Development and Assessment of an AI-based Machine Learning Model for Predicting Urinary Continence and Erectile Function Recovery after Robotic-Assisted Radical Prostatectomy: Insights from a Prostate Cancer Referral Center

Prostate cancer remains a significant health concern, with radical prostatectomy being a common treatment approach. However, predicting postoperative functional outcomes, particularly urinary continence and erectile function, poses challenges. Emerging artificial intelligence (AI) technologies offer...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer methods and programs in biomedicine 2025-02, Vol.259, p.108522, Article 108522
Hauptverfasser: Saikali, S., Reddy, S., Gokaraju, M., Goldsztein, N., Dyer, A., Gamal, A., Jaber, A., Moschovas, M., Rogers, T., Vangala, A., Briscoe, J, Toleti, C., Patel, P., Patel, V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 108522
container_title Computer methods and programs in biomedicine
container_volume 259
creator Saikali, S.
Reddy, S.
Gokaraju, M.
Goldsztein, N.
Dyer, A.
Gamal, A.
Jaber, A.
Moschovas, M.
Rogers, T.
Vangala, A.
Briscoe, J
Toleti, C.
Patel, P.
Patel, V.
description Prostate cancer remains a significant health concern, with radical prostatectomy being a common treatment approach. However, predicting postoperative functional outcomes, particularly urinary continence and erectile function, poses challenges. Emerging artificial intelligence (AI) technologies offer promise in predictive modeling. This study aimed to develop and validate AI-based models to predict continence and potency following nerve-sparing robotic radical prostatectomy (RARP). A cohort of 8,524 patients undergoing RARP was analyzed. Preoperative variables were collected, and two separate machine-learning Artificial Neural Network (ANN) models were trained to predict continence and potency at 12 months post- surgery. Model performance was assessed using area under the curve (AUC) values, with comparisons made to other machine learning algorithms. Feature importance analysis was conducted to identify key predictors. The ANN models demonstrated AUCs of 0.74 for potency and 0.68 for continence prediction, outperforming other algorithms. Feature importance analysis identified variables such as age, comorbidities, and preoperative scores as significant predictors for both outcomes. AI-based models show potential in predicting postoperative functional outcomes following RARP. Continued efforts in optimizing models and exploring additional factors are needed to improve predictive accuracy and clinical applicability. Multi-center studies and larger datasets will further contribute to enhancing the value of AI in clinical decision-making for prostate cancer treatment.
doi_str_mv 10.1016/j.cmpb.2024.108522
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3140926845</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0169260724005157</els_id><sourcerecordid>3140926845</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1523-669a3bc3008b7d6d5fdd2d2d2260ef61f475f0a9e64907f4ab32bf28423a90003</originalsourceid><addsrcrecordid>eNp9UcGO0zAQtRCILQs_wAH5yCXFcWKnQVyqsAuVugJV7Nly7PGuq8Qudlppv5ZfYbJd9oh8sGfmzRvPe4S8L9myZKX8tF-a8dAvOeM1JlaC8xdkUa4aXjRCipdkgaC24JI1F-RNznvGGBdCviYXVSu5FKxakD9f4QRDPIwQJqqDpeucIefHMDrM0PWm6HUGS2-0ufcB6BZ0Cj7c0ZtoYaAuJvozgfVmmpO3yQedHmgXA8YQDDzSXiXA-gD0-hjwEQPdgYknQKR2EyS6i32cvClwvs8TjttppNQDcsc86Qnb4_jwmW5C9nf3U6YuxZHq5zLtNM5CHnCQEvZ1uAKkt-SV00OGd0_3Jbm9vvrVfS-2P75tuvW2MKXgVSFlq6veVIyt-sZKK5y1fD6oHjhZuroRjukWZN2yxtW6r3jv-KrmlW5R1-qSfDzzHlL8fYQ8qdFnA8OgA8RjVlVZs5bLVS0Qys9Qg1_PCZw6JD-iZqpkajZW7dVsrJqNVWdjsenDE_-xH8E-t_xzEgFfzgDALU8eksrGz_JbP0uvbPT_4_8LaXa4UQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3140926845</pqid></control><display><type>article</type><title>Development and Assessment of an AI-based Machine Learning Model for Predicting Urinary Continence and Erectile Function Recovery after Robotic-Assisted Radical Prostatectomy: Insights from a Prostate Cancer Referral Center</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Saikali, S. ; Reddy, S. ; Gokaraju, M. ; Goldsztein, N. ; Dyer, A. ; Gamal, A. ; Jaber, A. ; Moschovas, M. ; Rogers, T. ; Vangala, A. ; Briscoe, J ; Toleti, C. ; Patel, P. ; Patel, V.