Structural and mechanism-based engineering of sulfotransferase CHST15 for the efficient synthesis of chondroitin sulfate E
Natural chondroitin sulfate (CS), extracted from animal cartilage, is widely used in the pharmaceuticals and foods. However, contamination with animal-derived heteropolysaccharides presents significant challenges, including potential immune responses. To address this, we developed a green and effici...
Gespeichert in:
Veröffentlicht in: | Applied and environmental microbiology 2024-12, Vol.91 (1), p.e0157324 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | e0157324 |
container_title | Applied and environmental microbiology |
container_volume | 91 |
creator | Wang, Zhonghua Song, Wei Wei, Wanqing Qi, Hejia Meng, Weiwei Liu, Jia Li, Xiaomin Gao, Cong Liu, Liming Hu, Guipeng Zhou, Yiwen Wu, Jing |
description | Natural chondroitin sulfate (CS), extracted from animal cartilage, is widely used in the pharmaceuticals and foods. However, contamination with animal-derived heteropolysaccharides presents significant challenges, including potential immune responses. To address this, we developed a green and efficient method for synthesizing chondroitin sulfate E (CSE) via enzymatic synthesis, identifying
CHST15, a sulfotransferase that catalyzes the conversion of chondroitin sulfate A (CSA) to CSE. We investigated the novel catalytic mechanism of CHST15 through quantum mechanical (QM) calculations and experimental validation, confirming its alignment with the SN2 reaction mechanism. Subsequently, we enhanced the catalytic efficiency of CHST15 using protein engineering, improving the catalytic efficiency from 18.1% in the wild type (WT) to 62.5% in the M7 mutant-a 3.5-fold increase. Finally, we constructed a six-enzyme cascade whole-cell catalyst, achieving a 72.2% conversion of 15 g/L CSA to produce CSE within 24 h. These findings offer a promising strategy for the industrial production of CSE.IMPORTANCECurrent methods for obtaining chondroitin sulfate (CS) primarily rely on tissue extraction and chemical synthesis. However, these approaches are hindered by contamination risks from animal-derived heteropolysaccharides and the technical challenges inherent in complex chemical synthesis, limiting the scalability of industrial CS production. To address this, we developed a green and efficient enzymatic biosynthesis method for chondroitin sulfate E (CSE). By identifying and engineering the sulfotransferase CHST15 from
, we created a mutant (
CHST15
) with a 3.5-fold increase in catalytic efficiency toward chondroitin sulfate A (CSA) compared to the wild-type enzyme. Additionally, we constructed a six-enzyme cascade whole-cell biocatalyst, achieving a 72.2% conversion rate from CSA to CSE. This study opens new avenues for the industrial-scale production of CSE through sustainable enzymatic processes. |
doi_str_mv | 10.1128/aem.01573-24 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_3140930610</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3163246904</sourcerecordid><originalsourceid>FETCH-LOGICAL-a296t-e4df26fd159a0a842273d46e0dbdc863faf1715141d154e5644c6695df2ceef73</originalsourceid><addsrcrecordid>eNp1kU1rFTEUhoMo9lrduZaAGwWn5msyk1WRS7VCwUXrOuQmJ_emzCQ1yQj115vbW-sHuAqcPOfhvLwIvaTkhFI2vjcwnxDaD7xj4hFaUaLGrudcPkYrQpTqGBPkCD0r5ZoQIogcn6IjriRTauQr9OOy5sXWJZsJm-jwDHZnYihztzEFHIa4DREgh7jFyeOyTD7VbGLxkBuA1-eXV7THPmVcd4DB-2ADxIrLbWyDEsp-ze5SdDmFGuKdwlTAZ8_RE2-mAi_u32P09ePZ1fq8u_jy6fP6w0VnmJK1A-E8k97RXhliRsHYwJ2QQNzG2VFybzwdaE8FbYiAXgphpVR927IAfuDH6PTgvVk2Mzjbrmtp9U0Os8m3Opmg__6JYae36bumdBgFGWkzvLk35PRtgVL1HIqFaTIR0lI0p4IoTiQlDX39D3qdlhxbvkZJzoRURDTq3YGyOZWSwT9cQ4net6pbq_quVc32-NsDbsrMfgv_w776M-2D-Ffl_Ccx1azU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3163246904</pqid></control><display><type>article</type><title>Structural and mechanism-based engineering of sulfotransferase CHST15 for the efficient synthesis of chondroitin sulfate E</title><source>American Society for Microbiology</source><source>MEDLINE</source><creator>Wang, Zhonghua ; Song, Wei ; Wei, Wanqing ; Qi, Hejia ; Meng, Weiwei ; Liu, Jia ; Li, Xiaomin ; Gao, Cong ; Liu, Liming ; Hu, Guipeng ; Zhou, Yiwen ; Wu, Jing</creator><contributor>Atomi, Haruyuki</contributor><creatorcontrib>Wang, Zhonghua ; Song, Wei ; Wei, Wanqing ; Qi, Hejia ; Meng, Weiwei ; Liu, Jia ; Li, Xiaomin ; Gao, Cong ; Liu, Liming ; Hu, Guipeng ; Zhou, Yiwen ; Wu, Jing ; Atomi, Haruyuki</creatorcontrib><description>Natural chondroitin sulfate (CS), extracted from animal cartilage, is widely used in the pharmaceuticals and foods. However, contamination with animal-derived heteropolysaccharides presents significant challenges, including potential immune responses. To address this, we developed a green and efficient method for synthesizing chondroitin sulfate E (CSE) via enzymatic synthesis, identifying
CHST15, a sulfotransferase that catalyzes the conversion of chondroitin sulfate A (CSA) to CSE. We investigated the novel catalytic mechanism of CHST15 through quantum mechanical (QM) calculations and experimental validation, confirming its alignment with the SN2 reaction mechanism. Subsequently, we enhanced the catalytic efficiency of CHST15 using protein engineering, improving the catalytic efficiency from 18.1% in the wild type (WT) to 62.5% in the M7 mutant-a 3.5-fold increase. Finally, we constructed a six-enzyme cascade whole-cell catalyst, achieving a 72.2% conversion of 15 g/L CSA to produce CSE within 24 h. These findings offer a promising strategy for the industrial production of CSE.IMPORTANCECurrent methods for obtaining chondroitin sulfate (CS) primarily rely on tissue extraction and chemical synthesis. However, these approaches are hindered by contamination risks from animal-derived heteropolysaccharides and the technical challenges inherent in complex chemical synthesis, limiting the scalability of industrial CS production. To address this, we developed a green and efficient enzymatic biosynthesis method for chondroitin sulfate E (CSE). By identifying and engineering the sulfotransferase CHST15 from
, we created a mutant (
CHST15
) with a 3.5-fold increase in catalytic efficiency toward chondroitin sulfate A (CSA) compared to the wild-type enzyme. Additionally, we constructed a six-enzyme cascade whole-cell biocatalyst, achieving a 72.2% conversion rate from CSA to CSE. This study opens new avenues for the industrial-scale production of CSE through sustainable enzymatic processes.</description><identifier>ISSN: 0099-2240</identifier><identifier>ISSN: 1098-5336</identifier><identifier>EISSN: 1098-5336</identifier><identifier>DOI: 10.1128/aem.01573-24</identifier><identifier>PMID: 39629983</identifier><language>eng</language><publisher>United States: American Society for Microbiology</publisher><subject>Bacterial Proteins - chemistry ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; Biotechnology ; Catalytic converters ; Chemical synthesis ; Chondroitin sulfate ; Chondroitin Sulfates - biosynthesis ; Chondroitin Sulfates - chemistry ; Chondroitin Sulfates - metabolism ; Enzymatic synthesis ; Escherichia coli - genetics ; Escherichia coli - metabolism ; Food contamination ; Immune response ; Industrial production ; Protein Engineering ; Protein folding ; Quantum mechanics ; Reaction mechanisms ; Sulfates ; Sulfotransferase ; Sulfotransferases - chemistry ; Sulfotransferases - genetics ; Sulfotransferases - metabolism</subject><ispartof>Applied and environmental microbiology, 2024-12, Vol.91 (1), p.e0157324</ispartof><rights>Copyright © 2024 Wang et al.</rights><rights>Copyright American Society for Microbiology Jan 2025</rights><rights>Copyright © 2024 Wang et al. 2024 Wang et al.