Development and Assessment of an AI-based Machine Learning Model for Predicting Urinary Continence and Erectile Function Recovery after Robotic-Assisted Radical Prostatectomy: Insights from a Prostate Cancer Referral Center
Prostate cancer remains a significant health concern, with radical prostatectomy being a common treatment approach. However, predicting postoperative functional outcomes, particularly urinary continence and erectile function, poses challenges. Emerging artificial intelligence (AI) technologies offer...
Gespeichert in:
Veröffentlicht in: | Computer methods and programs in biomedicine 2025-02, Vol.259, p.108522, Article 108522 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 108522 |
container_title | Computer methods and programs in biomedicine |
container_volume | 259 |
creator | Saikali, S. Reddy, S. Gokaraju, M. Goldsztein, N. Dyer, A. Gamal, A. Jaber, A. Moschovas, M. Rogers, T. Vangala, A. Briscoe, J Toleti, C. Patel, P. Patel, V. |
description | Prostate cancer remains a significant health concern, with radical prostatectomy being a common treatment approach. However, predicting postoperative functional outcomes, particularly urinary continence and erectile function, poses challenges. Emerging artificial intelligence (AI) technologies offer promise in predictive modeling. This study aimed to develop and validate AI-based models to predict continence and potency following nerve-sparing robotic radical prostatectomy (RARP).
A cohort of 8,524 patients undergoing RARP was analyzed. Preoperative variables were collected, and two separate machine-learning Artificial Neural Network (ANN) models were trained to predict continence and potency at 12 months post- surgery. Model performance was assessed using area under the curve (AUC) values, with comparisons made to other machine learning algorithms. Feature importance analysis was conducted to identify key predictors.
The ANN models demonstrated AUCs of 0.74 for potency and 0.68 for continence prediction, outperforming other algorithms. Feature importance analysis identified variables such as age, comorbidities, and preoperative scores as significant predictors for both outcomes.
AI-based models show potential in predicting postoperative functional outcomes following RARP. Continued efforts in optimizing models and exploring additional factors are needed to improve predictive accuracy and clinical applicability. Multi-center studies and larger datasets will further contribute to enhancing the value of AI in clinical decision-making for prostate cancer treatment. |
doi_str_mv | 10.1016/j.cmpb.2024.108522 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3140926845</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0169260724005157</els_id><sourcerecordid>3140926845</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1523-669a3bc3008b7d6d5fdd2d2d2260ef61f475f0a9e64907f4ab32bf28423a90003</originalsourceid><addsrcrecordid>eNp9UcGO0zAQtRCILQs_wAH5yCXFcWKnQVyqsAuVugJV7Nly7PGuq8Qudlppv5ZfYbJd9oh8sGfmzRvPe4S8L9myZKX8tF-a8dAvOeM1JlaC8xdkUa4aXjRCipdkgaC24JI1F-RNznvGGBdCviYXVSu5FKxakD9f4QRDPIwQJqqDpeucIefHMDrM0PWm6HUGS2-0ufcB6BZ0Cj7c0ZtoYaAuJvozgfVmmpO3yQedHmgXA8YQDDzSXiXA-gD0-hjwEQPdgYknQKR2EyS6i32cvClwvs8TjttppNQDcsc86Qnb4_jwmW5C9nf3U6YuxZHq5zLtNM5CHnCQEvZ1uAKkt-SV00OGd0_3Jbm9vvrVfS-2P75tuvW2MKXgVSFlq6veVIyt-sZKK5y1fD6oHjhZuroRjukWZN2yxtW6r3jv-KrmlW5R1-qSfDzzHlL8fYQ8qdFnA8OgA8RjVlVZs5bLVS0Qys9Qg1_PCZw6JD-iZqpkajZW7dVsrJqNVWdjsenDE_-xH8E-t_xzEgFfzgDALU8eksrGz_JbP0uvbPT_4_8LaXa4UQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3140926845</pqid></control><display><type>article</type><title>Development and Assessment of an AI-based Machine Learning Model for Predicting Urinary Continence and Erectile Function Recovery after Robotic-Assisted Radical Prostatectomy: Insights from a Prostate Cancer Referral Center</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Saikali, S. ; Reddy, S. ; Gokaraju, M. ; Goldsztein, N. ; Dyer, A. ; Gamal, A. ; Jaber, A. ; Moschovas, M. ; Rogers, T. ; Vangala, A. ; Briscoe, J ; Toleti, C. ; Patel, P. ; Patel, V.</creator><creatorcontrib>Saikali, S. ; Reddy, S. ; Gokaraju, M. ; Goldsztein, N. ; Dyer, A. ; Gamal, A. ; Jaber, A. ; Moschovas, M. ; Rogers, T. ; Vangala, A. ; Briscoe, J ; Toleti, C. ; Patel, P. ; Patel, V.</creatorcontrib><description>Prostate cancer remains a significant health concern, with radical prostatectomy being a common treatment approach. However, predicting postoperative functional outcomes, particularly urinary continence and erectile function, poses challenges. Emerging artificial intelligence (AI) technologies offer promise in predictive modeling. This study aimed to develop and validate AI-based models to predict continence and potency following nerve-sparing robotic radical prostatectomy (RARP).