</creator><creatorcontrib>Saikali, S. ; Reddy, S. ; Gokaraju, M. ; Goldsztein, N. ; Dyer, A. ; Gamal, A. ; Jaber, A. ; Moschovas, M. ; Rogers, T. ; Vangala, A. ; Briscoe, J ; Toleti, C. ; Patel, P. ; Patel, V.</creatorcontrib><description>Prostate cancer remains a significant health concern, with radical prostatectomy being a common treatment approach. However, predicting postoperative functional outcomes, particularly urinary continence and erectile function, poses challenges. Emerging artificial intelligence (AI) technologies offer promise in predictive modeling. This study aimed to develop and validate AI-based models to predict continence and potency following nerve-sparing robotic radical prostatectomy (RARP). A cohort of 8,524 patients undergoing RARP was analyzed. Preoperative variables were collected, and two separate machine-learning Artificial Neural Network (ANN) models were trained to predict continence and potency at 12 months post- surgery. Model performance was assessed using area under the curve (AUC) values, with comparisons made to other machine learning algorithms. Feature importance analysis was conducted to identify key predictors. The ANN models demonstrated AUCs of 0.74 for potency and 0.68 for continence prediction, outperforming other algorithms. Feature importance analysis identified variables such as age, comorbidities, and preoperative scores as significant predictors for both outcomes. AI-based models show potential in predicting postoperative functional outcomes following RARP. Continued efforts in optimizing models and exploring additional factors are needed to improve predictive accuracy and clinical applicability. Multi-center studies and larger datasets will further contribute to enhancing the value of AI in clinical decision-making for prostate cancer treatment.</description><identifier>ISSN: 0169-2607</identifier><identifier>ISSN: 1872-7565</identifier><identifier>EISSN: 1872-7565</identifier><identifier>DOI: 10.1016/j.cmpb.2024.108522</identifier><identifier>PMID: 39626503</identifier><language>eng</language><publisher>Ireland: Elsevier B.V</publisher><subject>Aged ; Algorithms ; Area Under Curve ; Artificial Intelligence ; artificial neural networks ; Deep Learning ; Erectile Dysfunction - etiology ; Humans ; Machine Learning ; Male ; Middle Aged ; Neural Networks, Computer ; Penile Erection ; Prostate Cancer ; Prostatectomy - adverse effects ; Prostatectomy - methods ; Prostatic Neoplasms - surgery ; Recovery of Function ; Robotic Radical Prostatectomy ; Robotic Surgical Procedures - methods ; Sexual Function Outcome ; Urinary Continence Outcome ; Urinary Incontinence - etiology</subject><ispartof>Computer methods and programs in biomedicine, 2025-02, Vol.259, p.108522, Article 108522</ispartof><rights>2024 Elsevier B.V.</rights><rights>Copyright © 2024 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1523-669a3bc3008b7d6d5fdd2d2d2260ef61f475f0a9e64907f4ab32bf28423a90003</cites><orcidid>0000-0003-3673-0286</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0169260724005157$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39626503$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Saikali, S.</creatorcontrib><creatorcontrib>Reddy, S.