Multicomponent Synthesis of 2,4,5-Trisubstituted Thiazoles Using a Sustainable Carbonaceous Catalyst and Assessment of Its Herbicidal and Antibacterial Potential

Herein, a novel, biocatalyzed, and on-water microwave-assisted multicomponent methodology have been developed for the synthesis of trisubstituted thiazoles (4a–4v). The reaction was catalyzed using a sulfonated peanut shell residue-derived carbonaceous catalyst (SPWB). The developed catalyst was cha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of agricultural and food chemistry 2024-12, Vol.72 (50), p.27762-27774
Hauptverfasser: Shweta, Chahal, Sandhya, Kumar Dhaka, Rahul, Rana, Anuj, Joshi, Gaurav, Singh, Rajvir, Singh, Snigdha, Singh, Devender, Kumar, Parvin, Sindhu, Jayant
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 27774
container_issue 50
container_start_page 27762
container_title Journal of agricultural and food chemistry
container_volume 72
creator Shweta
Chahal, Sandhya
Kumar Dhaka, Rahul
Rana, Anuj
Joshi, Gaurav
Singh, Rajvir
Singh, Snigdha
Singh, Devender
Kumar, Parvin
Sindhu, Jayant
description Herein, a novel, biocatalyzed, and on-water microwave-assisted multicomponent methodology have been developed for the synthesis of trisubstituted thiazoles (4a–4v). The reaction was catalyzed using a sulfonated peanut shell residue-derived carbonaceous catalyst (SPWB). The developed catalyst was characterized using Fourier transform infrared (FTIR), a Brunauer–Emmett–Teller (BET) surface area analyzer, a field emission scanning electron microscope (FE-SEM), energy-dispersive X-ray (EDX), and a particle size analyzer (PSA). The acidic sites have been established using acid–base back-titration methods. The molecular structures of all the synthesized compounds were validated using FT-IR, 1H NMR, 13C NMR, elemental, and HRMS analyses. Herbicidal potential was evaluated by using Raphanus sativus L. as a model. Furthermore, the antibacterial potential of thiazoles was evaluated against Staphylococcus aureus, Bacillus subtilis, Xanthomonas campestris, Escherichia coli, Micrococcus luteus, and Pseudomonas aeruginosa bacterial strains. The compound 4r displayed improved seed growth inhibition in Raphanus sativus L. versus a commercially available herbicide, i.e., pendimethalin. The antibacterial activity was promising against bacterial strains (MIC: 4–64 μg/mL). The compound 4r was the most potent against P. aeruginosa and S. aureus (MIC: 0.0076 μM) versus standard drug streptomycin (MIC: 0.0138 μM). Moreover, in silico studies performed with the most effective compound 4r against P. aeruginosa revealed its potential binding mode within the protein binding pocket. The biological data revealed compound 4r as a potential candidate for the development of potent herbicidal and antibacterial agents. In a nutshell, this study offers peanut shell biowaste to be a sustainable biomass for heterogeneous acid catalyst preparation and its application in the multicomponent synthesis of bioactive thiazoles, accommodating the concept of sustainable development goals and circular bioeconomy.
