Multicomponent Synthesis of 2,4,5-Trisubstituted Thiazoles Using a Sustainable Carbonaceous Catalyst and Assessment of Its Herbicidal and Antibacterial Potential
Herein, a novel, biocatalyzed, and on-water microwave-assisted multicomponent methodology have been developed for the synthesis of trisubstituted thiazoles (4a–4v). The reaction was catalyzed using a sulfonated peanut shell residue-derived carbonaceous catalyst (SPWB). The developed catalyst was cha...
Gespeichert in:
Veröffentlicht in: | Journal of agricultural and food chemistry 2024-12, Vol.72 (50), p.27762-27774 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 27774 |
---|---|
container_issue | 50 |
container_start_page | 27762 |
container_title | Journal of agricultural and food chemistry |
container_volume | 72 |
creator | Shweta Chahal, Sandhya Kumar Dhaka, Rahul Rana, Anuj Joshi, Gaurav Singh, Rajvir Singh, Snigdha Singh, Devender Kumar, Parvin Sindhu, Jayant |
description | Herein, a novel, biocatalyzed, and on-water microwave-assisted multicomponent methodology have been developed for the synthesis of trisubstituted thiazoles (4a–4v). The reaction was catalyzed using a sulfonated peanut shell residue-derived carbonaceous catalyst (SPWB). The developed catalyst was characterized using Fourier transform infrared (FTIR), a Brunauer–Emmett–Teller (BET) surface area analyzer, a field emission scanning electron microscope (FE-SEM), energy-dispersive X-ray (EDX), and a particle size analyzer (PSA). The acidic sites have been established using acid–base back-titration methods. The molecular structures of all the synthesized compounds were validated using FT-IR, 1H NMR, 13C NMR, elemental, and HRMS analyses. Herbicidal potential was evaluated by using Raphanus sativus L. as a model. Furthermore, the antibacterial potential of thiazoles was evaluated against Staphylococcus aureus, Bacillus subtilis, Xanthomonas campestris, Escherichia coli, Micrococcus luteus, and Pseudomonas aeruginosa bacterial strains. The compound 4r displayed improved seed growth inhibition in Raphanus sativus L. versus a commercially available herbicide, i.e., pendimethalin. The antibacterial activity was promising against bacterial strains (MIC: 4–64 μg/mL). The compound 4r was the most potent against P. aeruginosa and S. aureus (MIC: 0.0076 μM) versus standard drug streptomycin (MIC: 0.0138 μM). Moreover, in silico studies performed with the most effective compound 4r against P. aeruginosa revealed its potential binding mode within the protein binding pocket. The biological data revealed compound 4r as a potential candidate for the development of potent herbicidal and antibacterial agents. In a nutshell, this study offers peanut shell biowaste to be a sustainable biomass for heterogeneous acid catalyst preparation and its application in the multicomponent synthesis of bioactive thiazoles, accommodating the concept of sustainable development goals and circular bioeconomy. |
doi_str_mv | 10.1021/acs.jafc.4c05293 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3140930732</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3154242301</sourcerecordid><originalsourceid>FETCH-LOGICAL-a252t-99155590352b97b4cba374fda733b2b2c26265506f801dbd13971abdcdbaa3d33</originalsourceid><addsrcrecordid>eNqNkctuEzEYhS1ERUPbPSvkJYtM8GU8k1lWUaGViqjUdD36fRnqasYO_j2L8Da8KQ4J7JBY-fadY9kfIe84W3Em-EcwuHqBwaxqw5To5Cuy4EqwSnG-fk0WrDDVWjX8nLxFfGGMrVXL3pBz2TWyHMoF-fllHrM3cdrF4EKmj_uQnx16pHGgYlkvVbVNHmeN2ec5O0u3zx5-xNEhfUIfvlGgjzNm8AH06OgGko4BjIszlkWGcY-ZQrD0GtEhTodLSvVdRnrrkvbGWxiPQMheg8ku-bLzEHNBy-ySnA0wors6jRfk6dPNdnNb3X_9fLe5vq9AKJGrruNKqY5JJXTX6tpokG09WGil1EILIxrRKMWaYc241ZbLruWgrbEaQFopL8iHY-8uxe-zw9xPHo0bRwiHx_SSq1rUQjL-H2jNOslaKQrKjqhJETG5od8lP0Ha95z1B4d9cdgfHPYnhyXy_tQ-68nZv4E_0gqwPAK_o3FOofzLv_t-AZQ-qiY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3140930732</pqid></control><display><type>article</type><title>Multicomponent