</creatorcontrib><creatorcontrib>Gokaraju, M.</creatorcontrib><creatorcontrib>Goldsztein, N.</creatorcontrib><creatorcontrib>Dyer, A.</creatorcontrib><creatorcontrib>Gamal, A.</creatorcontrib><creatorcontrib>Jaber, A.</creatorcontrib><creatorcontrib>Moschovas, M.</creatorcontrib><creatorcontrib>Rogers, T.</creatorcontrib><creatorcontrib>Vangala, A.</creatorcontrib><creatorcontrib>Briscoe, J</creatorcontrib><creatorcontrib>Toleti, C.</creatorcontrib><creatorcontrib>Patel, P.</creatorcontrib><creatorcontrib>Patel, V.</creatorcontrib><title>Development and Assessment of an AI-based Machine Learning Model for Predicting Urinary Continence and Erectile Function Recovery after Robotic-Assisted Radical Prostatectomy: Insights from a Prostate Cancer Referral Center</title><title>Computer methods and programs in biomedicine</title><addtitle>Comput Methods Programs Biomed</addtitle><description>Prostate cancer remains a significant health concern, with radical prostatectomy being a common treatment approach. However, predicting postoperative functional outcomes, particularly urinary continence and erectile function, poses challenges. Emerging artificial intelligence (AI) technologies offer promise in predictive modeling. This study aimed to develop and validate AI-based models to predict continence and potency following nerve-sparing robotic radical prostatectomy (RARP). A cohort of 8,524 patients undergoing RARP was analyzed. Preoperative variables were collected, and two separate machine-learning Artificial Neural Network (ANN) models were trained to predict continence and potency at 12 months post- surgery. Model performance was assessed using area under the curve (AUC) values, with comparisons made to other machine learning algorithms. Feature importance analysis was conducted to identify key predictors. The ANN models demonstrated AUCs of 0.74 for potency and 0.68 for continence prediction, outperforming other algorithms. Feature importance analysis identified variables such as age, comorbidities, and preoperative scores as significant predictors for both outcomes. AI-based models show potential in predicting postoperative functional outcomes following RARP. Continued efforts in optimizing models and exploring additional factors are needed to improve predictive accuracy and clinical applicability. Multi-center studies and larger datasets will further contribute to enhancing the value of AI in clinical decision-making for prostate cancer treatment.</description><subject>Aged</subject><subject>Algorithms</subject><subject>Area Under Curve</subject><subject>Artificial Intelligence</subject><subject>artificial neural networks</subject><subject>Deep Learning</subject><subject>Erectile Dysfunction - etiology</subject><subject>Humans</subject><subject>Machine Learning</subject><subject>Male</subject><subject>Middle Aged</subject><subject>Neural Networks, Computer</subject><subject>Penile Erection</subject><subject>Prostate Cancer</subject><subject>Prostatectomy - adverse effects</subject><subject>Prostatectomy - methods</subject><subject>Prostatic Neoplasms - surgery</subject><subject>Recovery of Function</subject><subject>Robotic Radical Prostatectomy</subject><subject>Robotic Surgical Procedures - methods</subject><subject>Sexual Function Outcome</subject><subject>Urinary Continence Outcome</subject><subject>Urinary Incontinence - etiology</subject><issn>0169-2607</issn><issn>1872-7565</issn><issn>1872-7565</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9UcGO0zAQtRCILQs_wAH5yCXFcWKnQVyqsAuVugJV7Nly7PGuq8Qudlppv5ZfYbJd9oh8sGfmzRvPe4S8L9myZKX8tF-a8dAvOeM1JlaC8xdkUa4aXjRCipdkgaC24JI1F-RNznvGGBdCviYXVSu5FKxakD9f4QRDPIwQJqqDpeucIefHMDrM0PWm6HUGS2-0ufcB6BZ0Cj7c0ZtoYaAuJvozgfVmmpO3yQedHmgXA8YQDDzSXiXA-gD0-hjwEQPdgYknQKR2EyS6i32cvClwvs8TjttppNQDcsc86Qnb4_jwmW5C9nf3U6YuxZHq5zLtNM5CHnCQEvZ1uAKkt-SV00OGd0_3Jbm9vvrVfS-2P75tuvW2MKXgVSFlq6veVIyt-sZKK5y1fD6oHjhZuroRjukWZN2yxtW6r3jv-KrmlW5R1-qSfDzzHlL8fYQ8qdFnA8OgA8RjVlVZs5bLVS0Qys9Qg1_PCZw6JD-iZqpkajZW7dVsrJqNVWdjsenDE_-xH8E-t_xzEgFfzgDALU8eksrGz_JbP0uvbPT_4_8LaXa4UQ</recordid><startdate>202502</startdate><enddate>202502</enddate><creator>Saikali, S.