhi ; Deng, Mingsen</creator><creatorcontrib>Tao, Jing ; Liang, Dongmei ; Xiong, Yongchen ; Zhang, Jun ; Hu, Yongjin ; Zhang, Qin ; Lv, Dongyan ; He, Zhi ; Deng, Mingsen</creatorcontrib><description>The quantum spin Hall (QSH) effect has attracted extensive research interest due to its great promise in topological quantum computing and novel low-energy electronic devices. Here, using first-principles calculations, we find that MX2 (M = Ru and Os; X = As and Sb) monolayers are 2D topological insulators (TIs). The spin–orbit coupling (SOC) band gaps for RuAs2, RuSb2, OsAs2, and OsSb2 monolayers are predicted to be 80, 131, 118, and 221 meV, respectively. Additionally, the nontrivial topological states are further confirmed by calculating the topological invariant and the appearance of gapless edge states. More interestingly, for RuSb2 and OsSb2 monolayers, the position of node points in energy can be effectively tuned by applying in-plane strain. Our results consistently indicate that all MX2 monolayers can serve as an effective platform for achieving the room-temperature QSH effect.</description><identifier>ISSN: 1463-9076</identifier><identifier>ISSN: 1463-9084</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/d4cp04025b</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Electron spin ; First principles ; Monolayers ; Plane strain ; Quantum computing ; Room temperature ; Spin-orbit interactions ; Topological insulators</subject><ispartof>Physical chemistry chemical physics : PCCP, 2024-12, Vol.27 (1), p.156-163</ispartof><rights>Copyright Royal Society of Chemistry 2025</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Tao, Jing</creatorcontrib><creatorcontrib>Liang, Dongmei</creatorcontrib><creatorcontrib>Xiong, Yongchen</creatorcontrib><creatorcontrib>Zhang, Jun</creatorcontrib><creatorcontrib>Hu, Yongjin</creatorcontrib><creatorcontrib>Zhang, Qin</creatorcontrib><creatorcontrib>Lv, Dongyan</creatorcontrib><creatorcontrib>He, Zhi</creatorcontrib><creatorcontrib>Deng, Mingsen</creatorcontrib><title>Quantum spin Hall states in MX2 (M = Ru, Os; X = As, Sb) monolayers</title><title>Physical chemistry chemical physics : PCCP</title><description>The quantum spin Hall (QSH) effect has attracted extensive research interest due to its great promise in topological quantum computing and novel low-energy electronic devices. Here, using first-principles calculations, we find that MX2 (M = Ru and Os; X = As and Sb) monolayers are 2D topological insulators (TIs). The spin–orbit coupling (SOC) band gaps for RuAs2, RuSb2, OsAs2, and OsSb2 monolayers are predicted to be 80, 131, 118, and 221 meV, respectively. Additionally, the nontrivial topological states are further confirmed by calculating the topological invariant and the appearance of gapless edge states. More interestingly, for RuSb2 and OsSb2 monolayers, the position of node points in energy can be effectively tuned by applying in-plane strain. Our results consistently indicate that all MX2 monolayers can serve as an effective platform for achieving the room-temperature QSH effect.</description><subject>Electron spin</subject><subject>First principles</subject><subject>Monolayers</subject><subject>Plane strain</subject><subject>Quantum computing</subject><subject>Room temperature</subject><subject>Spin-orbit interactions</subject><subject>Topological insulators</subject><issn>1463-9076</issn><issn>1463-9084</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpdjs9LwzAcxYMoOKcX_4KAlwmrfpNvkjaIh1HUCRvDX7DbSNoUNrK2Ns1h_70VxYOn9x58eO8RcsnghgHq21IULQjg0h6RERMKEw2ZOP7zqTolZyHsAIBJhiOSv0RT93FPQ7ut6dx4T0NvehfoEJdrTidLek9f45Suwh1dD34WpvTNXtN9UzfeHFwXzslJZXxwF786Jh-PD-_5PFmsnp7z2SJph_U-QYlOSgYqM4URrHLKcmQFs7LQoIWzaCutuS5NKktntbXcIMuMM5oprhHHZPLT23bNZ3Sh3-y3oXDem9o1MWyQCdAIWaoH9OofumtiVw_vviklUEgh8Qs_w1Xc</recordid><startdate>20241218</startdate><enddate>20241218</enddate><creator>Tao, Jing</creator><creator>Liang, Dongmei</creator><creator>Xiong, Yongchen</creator><creator>Zhang, Jun</creator><creator>Hu, Yongjin</creator><creator>Zhang, Qin</creator><creator>Lv, Dongyan</creator><creator>He, Zhi</creator><creator>Deng, Mingsen</creator><general>Royal