Synthesis of 2,4,5-Trisubstituted Thiazoles Using a Sustainable Carbonaceous Catalyst and Assessment of Its Herbicidal and Antibacterial Potential</title><source>MEDLINE</source><source>ACS Journals: American Chemical Society Web Editions</source><creator>Shweta ; Chahal, Sandhya ; Kumar Dhaka, Rahul ; Rana, Anuj ; Joshi, Gaurav ; Singh, Rajvir ; Singh, Snigdha ; Singh, Devender ; Kumar, Parvin ; Sindhu, Jayant</creator><creatorcontrib>Shweta ; Chahal, Sandhya ; Kumar Dhaka, Rahul ; Rana, Anuj ; Joshi, Gaurav ; Singh, Rajvir ; Singh, Snigdha ; Singh, Devender ; Kumar, Parvin ; Sindhu, Jayant</creatorcontrib><description>Herein, a novel, biocatalyzed, and on-water microwave-assisted multicomponent methodology have been developed for the synthesis of trisubstituted thiazoles (4a–4v). The reaction was catalyzed using a sulfonated peanut shell residue-derived carbonaceous catalyst (SPWB). The developed catalyst was characterized using Fourier transform infrared (FTIR), a Brunauer–Emmett–Teller (BET) surface area analyzer, a field emission scanning electron microscope (FE-SEM), energy-dispersive X-ray (EDX), and a particle size analyzer (PSA). The acidic sites have been established using acid–base back-titration methods. The molecular structures of all the synthesized compounds were validated using FT-IR, 1H NMR, 13C NMR, elemental, and HRMS analyses. Herbicidal potential was evaluated by using Raphanus sativus L. as a model. Furthermore, the antibacterial potential of thiazoles was evaluated against Staphylococcus aureus, Bacillus subtilis, Xanthomonas campestris, Escherichia coli, Micrococcus luteus, and Pseudomonas aeruginosa bacterial strains. The compound 4r displayed improved seed growth inhibition in Raphanus sativus L. versus a commercially available herbicide, i.e., pendimethalin. The antibacterial activity was promising against bacterial strains (MIC: 4–64 μg/mL). The compound 4r was the most potent against P. aeruginosa and S. aureus (MIC: 0.0076 μM) versus standard drug streptomycin (MIC: 0.0138 μM). Moreover, in silico studies performed with the most effective compound 4r against P. aeruginosa revealed its potential binding mode within the protein binding pocket. The biological data revealed compound 4r as a potential candidate for the development of potent herbicidal and antibacterial agents. In a nutshell, this study offers peanut shell biowaste to be a sustainable biomass for heterogeneous acid catalyst preparation and its application in the multicomponent synthesis of bioactive thiazoles, accommodating the concept of sustainable development goals and circular bioeconomy.</description><identifier>ISSN: 0021-8561</identifier><identifier>ISSN: 1520-5118</identifier><identifier>EISSN: 1520-5118</identifier><identifier>DOI: 10.1021/acs.jafc.4c05293</identifier><identifier>PMID: 39630023</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Agricultural and Environmental Chemistry ; Anti-Bacterial Agents - chemical synthesis ; Anti-Bacterial Agents - chemistry ; Anti-Bacterial Agents - pharmacology ; antibacterial properties ; Arachis - chemistry ; Arachis - growth & development ; Arachis - microbiology ; Bacillus subtilis ; Bacteria - drug effects ; Bacteria - growth & development ; biocatalysis ; bioeconomics ; biomass ; Carbon - chemistry ; Catalysis ; catalysts ; computer simulation ; Escherichia coli ; food chemistry ; Fourier transform infrared spectroscopy ; Green Chemistry Technology ; growth retardation ; Herbicides - chemical synthesis ; Herbicides - chemistry ; Herbicides - pharmacology ; Microbial Sensitivity Tests ; Micrococcus luteus ; microwave treatment ; Microwaves ; Molecular Structure ; particle size ; peanut hulls ; pendimethalin ; Pseudomonas aeruginosa ; Raphanus - chemistry ; Raphanus - drug effects ; Raphanus - growth & development ; Raphanus sativus ; seed growth ; Staphylococcus aureus ; streptomycin ; surface area ; sustainable development ; thiazoles ; Thiazoles - chemical synthesis ; Thiazoles - chemistry ; Thiazoles - pharmacology ; wastes ; X-radiation ; Xanthomonas campestris</subject><ispartof>Journal of agricultural and food chemistry, 2024-12, Vol.72 (50), p.27762-27774</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a252t-99155590352b97b4cba374fda733b2b2c26265506f801dbd13971abdcdbaa3d33</cites><orcidid>0000-0002-2635-6465 ; 0000-0002-7812-2871 ; 0000-0001-5451-8030 ; 0000-0003-0207-0662</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jafc.4c05293$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jafc.4c05293$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2756,27067,27915,27916,56729,56779</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39630023$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shweta</creatorcontrib><creatorcontrib>Chahal, Sandhya</creatorcontrib><creatorcontrib>Kumar Dhaka, Rahul</creatorcontrib><creatorcontrib>Rana, Anuj</creatorcontrib><creatorcontrib>Joshi, Gaurav</creatorcontrib><creatorcontrib>Singh, Rajvir</creatorcontrib><creatorcontrib>Singh, Snigdha</creatorcontrib><creatorcontrib>Singh, Devender</creatorcontrib><creatorcontrib>Kumar, Parvin</creatorcontrib><creatorcontrib>Sindhu, Jayant</creatorcontrib><title>Multicomponent Synthesis of 2,4,5-Trisubstituted Thiazoles Using a Sustainable Carbonaceous Catalyst and Assessment of Its Herbicidal and Antibacterial Potential</title><title>Journal of agricultural and food chemistry</title><addtitle>J. Agric. Food Chem</addtitle><description>Herein, a novel, biocatalyzed, and on-water microwave-assisted multicomponent methodology have been developed for the synthesis of trisubstituted thiazoles (4a–4v). The reaction was catalyzed using a sulfonated peanut shell residue-derived carbonaceous catalyst (SPWB). The developed catalyst was characterized using Fourier transform infrared (FTIR), a Brunauer–Emmett–Teller (BET) surface area analyzer, a field emission scanning electron microscope (FE-SEM), energy-dispersive X-ray (EDX), and a particle size analyzer (PSA). The acidic sites have been established using acid–base back-titration methods. The molecular structures of all the synthesized compounds were validated using FT-IR, 1H NMR, 13C NMR, elemental, and HRMS analyses. Herbicidal potential was evaluated by using Raphanus sativus L. as a model. Furthermore, the antibacterial potential of thiazoles was evaluated against Staphylococcus aureus, Bacillus subtilis, Xanthomonas campestris, Escherichia coli, Micrococcus luteus, and Pseudomonas aeruginosa bacterial strains. The compound 4r displayed improved seed growth inhibition in Raphanus sativus L. versus a commercially available herbicide, i.e., pendimethalin. The antibacterial activity was promising against bacterial strains (MIC: 4–64 μg/mL). The compound 4r was the most potent against P. aeruginosa and S. aureus (MIC: 0.0076 μM) versus standard drug streptomycin (MIC: 0.0138 μM). Moreover, in silico studies performed with the most effective compound 4r against P. aeruginosa revealed its potential binding mode within the protein binding pocket. The biological data revealed compound 4r as a potential candidate for the development of potent herbicidal and antibacterial agents. In a nutshell, this study offers peanut shell biowaste to be a sustainable biomass for heterogeneous acid catalyst preparation and its application in the multicomponent synthesis of bioactive thiazoles, accommodating the concept of sustainable development goals and circular bioeconomy.