</creator><creator>Reddy, S.</creator><creator>Gokaraju, M.</creator><creator>Goldsztein, N.</creator><creator>Dyer, A.</creator><creator>Gamal, A.</creator><creator>Jaber, A.</creator><creator>Moschovas, M.</creator><creator>Rogers, T.</creator><creator>Vangala, A.</creator><creator>Briscoe, J</creator><creator>Toleti, C.</creator><creator>Patel, P.</creator><creator>Patel, V.</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3673-0286</orcidid></search><sort><creationdate>202502</creationdate><title>Development and Assessment of an AI-based Machine Learning Model for Predicting Urinary Continence and Erectile Function Recovery after Robotic-Assisted Radical Prostatectomy: Insights from a Prostate Cancer Referral Center</title><author>Saikali, S. ; Reddy, S. ; Gokaraju, M. ; Goldsztein, N. ; Dyer, A. ; Gamal, A. ; Jaber, A. ; Moschovas, M. ; Rogers, T. ; Vangala, A. ; Briscoe, J ; Toleti, C. ; Patel, P. ; Patel, V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1523-669a3bc3008b7d6d5fdd2d2d2260ef61f475f0a9e64907f4ab32bf28423a90003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Aged</topic><topic>Algorithms</topic><topic>Area Under Curve</topic><topic>Artificial Intelligence</topic><topic>artificial neural networks</topic><topic>Deep Learning</topic><topic>Erectile Dysfunction - etiology</topic><topic>Humans</topic><topic>Machine Learning</topic><topic>Male</topic><topic>Middle Aged</topic><topic>Neural Networks, Computer</topic><topic>Penile Erection</topic><topic>Prostate Cancer</topic><topic>Prostatectomy - adverse effects</topic><topic>Prostatectomy - methods</topic><topic>Prostatic Neoplasms - surgery</topic><topic>Recovery of Function</topic><topic>Robotic Radical Prostatectomy</topic><topic>Robotic Surgical Procedures - methods</topic><topic>Sexual Function Outcome</topic><topic>Urinary Continence Outcome</topic><topic>Urinary Incontinence - etiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Saikali, S.</creatorcontrib><creatorcontrib>Reddy, S.</creatorcontrib><creatorcontrib>Gokaraju, M.</creatorcontrib><creatorcontrib>Goldsztein, N.</creatorcontrib><creatorcontrib>Dyer, A.</creatorcontrib><creatorcontrib>Gamal, A.</creatorcontrib><creatorcontrib>Jaber, A.</creatorcontrib><creatorcontrib>Moschovas, M.</creatorcontrib><creatorcontrib>Rogers, T.</creatorcontrib><creatorcontrib>Vangala, A.</creatorcontrib><creatorcontrib>Briscoe, J</creatorcontrib><creatorcontrib>Toleti, C.</creatorcontrib><creatorcontrib>Patel, P.</creatorcontrib><creatorcontrib>Patel, V.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Computer methods and programs in biomedicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Saikali, S.</au><au>Reddy, S.</au><au>Gokaraju, M.</au><au>Goldsztein, N.</au><au>Dyer, A.</au><au>Gamal, A.</au><au>Jaber, A.</au><au>Moschovas, M.</au><au>Rogers, T.</au><au>Vangala, A.</au><au>Briscoe, J</au><au>Toleti, C.</au><au>Patel, P.