doi_str_mv 10.1021/acs.jafc.4c05293
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3140930732</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3154242301</sourcerecordid><originalsourceid>FETCH-LOGICAL-a252t-99155590352b97b4cba374fda733b2b2c26265506f801dbd13971abdcdbaa3d33</originalsourceid><addsrcrecordid>eNqNkctuEzEYhS1ERUPbPSvkJYtM8GU8k1lWUaGViqjUdD36fRnqasYO_j2L8Da8KQ4J7JBY-fadY9kfIe84W3Em-EcwuHqBwaxqw5To5Cuy4EqwSnG-fk0WrDDVWjX8nLxFfGGMrVXL3pBz2TWyHMoF-fllHrM3cdrF4EKmj_uQnx16pHGgYlkvVbVNHmeN2ec5O0u3zx5-xNEhfUIfvlGgjzNm8AH06OgGko4BjIszlkWGcY-ZQrD0GtEhTodLSvVdRnrrkvbGWxiPQMheg8ku-bLzEHNBy-ySnA0wors6jRfk6dPNdnNb3X_9fLe5vq9AKJGrruNKqY5JJXTX6tpokG09WGil1EILIxrRKMWaYc241ZbLruWgrbEaQFopL8iHY-8uxe-zw9xPHo0bRwiHx_SSq1rUQjL-H2jNOslaKQrKjqhJETG5od8lP0Ha95z1B4d9cdgfHPYnhyXy_tQ-68nZv4E_0gqwPAK_o3FOofzLv_t-AZQ-qiY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3140930732</pqid></control><display><type>article</type><title>Multicomponent Synthesis of 2,4,5-Trisubstituted Thiazoles Using a Sustainable Carbonaceous Catalyst and Assessment of Its Herbicidal and Antibacterial Potential</title><source>MEDLINE</source><source>ACS Journals: American Chemical Society Web Editions</source><creator>Shweta ; Chahal, Sandhya ; Kumar Dhaka, Rahul ; Rana, Anuj ; Joshi, Gaurav ; Singh, Rajvir ; Singh, Snigdha ; Singh, Devender ; Kumar, Parvin ; Sindhu, Jayant</creator><creatorcontrib>Shweta ; Chahal, Sandhya ; Kumar Dhaka, Rahul ; Rana, Anuj ; Joshi, Gaurav ; Singh, Rajvir ; Singh, Snigdha ; Singh, Devender ; Kumar, Parvin ; Sindhu, Jayant</creatorcontrib><description>Herein, a novel, biocatalyzed, and on-water microwave-assisted multicomponent methodology have been developed for the synthesis of trisubstituted thiazoles (4a–4v). The reaction was catalyzed using a sulfonated peanut shell residue-derived carbonaceous catalyst (SPWB). The developed catalyst was characterized using Fourier transform infrared (FTIR), a Brunauer–Emmett–Teller (BET) surface area analyzer, a field emission scanning electron microscope (FE-SEM), energy-dispersive X-ray (EDX), and a particle size analyzer (PSA). The acidic sites have been established using acid–base back-titration methods. The molecular structures of all the synthesized compounds were validated using FT-IR, 1H NMR, 13C NMR, elemental, and HRMS analyses. Herbicidal potential was evaluated by using Raphanus sativus L. as a model. Furthermore, the antibacterial potential of thiazoles was evaluated against Staphylococcus aureus, Bacillus subtilis, Xanthomonas campestris, Escherichia coli, Micrococcus luteus, and Pseudomonas aeruginosa bacterial strains. The compound 4r displayed improved seed growth inhibition in Raphanus sativus L. versus a commercially available herbicide, i.e., pendimethalin. The antibacterial activity was promising against bacterial strains (MIC: 4–64 μg/mL). The compound 4r was the most potent against P. aeruginosa and S. aureus (MIC: 0.0076 μM) versus standard drug streptomycin (MIC: 0.0138 μM). Moreover, in silico studies performed with the most effective compound 4r against P. aeruginosa revealed its potential binding mode within the protein binding pocket. The biological data revealed compound 4r as a potential candidate for the development of potent herbicidal and antibacterial agents. In a nutshell, this study offers peanut shell biowaste to be a sustainable biomass for heterogeneous acid catalyst preparation and its application in the multicomponent synthesis of bioactive thiazoles, accommodating the concept of sustainable development goals and circular bioeconomy.