A cohort of 8,524 patients undergoing RARP was analyzed. Preoperative variables were collected, and two separate machine-learning Artificial Neural Network (ANN) models were trained to predict continence and potency at 12 months post- surgery. Model performance was assessed using area under the curve (AUC) values, with comparisons made to other machine learning algorithms. Feature importance analysis was conducted to identify key predictors.
The ANN models demonstrated AUCs of 0.74 for potency and 0.68 for continence prediction, outperforming other algorithms. Feature importance analysis identified variables such as age, comorbidities, and preoperative scores as significant predictors for both outcomes.
AI-based models show potential in predicting postoperative functional outcomes following RARP. Continued efforts in optimizing models and exploring additional factors are needed to improve predictive accuracy and clinical applicability. Multi-center studies and larger datasets will further contribute to enhancing the value of AI in clinical decision-making for prostate cancer treatment.</description><identifier>ISSN: 0169-2607</identifier><identifier>ISSN: 1872-7565</identifier><identifier>EISSN: 1872-7565</identifier><identifier>DOI: 10.1016/j.cmpb.2024.108522</identifier><identifier>PMID: 39626503</identifier><language>eng</language><publisher>Ireland: Elsevier B.V</publisher><subject>Aged ; Algorithms ; Area Under Curve ; Artificial Intelligence ; artificial neural networks ; Deep Learning ; Erectile Dysfunction - etiology ; Humans ; Machine Learning ; Male ; Middle Aged ; Neural Networks, Computer ; Penile Erection ; Prostate Cancer ; Prostatectomy - adverse effects ; Prostatectomy - methods ; Prostatic Neoplasms - surgery ; Recovery of Function ; Robotic Radical Prostatectomy ; Robotic Surgical Procedures - methods ; Sexual Function Outcome ; Urinary Continence Outcome ; Urinary Incontinence - etiology</subject><ispartof>Computer methods and programs in biomedicine, 2025-02, Vol.259, p.108522, Article 108522</ispartof><rights>2024 Elsevier B.V.</rights><rights>Copyright © 2024 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1523-669a3bc3008b7d6d5fdd2d2d2260ef61f475f0a9e64907f4ab32bf28423a90003</cites><orcidid>0000-0003-3673-0286</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0169260724005157$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39626503$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Saikali, S.</creatorcontrib><creatorcontrib>Reddy, S.</creatorcontrib><creatorcontrib>Gokaraju, M.</creatorcontrib><creatorcontrib>Goldsztein, N.</creatorcontrib><creatorcontrib>Dyer, A.</creatorcontrib><creatorcontrib>Gamal, A.</creatorcontrib><creatorcontrib>Jaber, A.</creatorcontrib><creatorcontrib>Moschovas, M.</creatorcontrib><creatorcontrib>Rogers, T.</creatorcontrib><creatorcontrib>Vangala, A.</creatorcontrib><creatorcontrib>Briscoe, J</creatorcontrib><creatorcontrib>Toleti, C.</creatorcontrib><creatorcontrib>Patel, P.</creatorcontrib><creatorcontrib>Patel, V.</creatorcontrib><title>Development and Assessment of an AI-based Machine Learning Model for Predicting Urinary Continence and Erectile Function Recovery after Robotic-Assisted Radical Prostatectomy: Insights from a Prostate Cancer Referral Center</title><title>Computer methods and programs in biomedicine</title><addtitle>Comput Methods Programs Biomed</addtitle><description>Prostate cancer remains a significant health concern, with radical prostatectomy being a common treatment approach. However, predicting postoperative functional outcomes, particularly urinary continence and erectile function, poses challenges. Emerging artificial intelligence (AI) technologies offer promise in predictive modeling. This study aimed to develop and validate AI-based models to predict continence and potency following nerve-sparing robotic radical prostatectomy (RARP).