</description><subject>Agricultural and Environmental Chemistry</subject><subject>Anti-Bacterial Agents - chemical synthesis</subject><subject>Anti-Bacterial Agents - chemistry</subject><subject>Anti-Bacterial Agents - pharmacology</subject><subject>antibacterial properties</subject><subject>Arachis - chemistry</subject><subject>Arachis - growth & development</subject><subject>Arachis - microbiology</subject><subject>Bacillus subtilis</subject><subject>Bacteria - drug effects</subject><subject>Bacteria - growth & development</subject><subject>biocatalysis</subject><subject>bioeconomics</subject><subject>biomass</subject><subject>Carbon - chemistry</subject><subject>Catalysis</subject><subject>catalysts</subject><subject>computer simulation</subject><subject>Escherichia coli</subject><subject>food chemistry</subject><subject>Fourier transform infrared spectroscopy</subject><subject>Green Chemistry Technology</subject><subject>growth retardation</subject><subject>Herbicides - chemical synthesis</subject><subject>Herbicides - chemistry</subject><subject>Herbicides - pharmacology</subject><subject>Microbial Sensitivity Tests</subject><subject>Micrococcus luteus</subject><subject>microwave treatment</subject><subject>Microwaves</subject><subject>Molecular Structure</subject><subject>particle size</subject><subject>peanut hulls</subject><subject>pendimethalin</subject><subject>Pseudomonas aeruginosa</subject><subject>Raphanus - chemistry</subject><subject>Raphanus - drug effects</subject><subject>Raphanus - growth & development</subject><subject>Raphanus sativus</subject><subject>seed growth</subject><subject>Staphylococcus aureus</subject><subject>streptomycin</subject><subject>surface area</subject><subject>sustainable development</subject><subject>thiazoles</subject><subject>Thiazoles - chemical synthesis</subject><subject>Thiazoles - chemistry</subject><subject>Thiazoles - pharmacology</subject><subject>wastes</subject><subject>X-radiation</subject><subject>Xanthomonas campestris</subject><issn>0021-8561</issn><issn>1520-5118</issn><issn>1520-5118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkctuEzEYhS1ERUPbPSvkJYtM8GU8k1lWUaGViqjUdD36fRnqasYO_j2L8Da8KQ4J7JBY-fadY9kfIe84W3Em-EcwuHqBwaxqw5To5Cuy4EqwSnG-fk0WrDDVWjX8nLxFfGGMrVXL3pBz2TWyHMoF-fllHrM3cdrF4EKmj_uQnx16pHGgYlkvVbVNHmeN2ec5O0u3zx5-xNEhfUIfvlGgjzNm8AH06OgGko4BjIszlkWGcY-ZQrD0GtEhTodLSvVdRnrrkvbGWxiPQMheg8ku-bLzEHNBy-ySnA0wors6jRfk6dPNdnNb3X_9fLe5vq9AKJGrruNKqY5JJXTX6tpokG09WGil1EILIxrRKMWaYc241ZbLruWgrbEaQFopL8iHY-8uxe-zw9xPHo0bRwiHx_SSq1rUQjL-H2jNOslaKQrKjqhJETG5od8lP0Ha95z1B4d9cdgfHPYnhyXy_tQ-68nZv4E_0gqwPAK_o3FOofzLv_t-AZQ-qiY</recordid><startdate>20241218</startdate><enddate>20241218</enddate><creator>Shweta</creator><creator>Chahal, Sandhya</creator><creator>Kumar Dhaka, Rahul</creator><creator>Rana, Anuj</creator><creator>Joshi, Gaurav</creator><creator>Singh, Rajvir</creator><creator>Singh, Snigdha</creator><creator>Singh, Devender</creator><creator>Kumar, Parvin</creator><creator>Sindhu, Jayant</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0002-2635-6465</orcidid><orcidid>https://orcid.org/0000-0002-7812-2871</orcidid><orcidid>https://orcid.org/0000-0001-5451-8030</orcidid><orcidid>https://orcid.org/0000-0003-0207-0662</orcidid></search><sort><creationdate>20241218</creationdate><title>Multicomponent Synthesis of 2,4,5-Trisubstituted Thiazoles Using a Sustainable Carbonaceous Catalyst and Assessment of Its Herbicidal and Antibacterial Potential</title><author>Shweta ; Chahal, Sandhya ; Kumar Dhaka, Rahul ; Rana, Anuj ; Joshi, Gaurav ; Singh, Rajvir ; Singh, Snigdha ; Singh, Devender ; Kumar, Parvin ; Sindhu, Jayant</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a252t-99155590352b97b4cba374fda733b2b2c26265506f801dbd13971abdcdbaa3d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Agricultural and Environmental Chemistry</topic><topic>Anti-Bacterial Agents - chemical synthesis</topic><topic>Anti-Bacterial Agents - chemistry</topic><topic>Anti-Bacterial Agents - pharmacology</topic><topic>antibacterial properties</topic><topic>Arachis - chemistry</topic><topic>Arachis - growth & development</topic><topic>Arachis - microbiology</topic><topic>Bacillus subtilis</topic><topic>Bacteria - drug effects</topic><topic>Bacteria - growth & development</topic><topic>biocatalysis</topic><topic>bioeconomics</topic><topic>biomass</topic><topic>Carbon - chemistry</topic><topic>Catalysis</topic><topic>catalysts</topic><topic>computer simulation</topic><topic>Escherichia coli</topic><topic>food chemistry</topic><topic>Fourier transform infrared spectroscopy</topic><topic>Green Chemistry Technology</topic><topic>growth retardation</topic><topic>Herbicides - chemical synthesis</topic><topic>Herbicides - chemistry</topic><topic>Herbicides - pharmacology</topic><topic>Microbial Sensitivity Tests</topic><topic>Micrococcus luteus</topic><topic>microwave treatment</topic><topic>Microwaves</topic><topic>Molecular Structure</topic><topic>particle size</topic><topic>peanut hulls</topic><topic>pendimethalin</topic><topic>Pseudomonas aeruginosa</topic><topic>Raphanus - chemistry</topic><topic>Raphanus - drug effects</topic><topic>Raphanus - growth & development</topic><topic>Raphanus sativus</topic><topic>seed growth</topic><topic>Staphylococcus aureus</topic><topic>streptomycin</topic><topic>surface area</topic><topic>sustainable development</topic><topic>thiazoles</topic><topic>Thiazoles - chemical synthesis</topic><topic>Thiazoles - chemistry</topic><topic>Thiazoles - pharmacology</topic><topic>wastes</topic><topic>X-radiation</topic><topic>Xanthomonas campestris</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shweta</creatorcontrib><creatorcontrib>Chahal, Sandhya</creatorcontrib><creatorcontrib>Kumar Dhaka, Rahul</creatorcontrib><creatorcontrib>Rana, Anuj</creatorcontrib><creatorcontrib>Joshi, Gaurav</creatorcontrib><creatorcontrib>Singh, Rajvir</creatorcontrib><creatorcontrib>Singh, Snigdha</creatorcontrib><creatorcontrib>Singh, Devender</creatorcontrib><creatorcontrib>Kumar, Parvin</creatorcontrib><creatorcontrib>Sindhu, Jayant</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Journal of agricultural and food chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shweta</au><au>Chahal, Sandhya</au><au>Kumar Dhaka, Rahul</au><au>Rana, Anuj</au><au>Joshi, Gaurav</au><au>Singh, Rajvir</au><au>Singh, Snigdha</au><au>Singh, Devender</au><au>Kumar, Parvin</au><au>Sindhu, Jayant</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multicomponent Synthesis of 2,4,5-Trisubstituted Thiazoles Using a Sustainable Carbonaceous Catalyst and Assessment of Its Herbicidal and Antibacterial Potential</atitle><jtitle>Journal of agricultural and food chemistry</jtitle><addtitle>J. Agric. Food Chem</addtitle><date>2024-12-18</date><risdate>2024</risdate><volume>72</volume><issue>50</issue><spage>27762</spage><epage>27774</epage><pages>27762-27774</pages><issn>0021-8561</issn><issn>1520-5118</issn><eissn>1520-5118</eissn><abstract>Herein, a novel, biocatalyzed, and on-water microwave-assisted multicomponent methodology have been developed for the synthesis of trisubstituted thiazoles (4a–4v). The reaction was catalyzed using a sulfonated peanut shell residue-derived carbonaceous catalyst (SPWB). The developed catalyst was characterized using Fourier transform infrared (FTIR), a Brunauer–Emmett–Teller (BET) surface area analyzer, a field emission scanning electron microscope (FE-SEM), energy-dispersive X-ray (EDX), and a particle size analyzer (PSA). The acidic sites have been established using acid–base back-titration methods. The molecular structures of all the synthesized compounds were validated using FT-IR, 1H NMR, 13C NMR, elemental, and HRMS analyses. Herbicidal potential was evaluated by using Raphanus sativus L. as a