</description><identifier>ISSN: 0021-8561</identifier><identifier>ISSN: 1520-5118</identifier><identifier>EISSN: 1520-5118</identifier><identifier>DOI: 10.1021/acs.jafc.4c05293</identifier><identifier>PMID: 39630023</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Agricultural and Environmental Chemistry ; Anti-Bacterial Agents - chemical synthesis ; Anti-Bacterial Agents - chemistry ; Anti-Bacterial Agents - pharmacology ; antibacterial properties ; Arachis - chemistry ; Arachis - growth &amp; development ; Arachis - microbiology ; Bacillus subtilis ; Bacteria - drug effects ; Bacteria - growth &amp; development ; biocatalysis ; bioeconomics ; biomass ; Carbon - chemistry ; Catalysis ; catalysts ; computer simulation ; Escherichia coli ; food chemistry ; Fourier transform infrared spectroscopy ; Green Chemistry Technology ; growth retardation ; Herbicides - chemical synthesis ; Herbicides - chemistry ; Herbicides - pharmacology ; Microbial Sensitivity Tests ; Micrococcus luteus ; microwave treatment ; Microwaves ; Molecular Structure ; particle size ; peanut hulls ; pendimethalin ; Pseudomonas aeruginosa ; Raphanus - chemistry ; Raphanus - drug effects ; Raphanus - growth &amp; development ; Raphanus sativus ; seed growth ; Staphylococcus aureus ; streptomycin ; surface area ; sustainable development ; thiazoles ; Thiazoles - chemical synthesis ; Thiazoles - chemistry ; Thiazoles - pharmacology ; wastes ; X-radiation ; Xanthomonas campestris</subject><ispartof>Journal of agricultural and food chemistry, 2024-12, Vol.72 (50), p.27762-27774</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a252t-99155590352b97b4cba374fda733b2b2c26265506f801dbd13971abdcdbaa3d33</cites><orcidid>0000-0002-2635-6465 ; 0000-0002-7812-2871 ; 0000-0001-5451-8030 ; 0000-0003-0207-0662</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jafc.4c05293$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jafc.4c05293$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2756,27067,27915,27916,56729,56779</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39630023$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shweta</creatorcontrib><creatorcontrib>Chahal, Sandhya</creatorcontrib><creatorcontrib>Kumar Dhaka, Rahul</creatorcontrib><creatorcontrib>Rana, Anuj</creatorcontrib><creatorcontrib>Joshi, Gaurav</creatorcontrib><creatorcontrib>Singh, Rajvir</creatorcontrib><creatorcontrib>Singh, Snigdha</creatorcontrib><creatorcontrib>Singh, Devender</creatorcontrib><creatorcontrib>Kumar, Parvin</creatorcontrib><creatorcontrib>Sindhu, Jayant</creatorcontrib><title>Multicomponent Synthesis of 2,4,5-Trisubstituted Thiazoles Using a Sustainable Carbonaceous Catalyst and Assessment of Its Herbicidal and Antibacterial Potential</title><title>Journal of agricultural and food chemistry</title><addtitle>J. Agric. Food Chem</addtitle><description>Herein, a novel, biocatalyzed, and on-water microwave-assisted multicomponent methodology have been developed for the synthesis of trisubstituted thiazoles (4a–4v). The reaction was catalyzed using a sulfonated peanut shell residue-derived carbonaceous catalyst (SPWB). The developed catalyst was characterized using Fourier transform infrared (FTIR), a Brunauer–Emmett–Teller (BET) surface area analyzer, a field emission scanning electron microscope (FE-SEM), energy-dispersive X-ray (EDX), and a particle size analyzer (PSA). The acidic sites have been established using acid–base back-titration methods. The molecular structures of all the synthesized compounds were validated using FT-IR, 1H NMR, 13C NMR, elemental, and HRMS analyses. Herbicidal potential was evaluated by using Raphanus sativus L. as a model. Furthermore, the antibacterial potential of thiazoles was evaluated against Staphylococcus aureus, Bacillus subtilis, Xanthomonas campestris, Escherichia coli, Micrococcus luteus, and Pseudomonas aeruginosa bacterial strains. The compound 4r displayed improved seed growth inhibition in Raphanus sativus L. versus a commercially available herbicide, i.e., pendimethalin. The antibacterial activity was promising against bacterial strains (MIC: 4–64 μg/mL). The compound 4r was the most potent against P. aeruginosa and S. aureus (MIC: 0.0076 μM) versus standard drug streptomycin (MIC: 0.0138 μM). Moreover, in silico studies performed with the most effective compound 4r against P. aeruginosa revealed its potential binding mode within the protein binding pocket. The biological data revealed compound 4r as a potential candidate for the development of potent herbicidal and antibacterial agents. In a nutshell, this study offers peanut shell biowaste to be a sustainable biomass for heterogeneous acid catalyst preparation and its application in the multicomponent synthesis of bioactive thiazoles, accommodating the concept of sustainable development goals and circular bioeconomy.