A cohort of 8,524 patients undergoing RARP was analyzed. Preoperative variables were collected, and two separate machine-learning Artificial Neural Network (ANN) models were trained to predict continence and potency at 12 months post- surgery. Model performance was assessed using area under the curve (AUC) values, with comparisons made to other machine learning algorithms. Feature importance analysis was conducted to identify key predictors.
The ANN models demonstrated AUCs of 0.74 for potency and 0.68 for continence prediction, outperforming other algorithms. Feature importance analysis identified variables such as age, comorbidities, and preoperative scores as significant predictors for both outcomes.
AI-based models show potential in predicting postoperative functional outcomes following RARP. Continued efforts in optimizing models and exploring additional factors are needed to improve predictive accuracy and clinical applicability. Multi-center studies and larger datasets will further contribute to enhancing the value of AI in clinical decision-making for prostate cancer treatment.</description><subject>Aged</subject><subject>Algorithms</subject><subject>Area Under Curve</subject><subject>Artificial Intelligence</subject><subject>artificial neural networks</subject><subject>Deep Learning</subject><subject>Erectile Dysfunction - etiology</subject><subject>Humans</subject><subject>Machine Learning</subject><subject>Male</subject><subject>Middle Aged</subject><subject>Neural Networks, Computer</subject><subject>Penile Erection</subject><subject>Prostate Cancer</subject><subject>Prostatectomy - adverse effects</subject><subject>Prostatectomy - methods</subject><subject>Prostatic Neoplasms - surgery</subject><subject>Recovery of Function</subject><subject>Robotic Radical Prostatectomy</subject><subject>Robotic Surgical Procedures - methods</subject><subject>Sexual Function Outcome</subject><subject>Urinary Continence Outcome</subject><subject>Urinary Incontinence - etiology</subject><issn>0169-2607</issn><issn>1872-7565</issn><issn>1872-7565</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9UcGO0zAQtRCILQs_wAH5yCXFcWKnQVyqsAuVugJV7Nly7PGuq8Qudlppv5ZfYbJd9oh8sGfmzRvPe4S8L9myZKX8tF-a8dAvOeM1JlaC8xdkUa4aXjRCipdkgaC24JI1F-RNznvGGBdCviYXVSu5FKxakD9f4QRDPIwQJqqDpeucIefHMDrM0PWm6HUGS2-0ufcB6BZ0Cj7c0ZtoYaAuJvozgfVmmpO3yQedHmgXA8YQDDzSXiXA-gD0-hjwEQPdgYknQKR2EyS6i32cvClwvs8TjttppNQDcsc86Qnb4_jwmW5C9nf3U6YuxZHq5zLtNM5CHnCQEvZ1uAKkt-SV00OGd0_3Jbm9vvrVfS-2P75tuvW2MKXgVSFlq6veVIyt-sZKK5y1fD6oHjhZuroRjukWZN2yxtW6r3jv-KrmlW5R1-qSfDzzHlL8fYQ8qdFnA8OgA8RjVlVZs5bLVS0Qys9Qg1_PCZw6JD-iZqpkajZW7dVsrJqNVWdjsenDE_-xH8E-t_xzEgFfzgDALU8eksrGz_JbP0uvbPT_4_8LaXa4UQ</recordid><startdate>202502</startdate><enddate>202502</enddate><creator>Saikali, S.</creator><creator>Reddy, S.</creator><creator>Gokaraju, M.</creator><creator>Goldsztein, N.</creator><creator>Dyer, A.</creator><creator>Gamal, A.</creator><creator>Jaber, A.</creator><creator>Moschovas, M.</creator><creator>Rogers, T.</creator><creator>Vangala, A.</creator><creator>Briscoe, J</creator><creator>Toleti, C.</creator><creator>Patel, P.</creator><creator>Patel, V.