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a296t-e4df26fd159a0a842273d46e0dbdc863faf1715141d154e5644c6695df2ceef73</cites><orcidid>0000-0001-6911-2041 ; 0000-0001-8505-2026 ; 0000-0001-9205-5268</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.asm.org/doi/pdf/10.1128/aem.01573-24$$EPDF$$P50$$Gasm2$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://journals.asm.org/doi/full/10.1128/aem.01573-24$$EHTML$$P50$$Gasm2$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,3175,27901,27902,52726,52727,52728</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39629983$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Atomi, Haruyuki</contributor><creatorcontrib>Wang, Zhonghua</creatorcontrib><creatorcontrib>Song, Wei</creatorcontrib><creatorcontrib>Wei, Wanqing</creatorcontrib><creatorcontrib>Qi, Hejia</creatorcontrib><creatorcontrib>Meng, Weiwei</creatorcontrib><creatorcontrib>Liu, Jia</creatorcontrib><creatorcontrib>Li, Xiaomin</creatorcontrib><creatorcontrib>Gao, Cong</creatorcontrib><creatorcontrib>Liu, Liming</creatorcontrib><creatorcontrib>Hu, Guipeng</creatorcontrib><creatorcontrib>Zhou, Yiwen</creatorcontrib><creatorcontrib>Wu, Jing</creatorcontrib><title>Structural and mechanism-based engineering of sulfotransferase CHST15 for the efficient synthesis of chondroitin sulfate E</title><title>Applied and environmental microbiology</title><addtitle>Appl Environ Microbiol</addtitle><addtitle>Appl Environ Microbiol</addtitle><description>Natural chondroitin sulfate (CS), extracted from animal cartilage, is widely used in the pharmaceuticals and foods. However, contamination with animal-derived heteropolysaccharides presents significant challenges, including potential immune responses. To address this, we developed a green and efficient method for synthesizing chondroitin sulfate E (CSE) via enzymatic synthesis, identifying
CHST15, a sulfotransferase that catalyzes the conversion of chondroitin sulfate A (CSA) to CSE. We investigated the novel catalytic mechanism of CHST15 through quantum mechanical (QM) calculations and experimental validation, confirming its alignment with the SN2 reaction mechanism. Subsequently, we enhanced the catalytic efficiency of CHST15 using protein engineering, improving the catalytic efficiency from 18.1% in the wild type (WT) to 62.5% in the M7 mutant-a 3.5-fold increase. Finally, we constructed a six-enzyme cascade whole-cell catalyst, achieving a 72.2% conversion of 15 g/L CSA to produce CSE within 24 h. These findings offer a promising strategy for the industrial production of CSE.IMPORTANCECurrent methods for obtaining chondroitin sulfate (CS) primarily rely on tissue extraction and chemical synthesis. However, these approaches are hindered by contamination risks from animal-derived heteropolysaccharides and the technical challenges inherent in complex chemical synthesis, limiting the scalability of industrial CS production. To address this, we developed a green and efficient enzymatic biosynthesis method for chondroitin sulfate E (CSE). By identifying and engineering the sulfotransferase CHST15 from
, we created a mutant (
CHST15
) with a 3.5-fold increase in catalytic efficiency toward chondroitin sulfate A (CSA) compared to the wild-type enzyme. Additionally, we constructed a six-enzyme cascade whole-cell biocatalyst, achieving a 72.2% conversion rate from CSA to CSE. This study opens new avenues for the industrial-scale production of CSE through sustainable enzymatic processes.</description><subject>Bacterial Proteins - chemistry</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>Biotechnology</subject><subject>Catalytic converters</subject><subject>Chemical synthesis</subject><subject>Chondroitin sulfate</subject><subject>Chondroitin Sulfates - biosynthesis</subject><subject>Chondroitin Sulfates - chemistry</subject><subject>Chondroitin Sulfates - metabolism</subject><subject>Enzymatic synthesis</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - metabolism</subject><subject>Food contamination</subject><subject>Immune response</subject><subject>Industrial production</subject><subject>Protein Engineering</subject><subject>Protein folding</subject><subject>Quantum mechanics</subject><subject>Reaction mechanisms</subject><subject>Sulfates</subject><subject>Sulfotransferase</subject><subject>Sulfotransferases - chemistry</subject><subject>Sulfotransferases - genetics</subject><subject>Sulfotransferases - metabolism</subject><issn>0099-2240</issn><issn>1098-5336</issn><issn>1098-5336</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kU1rFTEUhoMo9lrduZaAGwWn5msyk1WRS7VCwUXrOuQmJ_emzCQ1yQj115vbW-sHuAqcPOfhvLwIvaTkhFI2vjcwnxDaD7xj4hFaUaLGrudcPkYrQpTqGBPkCD0r5ZoQIogcn6IjriRTauQr9OOy5sXWJZsJm-jwDHZnYihztzEFHIa4DREgh7jFyeOyTD7VbGLxkBuA1-eXV7THPmVcd4DB-2ADxIrLbWyDEsp-ze5SdDmFGuKdwlTAZ8_RE2-mAi_u32P09ePZ1fq8u_jy6fP6w0VnmJK1A-E8k97RXhliRsHYwJ2QQNzG2VFybzwdaE8FbYiAXgphpVR927IAfuDH6PTgvVk2Mzjbrmtp9U0Os8m3Opmg__6JYae36bumdBgFGWkzvLk35PRtgVL1HIqFaTIR0lI0p4IoTiQlDX39D3qdlhxbvkZJzoRURDTq3YGyOZWSwT9cQ4net6pbq_quVc32-NsDbsrMfgv_w776M-2D-Ffl_Ccx1azU</recordid><startdate>20241204</startdate><enddate>20241204</enddate><creator>Wang, Zhonghua</creator><creator>Song, Wei</creator><creator>Wei, Wanqing</creator><creator>Qi, Hejia</creator><creator>Meng, Weiwei</creator><creator>Liu, Jia</creator><creator>Li, Xiaomin</creator><creator>Gao, Cong</creator><creator>Liu, Liming</creator><creator>Hu, Guipeng</creator><creator>Zhou, Yiwen</creator><creator>Wu, Jing</creator><general>American Society for Microbiology</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T7</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6911-2041</orcidid><orcidid>https://orcid.org/0000-0001-8505-2026</orcidid><orcidid>https://orcid.org/0000-0001-9205-5268</orcidid></search><sort><creationdate>20241204</creationdate><title>Structural and mechanism-based engineering of sulfotransferase CHST15 for the efficient synthesis of chondroitin sulfate E</title><author>Wang, Zhonghua ; Song, Wei ; Wei, Wanqing ; Qi, Hejia ; Meng, Weiwei ; Liu, Jia ; Li, Xiaomin ; Gao, Cong ; Liu, Liming ; Hu, Guipeng ; Zhou, Yiwen ; Wu, Jing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a296t-e4df26fd159a0a842273d46e0dbdc863faf1715141d154e5644c6695df2ceef73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Bacterial Proteins - chemistry</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>Biotechnology</topic><topic>Catalytic converters</topic><topic>Chemical synthesis</topic><topic>Chondroitin sulfate</topic><topic>Chondroitin Sulfates - biosynthesis</topic><topic>Chondroitin Sulfates - chemistry</topic><topic>Chondroitin Sulfates - metabolism</topic><topic>Enzymatic synthesis</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - metabolism</topic><topic>Food contamination</topic><topic>Immune response</topic><topic>Industrial production</topic><topic>Protein Engineering</topic><topic>Protein folding</topic><topic>Quantum mechanics</topic><topic>Reaction mechanisms</topic><topic>Sulfates</topic><topic>Sulfotransferase</topic><topic>Sulfotransferases - chemistry</topic><topic>Sulfotransferases - genetics</topic><topic>Sulfotransferases - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Zhonghua</creatorcontrib><creatorcontrib>Song, Wei</creatorcontrib><creatorcontrib>Wei, Wanqing</creatorcontrib><creatorcontrib>Qi, Hejia</creatorcontrib><creatorcontrib>Meng, Weiwei</creatorcontrib><creatorcontrib>Liu, Jia</creatorcontrib><creatorcontrib>Li, Xiaomin</creatorcontrib><creatorcontrib>Gao, Cong</creatorcontrib><creatorcontrib>Liu, Liming</creatorcontrib><creatorcontrib>Hu, Guipeng</creatorcontrib><creatorcontrib>Zhou, Yiwen</creatorcontrib><creatorcontrib>Wu, Jing</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Applied and environmental microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Zhonghua</au><au>Song, Wei</au><au>Wei, Wanqing</au><au>Qi, Hejia</au><au>Meng, Weiwei</au><au>Liu, Jia</au><au>Li, Xiaomin</au><au>Gao, Cong</au><au>Liu, Liming</au><au>Hu, Guipeng</au><au>Zhou, Yiwen</au><au>Wu, Jing</au><au>Atomi, Haruyuki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural and mechanism-based engineering of sulfotransferase CHST15 for the efficient synthesis of chondroitin sulfate E</atitle><jtitle>Applied and environmental microbiology</jtitle><stitle>Appl Environ Microbiol</stitle><addtitle>Appl Environ Microbiol</addtitle><date>2024-12-04</date><risdate>2024</risdate><volume>91</volume><issue>1</issue><spage>e0157324</spage><pages>e0157324-</pages><issn>0099-2240</issn><issn>1098-5336</issn><eissn>1098-5336</eissn><abstract>Natural chondroitin sulfate (CS), extracted from animal cartilage, is widely used in the pharmaceuticals and foods. However, contamination with animal-derived heteropolysaccharides presents significant challenges, including potential immune responses. To address this, we developed a green and efficient method for synthesizing chondroitin sulfate E (CSE) via enzymatic synthesis, identifying