</description><subject>Agricultural and Environmental Chemistry</subject><subject>Anti-Bacterial Agents - chemical synthesis</subject><subject>Anti-Bacterial Agents - chemistry</subject><subject>Anti-Bacterial Agents - pharmacology</subject><subject>antibacterial properties</subject><subject>Arachis - chemistry</subject><subject>Arachis - growth &amp; development</subject><subject>Arachis - microbiology</subject><subject>Bacillus subtilis</subject><subject>Bacteria - drug effects</subject><subject>Bacteria - growth &amp; development</subject><subject>biocatalysis</subject><subject>bioeconomics</subject><subject>biomass</subject><subject>Carbon - chemistry</subject><subject>Catalysis</subject><subject>catalysts</subject><subject>computer simulation</subject><subject>Escherichia coli</subject><subject>food chemistry</subject><subject>Fourier transform infrared spectroscopy</subject><subject>Green Chemistry Technology</subject><subject>growth retardation</subject><subject>Herbicides - chemical synthesis</subject><subject>Herbicides - chemistry</subject><subject>Herbicides - pharmacology</subject><subject>Microbial Sensitivity Tests</subject><subject>Micrococcus luteus</subject><subject>microwave treatment</subject><subject>Microwaves</subject><subject>Molecular Structure</subject><subject>particle size</subject><subject>peanut hulls</subject><subject>pendimethalin</subject><subject>Pseudomonas aeruginosa</subject><subject>Raphanus - chemistry</subject><subject>Raphanus - drug effects</subject><subject>Raphanus - growth &amp; development</subject><subject>Raphanus sativus</subject><subject>seed growth</subject><subject>Staphylococcus aureus</subject><subject>streptomycin</subject><subject>surface area</subject><subject>sustainable development</subject><subject>thiazoles</subject><subject>Thiazoles - chemical synthesis</subject><subject>Thiazoles - chemistry</subject><subject>Thiazoles - pharmacology</subject><subject>wastes</subject><subject>X-radiation</subject><subject>Xanthomonas campestris</subject><issn>0021-8561</issn><issn>1520-5118</issn><issn>1520-5118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkctuEzEYhS1ERUPbPSvkJYtM8GU8k1lWUaGViqjUdD36fRnqasYO_j2L8Da8KQ4J7JBY-fadY9kfIe84W3Em-EcwuHqBwaxqw5To5Cuy4EqwSnG-fk0WrDDVWjX8nLxFfGGMrVXL3pBz2TWyHMoF-fllHrM3cdrF4EKmj_uQnx16pHGgYlkvVbVNHmeN2ec5O0u3zx5-xNEhfUIfvlGgjzNm8AH06OgGko4BjIszlkWGcY-ZQrD0GtEhTodLSvVdRnrrkvbGWxiPQMheg8ku-bLzEHNBy-ySnA0wors6jRfk6dPNdnNb3X_9fLe5vq9AKJGrruNKqY5JJXTX6tpokG09WGil1EILIxrRKMWaYc241ZbLruWgrbEaQFopL8iHY-8uxe-zw9xPHo0bRwiHx_SSq1rUQjL-H2jNOslaKQrKjqhJETG5od8lP0Ha95z1B4d9cdgfHPYnhyXy_tQ-68nZv4E_0gqwPAK_o3FOofzLv_t-AZQ-qiY</recordid><startdate>20241218</startdate><enddate>20241218</enddate><creator>Shweta</creator><creator>Chahal, Sandhya</creator><creator>Kumar Dhaka, Rahul</creator><creator>Rana, Anuj</creator><creator>Joshi, Gaurav</creator><creator>Singh, Rajvir</creator><creator>Singh, Snigdha</creator><creator>Singh, Devender</creator><creator>Kumar, Parvin</creator><creator>Sindhu, Jayant</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0002-2635-6465</orcidid><orcidid>https://orcid.org/0000-0002-7812-2871</orcidid><orcidid>https://orcid.org/0000-0001-5451-8030</orcidid><orcidid>https://orcid.org/0000-0003-0207-0662</orcidid></search><sort><creationdate>20241218</creationdate><title>Multicomponent Synthesis of 2,4,5-Trisubstituted Thiazoles Using a Sustainable Carbonaceous Catalyst and Assessment of Its Herbicidal and Antibacterial Potential</title><author>Shweta ; Chahal, Sandhya ; Kumar Dhaka, Rahul ; Rana, Anuj ; Joshi, Gaurav ; Singh, Rajvir ; Singh, Snigdha ; Singh, Devender ; Kumar, Parvin ; Sindhu, Jayant</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a252t-99155590352b97b4cba374fda733b2b2c26265506f801dbd13971abdcdbaa3d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Agricultural and Environmental Chemistry</topic><topic>Anti-Bacterial Agents - chemical synthesis</topic><topic>Anti-Bacterial Agents - chemistry</topic><topic>Anti-Bacterial Agents - pharmacology</topic><topic>antibacterial properties</topic><topic>Arachis - chemistry</topic><topic>Arachis - growth &amp; development</topic><topic>Arachis - microbiology</topic><topic>Bacillus subtilis</topic><topic>Bacteria - drug effects</topic><topic>Bacteria - growth &amp; development</topic><topic>biocatalysis</topic><topic>bioeconomics</topic><topic>biomass</topic><topic>Carbon - chemistry</topic><topic>Catalysis</topic><topic>catalysts</topic><topic>computer simulation</topic><topic>Escherichia coli</topic><topic>food chemistry</topic><topic>Fourier transform infrared spectroscopy</topic><topic>Green Chemistry Technology</topic><topic>growth retardation</topic><topic>Herbicides - chemical synthesis</topic><topic>Herbicides - chemistry</topic><topic>Herbicides - pharmacology</topic><topic>Microbial Sensitivity Tests</topic><topic>Micrococcus luteus</topic><topic>microwave treatment</topic><topic>Microwaves</topic><topic>Molecular Structure</topic><topic>particle size</topic><topic>peanut hulls</topic><topic>pendimethalin</topic><topic>Pseudomonas aeruginosa</topic><topic>Raphanus - chemistry</topic><topic>Raphanus - drug effects</topic><topic>Raphanus - growth &amp; development</topic><topic>Raphanus sativus</topic><topic>seed growth</topic><topic>Staphylococcus aureus</topic><topic>streptomycin</topic><topic>surface area</topic><topic>sustainable development</topic><topic>thiazoles</topic><topic>Thiazoles - chemical synthesis</topic><topic>Thiazoles - chemistry</topic><topic>Thiazoles - pharmacology</topic><topic>wastes</topic><topic>X-radiation</topic><topic>Xanthomonas campestris</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shweta</creatorcontrib><creatorcontrib>Chahal, Sandhya</creatorcontrib><creatorcontrib>Kumar Dhaka, Rahul</creatorcontrib><creatorcontrib>Rana, Anuj</creatorcontrib><creatorcontrib>Joshi, Gaurav</creatorcontrib><creatorcontrib>Singh, Rajvir</creatorcontrib><creatorcontrib>Singh, Snigdha</creatorcontrib><creatorcontrib>Singh, Devender</creatorcontrib><creatorcontrib>Kumar, Parvin</creatorcontrib><creatorcontrib>Sindhu, Jayant</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Journal of agricultural and food chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shweta</au><au>Chahal, Sandhya</au><au>Kumar Dhaka, Rahul</au><au>Rana, Anuj</au><au>Joshi, Gaurav</au><au>Singh, Rajvir</au><au>Singh, Snigdha</au><au>Singh, Devender</au><au>Kumar, Parvin</au><au>Sindhu, Jayant</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multicomponent Synthesis of 2,4,5-Trisubstituted Thiazoles Using a Sustainable Carbonaceous Catalyst and Assessment of Its Herbicidal and Antibacterial Potential</atitle><jtitle>Journal of agricultural and food chemistry</jtitle><addtitle>J. Agric. Food Chem</addtitle><date>2024-12-18</date><risdate>2024</risdate><volume>72</volume><issue>50</issue><spage>27762</spage><epage>27774</epage><pages>27762-27774</pages><issn>0021-8561</issn><issn>1520-5118</issn><eissn>1520-5118</eissn><abstract>Herein, a novel, biocatalyzed, and on-water microwave-assisted multicomponent methodology have been developed for the synthesis of trisubstituted thiazoles (4a–4v). The reaction was catalyzed using a sulfonated peanut shell residue-derived carbonaceous catalyst (SPWB). The developed catalyst was characterized using Fourier transform infrared (FTIR), a Brunauer–Emmett–Teller (BET) surface area analyzer, a field emission scanning electron microscope (FE-SEM), energy-dispersive X-ray (EDX), and a particle size analyzer (PSA). The acidic sites have been established using acid–base back-titration methods. The