</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3673-0286</orcidid></search><sort><creationdate>202502</creationdate><title>Development and Assessment of an AI-based Machine Learning Model for Predicting Urinary Continence and Erectile Function Recovery after Robotic-Assisted Radical Prostatectomy: Insights from a Prostate Cancer Referral Center</title><author>Saikali, S. ; Reddy, S. ; Gokaraju, M. ; Goldsztein, N. ; Dyer, A. ; Gamal, A. ; Jaber, A. ; Moschovas, M. ; Rogers, T. ; Vangala, A. ; Briscoe, J ; Toleti, C. ; Patel, P. ; Patel, V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1523-669a3bc3008b7d6d5fdd2d2d2260ef61f475f0a9e64907f4ab32bf28423a90003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Aged</topic><topic>Algorithms</topic><topic>Area Under Curve</topic><topic>Artificial Intelligence</topic><topic>artificial neural networks</topic><topic>Deep Learning</topic><topic>Erectile Dysfunction - etiology</topic><topic>Humans</topic><topic>Machine Learning</topic><topic>Male</topic><topic>Middle Aged</topic><topic>Neural Networks, Computer</topic><topic>Penile Erection</topic><topic>Prostate Cancer</topic><topic>Prostatectomy - adverse effects</topic><topic>Prostatectomy - methods</topic><topic>Prostatic Neoplasms - surgery</topic><topic>Recovery of Function</topic><topic>Robotic Radical Prostatectomy</topic><topic>Robotic Surgical Procedures - methods</topic><topic>Sexual Function Outcome</topic><topic>Urinary Continence Outcome</topic><topic>Urinary Incontinence - etiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Saikali, S.</creatorcontrib><creatorcontrib>Reddy, S.</creatorcontrib><creatorcontrib>Gokaraju, M.</creatorcontrib><creatorcontrib>Goldsztein, N.</creatorcontrib><creatorcontrib>Dyer, A.</creatorcontrib><creatorcontrib>Gamal, A.</creatorcontrib><creatorcontrib>Jaber, A.</creatorcontrib><creatorcontrib>Moschovas, M.</creatorcontrib><creatorcontrib>Rogers, T.</creatorcontrib><creatorcontrib>Vangala, A.</creatorcontrib><creatorcontrib>Briscoe, J</creatorcontrib><creatorcontrib>Toleti, C.</creatorcontrib><creatorcontrib>Patel, P.</creatorcontrib><creatorcontrib>Patel, V.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Computer methods and programs in biomedicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Saikali, S.</au><au>Reddy, S.</au><au>Gokaraju, M.</au><au>Goldsztein, N.</au><au>Dyer, A.</au><au>Gamal, A.</au><au>Jaber, A.</au><au>Moschovas, M.</au><au>Rogers, T.</au><au>Vangala, A.</au><au>Briscoe, J</au><au>Toleti, C.</au><au>Patel, P.</au><au>Patel, V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development and Assessment of an AI-based Machine Learning Model for Predicting Urinary Continence and Erectile Function Recovery after Robotic-Assisted Radical Prostatectomy: Insights from a Prostate Cancer Referral Center</atitle><jtitle>Computer methods and programs in biomedicine</jtitle><addtitle>Comput Methods Programs Biomed</addtitle><date>2025-02</date><risdate>2025</risdate><volume>259</volume><spage>108522</spage><pages>108522-</pages><artnum>108522</artnum><issn>0169-2607</issn><issn>1872-7565</issn><eissn>1872-7565</eissn><abstract>Prostate cancer remains a significant health concern, with radical prostatectomy being a common treatment approach. However, predicting postoperative functional outcomes, particularly urinary continence and erectile function, poses challenges. Emerging artificial intelligence (AI) technologies offer promise in predictive modeling. This study aimed to develop and validate AI-based models to predict continence and potency following nerve-sparing robotic radical prostatectomy (RARP).