</au><au>Patel, V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development and Assessment of an AI-based Machine Learning Model for Predicting Urinary Continence and Erectile Function Recovery after Robotic-Assisted Radical Prostatectomy: Insights from a Prostate Cancer Referral Center</atitle><jtitle>Computer methods and programs in biomedicine</jtitle><addtitle>Comput Methods Programs Biomed</addtitle><date>2025-02</date><risdate>2025</risdate><volume>259</volume><spage>108522</spage><pages>108522-</pages><artnum>108522</artnum><issn>0169-2607</issn><issn>1872-7565</issn><eissn>1872-7565</eissn><abstract>Prostate cancer remains a significant health concern, with radical prostatectomy being a common treatment approach. However, predicting postoperative functional outcomes, particularly urinary continence and erectile function, poses challenges. Emerging artificial intelligence (AI) technologies offer promise in predictive modeling. This study aimed to develop and validate AI-based models to predict continence and potency following nerve-sparing robotic radical prostatectomy (RARP). A cohort of 8,524 patients undergoing RARP was analyzed. Preoperative variables were collected, and two separate machine-learning Artificial Neural Network (ANN) models were trained to predict continence and potency at 12 months post- surgery. Model performance was assessed using area under the curve (AUC) values, with comparisons made to other machine learning algorithms. Feature importance analysis was conducted to identify key predictors. The ANN models demonstrated AUCs of 0.74 for potency and 0.68 for continence prediction, outperforming other algorithms. Feature importance analysis identified variables such as age, comorbidities, and preoperative scores as significant predictors for both outcomes. AI-based models show potential in predicting postoperative functional outcomes following RARP. Continued efforts in optimizing models and exploring additional factors are needed to improve predictive accuracy and clinical applicability. Multi-center studies and larger datasets will further contribute to enhancing the value of AI in clinical decision-making for prostate cancer treatment.</abstract><cop>Ireland</cop><pub>Elsevier B.V</pub><pmid>39626503</pmid><doi>10.1016/j.cmpb.2024.108522</doi><orcidid>https://orcid.org/0000-0003-3673-0286</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0169-2607
ispartof Computer methods and programs in biomedicine, 2025-02, Vol.259, p.108522, Article 108522
issn 0169-2607
1872-7565
1872-7565
language eng
recordid cdi_proquest_miscellaneous_3140926845
source MEDLINE; Elsevier ScienceDirect Journals Complete
subjects Aged
Algorithms
Area Under Curve
Artificial Intelligence
artificial neural networks
Deep Learning
Erectile Dysfunction - etiology
Humans
Machine Learning
Male
Middle Aged
Neural Networks, Computer
Penile Erection
Prostate Cancer
Prostatectomy - adverse effects
Prostatectomy - methods
Prostatic Neoplasms - surgery
Recovery of Function
Robotic Radical Prostatectomy
Robotic Surgical Procedures - methods
Sexual Function Outcome
Urinary Continence Outcome
Urinary Incontinence - etiology
title Development and Assessment of an AI-based Machine Learning Model for Predicting Urinary Continence and Erectile Function Recovery after Robotic-Assisted Radical Prostatectomy: Insights from a Prostate Cancer Referral Center
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T21%3A27%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20and%20Assessment%20of%20an%20AI-based%20Machine%20Learning%20Model%20for%20Predicting%20Urinary%20Continence%20and%20Erectile%20Function%20Recovery%20after%20Robotic-Assisted%20Radical%20Prostatectomy:%20Insights%20from%20a%20Prostate%20Cancer%20Referral%20Center&rft.jtitle=Computer%20methods%20and%20programs%20in%20biomedicine&rft.au=Saikali,%20S.&rft.date=2025-02&rft.volume=259&rft.spage=108522&rft.pages=108522-&rft.artnum=108522&rft.issn=0169-2607&rft.eissn=1872-7565&rft_id=info:doi/10.1016/j.cmpb.2024.108522&rft_dat=%3Cproquest_cross%3E3140926845%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3140926845&rft_id=info:pmid/39626503&rft_els_id=S0169260724005157&rfr_iscdi=true