CHST15, a sulfotransferase that catalyzes the conversion of chondroitin sulfate A (CSA) to CSE. We investigated the novel catalytic mechanism of CHST15 through quantum mechanical (QM) calculations and experimental validation, confirming its alignment with the SN2 reaction mechanism. Subsequently, we enhanced the catalytic efficiency of CHST15 using protein engineering, improving the catalytic efficiency from 18.1% in the wild type (WT) to 62.5% in the M7 mutant-a 3.5-fold increase. Finally, we constructed a six-enzyme cascade whole-cell catalyst, achieving a 72.2% conversion of 15 g/L CSA to produce CSE within 24 h. These findings offer a promising strategy for the industrial production of CSE.IMPORTANCECurrent methods for obtaining chondroitin sulfate (CS) primarily rely on tissue extraction and chemical synthesis. However, these approaches are hindered by contamination risks from animal-derived heteropolysaccharides and the technical challenges inherent in complex chemical synthesis, limiting the scalability of industrial CS production. To address this, we developed a green and efficient enzymatic biosynthesis method for chondroitin sulfate E (CSE). By identifying and engineering the sulfotransferase CHST15 from
, we created a mutant (
CHST15
) with a 3.5-fold increase in catalytic efficiency toward chondroitin sulfate A (CSA) compared to the wild-type enzyme. Additionally, we constructed a six-enzyme cascade whole-cell biocatalyst, achieving a 72.2% conversion rate from CSA to CSE. This study opens new avenues for the industrial-scale production of CSE through sustainable enzymatic processes.</abstract><cop>United States</cop><pub>American Society for Microbiology</pub><pmid>39629983</pmid><doi>10.1128/aem.01573-24</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0001-6911-2041</orcidid><orcidid>https://orcid.org/0000-0001-8505-2026</orcidid><orcidid>https://orcid.org/0000-0001-9205-5268</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0099-2240 |
ispartof | Applied and environmental microbiology, 2024-12, Vol.91 (1), p.e0157324 |
issn | 0099-2240 1098-5336 1098-5336 |
language | eng |
recordid | cdi_proquest_miscellaneous_3140930610 |
source | American Society for Microbiology; MEDLINE |
subjects | Bacterial Proteins - chemistry Bacterial Proteins - genetics Bacterial Proteins - metabolism Biotechnology Catalytic converters Chemical synthesis Chondroitin sulfate Chondroitin Sulfates - biosynthesis Chondroitin Sulfates - chemistry Chondroitin Sulfates - metabolism Enzymatic synthesis Escherichia coli - genetics Escherichia coli - metabolism Food contamination Immune response Industrial production Protein Engineering Protein folding Quantum mechanics Reaction mechanisms Sulfates Sulfotransferase Sulfotransferases - chemistry Sulfotransferases - genetics Sulfotransferases - metabolism |
title | Structural and mechanism-based engineering of sulfotransferase CHST15 for the efficient synthesis of chondroitin sulfate E |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T07%3A48%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20and%20mechanism-based%20engineering%20of%20sulfotransferase%20CHST15%20for%20the%20efficient%20synthesis%20of%20chondroitin%20sulfate%20E&rft.jtitle=Applied%20and%20environmental%20microbiology&rft.au=Wang,%20Zhonghua&rft.date=2024-12-04&rft.volume=91&rft.issue=1&rft.spage=e0157324&rft.pages=e0157324-&rft.issn=0099-2240&rft.eissn=1098-5336&rft_id=info:doi/10.1128/aem.01573-24&rft_dat=%3Cproquest_pubme%3E3163246904%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3163246904&rft_id=info:pmid/39629983&rfr_iscdi=true |