molecular structures of all the synthesized compounds were validated using FT-IR, 1H NMR, 13C NMR, elemental, and HRMS analyses. Herbicidal potential was evaluated by using Raphanus sativus L. as a model. Furthermore, the antibacterial potential of thiazoles was evaluated against Staphylococcus aureus, Bacillus subtilis, Xanthomonas campestris, Escherichia coli, Micrococcus luteus, and Pseudomonas aeruginosa bacterial strains. The compound 4r displayed improved seed growth inhibition in Raphanus sativus L. versus a commercially available herbicide, i.e., pendimethalin. The antibacterial activity was promising against bacterial strains (MIC: 4–64 μg/mL). The compound 4r was the most potent against P. aeruginosa and S. aureus (MIC: 0.0076 μM) versus standard drug streptomycin (MIC: 0.0138 μM). Moreover, in silico studies performed with the most effective compound 4r against P. aeruginosa revealed its potential binding mode within the protein binding pocket. The biological data revealed compound 4r as a potential candidate for the development of potent herbicidal and antibacterial agents. In a nutshell, this study offers peanut shell biowaste to be a sustainable biomass for heterogeneous acid catalyst preparation and its application in the multicomponent synthesis of bioactive thiazoles, accommodating the concept of sustainable development goals and circular bioeconomy.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>39630023</pmid><doi>10.1021/acs.jafc.4c05293</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-2635-6465</orcidid><orcidid>https://orcid.org/0000-0002-7812-2871</orcidid><orcidid>https://orcid.org/0000-0001-5451-8030</orcidid><orcidid>https://orcid.org/0000-0003-0207-0662</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0021-8561
ispartof Journal of agricultural and food chemistry, 2024-12, Vol.72 (50), p.27762-27774
issn 0021-8561
1520-5118
1520-5118
language eng
recordid cdi_proquest_miscellaneous_3140930732
source MEDLINE; ACS Journals: American Chemical Society Web Editions
subjects Agricultural and Environmental Chemistry
Anti-Bacterial Agents - chemical synthesis
Anti-Bacterial Agents - chemistry
Anti-Bacterial Agents - pharmacology
antibacterial properties
Arachis - chemistry
Arachis - growth & development
Arachis - microbiology
Bacillus subtilis
Bacteria - drug effects
Bacteria - growth & development
biocatalysis
bioeconomics
biomass
Carbon - chemistry
Catalysis
catalysts
computer simulation
Escherichia coli
food chemistry
Fourier transform infrared spectroscopy
Green Chemistry Technology
growth retardation
Herbicides - chemical synthesis
Herbicides - chemistry
Herbicides - pharmacology
Microbial Sensitivity Tests
Micrococcus luteus
microwave treatment
Microwaves
Molecular Structure
particle size
peanut hulls
pendimethalin
Pseudomonas aeruginosa
Raphanus - chemistry
Raphanus - drug effects
Raphanus - growth & development
Raphanus sativus
seed growth
Staphylococcus aureus
streptomycin
surface area
sustainable development
thiazoles
Thiazoles - chemical synthesis
Thiazoles - chemistry
Thiazoles - pharmacology
wastes
X-radiation
Xanthomonas campestris
title Multicomponent Synthesis of 2,4,5-Trisubstituted Thiazoles Using a Sustainable Carbonaceous Catalyst and Assessment of Its Herbicidal and Antibacterial Potential
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T19%3A31%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multicomponent%20Synthesis%20of%202,4,5-Trisubstituted%20Thiazoles%20Using%20a%20Sustainable%20Carbonaceous%20Catalyst%20and%20Assessment%20of%20Its%20Herbicidal%20and%20Antibacterial%20Potential&rft.jtitle=Journal%20of%20agricultural%20and%20food%20chemistry&rft.au=Shweta&rft.date=2024-12-18&rft.volume=72&rft.issue=50&rft.spage=27762&rft.epage=27774&rft.pages=27762-27774&rft.issn=0021-8561&rft.eissn=1520-5118&rft_id=info:doi/10.1021/acs.jafc.4c05293&rft_dat=%3Cproquest_cross%3E3154242301%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3140930732&rft_id=info:pmid/39630023&rfr_iscdi=true