A cohort of 8,524 patients undergoing RARP was analyzed. Preoperative variables were collected, and two separate machine-learning Artificial Neural Network (ANN) models were trained to predict continence and potency at 12 months post- surgery. Model performance was assessed using area under the curve (AUC) values, with comparisons made to other machine learning algorithms. Feature importance analysis was conducted to identify key predictors.
The ANN models demonstrated AUCs of 0.74 for potency and 0.68 for continence prediction, outperforming other algorithms. Feature importance analysis identified variables such as age, comorbidities, and preoperative scores as significant predictors for both outcomes.
AI-based models show potential in predicting postoperative functional outcomes following RARP. Continued efforts in optimizing models and exploring additional factors are needed to improve predictive accuracy and clinical applicability. Multi-center studies and larger datasets will further contribute to enhancing the value of AI in clinical decision-making for prostate cancer treatment.</abstract><cop>Ireland</cop><pub>Elsevier B.V</pub><pmid>39626503</pmid><doi>10.1016/j.cmpb.2024.108522</doi><orcidid>https://orcid.org/0000-0003-3673-0286</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0169-2607 |
ispartof | Computer methods and programs in biomedicine, 2025-02, Vol.259, p.108522, Article 108522 |
issn | 0169-2607 1872-7565 1872-7565 |
language | eng |
recordid | cdi_proquest_miscellaneous_3140926845 |
source | MEDLINE; Elsevier ScienceDirect Journals Complete |
subjects | Aged Algorithms Area Under Curve Artificial Intelligence artificial neural networks Deep Learning Erectile Dysfunction - etiology Humans Machine Learning Male Middle Aged Neural Networks, Computer Penile Erection Prostate Cancer Prostatectomy - adverse effects Prostatectomy - methods Prostatic Neoplasms - surgery Recovery of Function Robotic Radical Prostatectomy Robotic Surgical Procedures - methods Sexual Function Outcome Urinary Continence Outcome Urinary Incontinence - etiology |
title | Development and Assessment of an AI-based Machine Learning Model for Predicting Urinary Continence and Erectile Function Recovery after Robotic-Assisted Radical Prostatectomy: Insights from a Prostate Cancer Referral Center |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T21%3A27%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20and%20Assessment%20of%20an%20AI-based%20Machine%20Learning%20Model%20for%20Predicting%20Urinary%20Continence%20and%20Erectile%20Function%20Recovery%20after%20Robotic-Assisted%20Radical%20Prostatectomy:%20Insights%20from%20a%20Prostate%20Cancer%20Referral%20Center&rft.jtitle=Computer%20methods%20and%20programs%20in%20biomedicine&rft.au=Saikali,%20S.&rft.date=2025-02&rft.volume=259&rft.spage=108522&rft.pages=108522-&rft.artnum=108522&rft.issn=0169-2607&rft.eissn=1872-7565&rft_id=info:doi/10.1016/j.cmpb.2024.108522&rft_dat=%3Cproquest_cross%3E3140926845%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3140926845&rft_id=info:pmid/39626503&rft_els_id=S0169260724005157&rfr_iscdi=true |