model. Furthermore, the antibacterial potential of thiazoles was evaluated against Staphylococcus aureus, Bacillus subtilis, Xanthomonas campestris, Escherichia coli, Micrococcus luteus, and Pseudomonas aeruginosa bacterial strains. The compound 4r displayed improved seed growth inhibition in Raphanus sativus L. versus a commercially available herbicide, i.e., pendimethalin. The antibacterial activity was promising against bacterial strains (MIC: 4–64 μg/mL). The compound 4r was the most potent against P. aeruginosa and S. aureus (MIC: 0.0076 μM) versus standard drug streptomycin (MIC: 0.0138 μM). Moreover, in silico studies performed with the most effective compound 4r against P. aeruginosa revealed its potential binding mode within the protein binding pocket. The biological data revealed compound 4r as a potential candidate for the development of potent herbicidal and antibacterial agents. In a nutshell, this study offers peanut shell biowaste to be a sustainable biomass for heterogeneous acid catalyst preparation and its application in the multicomponent synthesis of bioactive thiazoles, accommodating the concept of sustainable development goals and circular bioeconomy.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>39630023</pmid><doi>10.1021/acs.jafc.4c05293</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-2635-6465</orcidid><orcidid>https://orcid.org/0000-0002-7812-2871</orcidid><orcidid>https://orcid.org/0000-0001-5451-8030</orcidid><orcidid>https://orcid.org/0000-0003-0207-0662</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8561 |
ispartof | Journal of agricultural and food chemistry, 2024-12, Vol.72 (50), p.27762-27774 |
issn | 0021-8561 1520-5118 1520-5118 |
language | eng |
recordid | cdi_proquest_miscellaneous_3140930732 |
source | MEDLINE; ACS Journals: American Chemical Society Web Editions |
subjects | Agricultural and Environmental Chemistry Anti-Bacterial Agents - chemical synthesis Anti-Bacterial Agents - chemistry Anti-Bacterial Agents - pharmacology antibacterial properties Arachis - chemistry Arachis - growth & development Arachis - microbiology Bacillus subtilis Bacteria - drug effects Bacteria - growth & development biocatalysis bioeconomics biomass Carbon - chemistry Catalysis catalysts computer simulation Escherichia coli food chemistry Fourier transform infrared spectroscopy Green Chemistry Technology growth retardation Herbicides - chemical synthesis Herbicides - chemistry Herbicides - pharmacology Microbial Sensitivity Tests Micrococcus luteus microwave treatment Microwaves Molecular Structure particle size peanut hulls pendimethalin Pseudomonas aeruginosa Raphanus - chemistry Raphanus - drug effects Raphanus - growth & development Raphanus sativus seed growth Staphylococcus aureus streptomycin surface area sustainable development thiazoles Thiazoles - chemical synthesis Thiazoles - chemistry Thiazoles - pharmacology wastes X-radiation Xanthomonas campestris |
title | Multicomponent Synthesis of 2,4,5-Trisubstituted Thiazoles Using a Sustainable Carbonaceous Catalyst and Assessment of Its Herbicidal and Antibacterial Potential |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T19%3A31%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multicomponent%20Synthesis%20of%202,4,5-Trisubstituted%20Thiazoles%20Using%20a%20Sustainable%20Carbonaceous%20Catalyst%20and%20Assessment%20of%20Its%20Herbicidal%20and%20Antibacterial%20Potential&rft.jtitle=Journal%20of%20agricultural%20and%20food%20chemistry&rft.au=Shweta&rft.date=2024-12-18&rft.volume=72&rft.issue=50&rft.spage=27762&rft.epage=27774&rft.pages=27762-27774&rft.issn=0021-8561&rft.eissn=1520-5118&rft_id=info:doi/10.1021/acs.jafc.4c05293&rft_dat=%3Cproquest_cross%3E3154242301%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3140930732&rft_id=info:pmid/39630023&rfr_iscdi=true |