Society of Chemistry</general><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20241218</creationdate><title>Quantum spin Hall states in MX2 (M = Ru, Os; X = As, Sb) monolayers</title><author>Tao, Jing ; Liang, Dongmei ; Xiong, Yongchen ; Zhang, Jun ; Hu, Yongjin ; Zhang, Qin ; Lv, Dongyan ; He, Zhi ; Deng, Mingsen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p146t-353e551068aca41fe6b231c1b5c9094eb3bf9929da75deb9bb2a318aea9162933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Electron spin</topic><topic>First principles</topic><topic>Monolayers</topic><topic>Plane strain</topic><topic>Quantum computing</topic><topic>Room temperature</topic><topic>Spin-orbit interactions</topic><topic>Topological insulators</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tao, Jing</creatorcontrib><creatorcontrib>Liang, Dongmei</creatorcontrib><creatorcontrib>Xiong, Yongchen</creatorcontrib><creatorcontrib>Zhang, Jun</creatorcontrib><creatorcontrib>Hu, Yongjin</creatorcontrib><creatorcontrib>Zhang, Qin</creatorcontrib><creatorcontrib>Lv, Dongyan</creatorcontrib><creatorcontrib>He, Zhi</creatorcontrib><creatorcontrib>Deng, Mingsen</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tao, Jing</au><au>Liang, Dongmei</au><au>Xiong, Yongchen</au><au>Zhang, Jun</au><au>Hu, Yongjin</au><au>Zhang, Qin</au><au>Lv, Dongyan</au><au>He, Zhi</au><au>Deng, Mingsen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantum spin Hall states in MX2 (M = Ru, Os; X = As, Sb) monolayers</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><date>2024-12-18</date><risdate>2024</risdate><volume>27</volume><issue>1</issue><spage>156</spage><epage>163</epage><pages>156-163</pages><issn>1463-9076</issn><issn>1463-9084</issn><eissn>1463-9084</eissn><abstract>The quantum spin Hall (QSH) effect has attracted extensive research interest due to its great promise in topological quantum computing and novel low-energy electronic devices. Here, using first-principles calculations, we find that MX2 (M = Ru and Os; X = As and Sb) monolayers are 2D topological insulators (TIs). The spin–orbit coupling (SOC) band gaps for RuAs2, RuSb2, OsAs2, and OsSb2 monolayers are predicted to be 80, 131, 118, and 221 meV, respectively. Additionally, the nontrivial topological states are further confirmed by calculating the topological invariant and the appearance of gapless edge states. More interestingly, for RuSb2 and OsSb2 monolayers, the position of node points in energy can be effectively tuned by applying in-plane strain. Our results consistently indicate that all MX2 monolayers can serve as an effective platform for achieving the room-temperature QSH effect.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d4cp04025b</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1463-9076 |
ispartof | Physical chemistry chemical physics : PCCP, 2024-12, Vol.27 (1), p.156-163 |
issn | 1463-9076 1463-9084 1463-9084 |
language | eng |
recordid | cdi_proquest_miscellaneous_3140930879 |
source | Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection |
subjects | Electron spin First principles Monolayers Plane strain Quantum computing Room temperature Spin-orbit interactions Topological insulators |
title | Quantum spin Hall states in MX2 (M = Ru, Os; X = As, Sb) monolayers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T00%3A47%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantum%20spin%20Hall%20states%20in%20MX2%20(M%20=%20Ru,%20Os;%20X%20=%20As,%20Sb)%20monolayers&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Tao,%20Jing&rft.date=2024-12-18&rft.volume=27&rft.issue=1&rft.spage=156&rft.epage=163&rft.pages=156-163&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/d4cp04025b&rft_dat=%3Cproquest%3E3140930879%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3146434545&rft_id=info:pmid/&rfr_iscdi=true |