Electronic and geometric effects in an Au@NiO core-shell nanocatalyst on the oxidative esterification of aldehydes

Strong metal-support interactions (SMSIs) are important in heterogeneous catalysis to control stability, activity, and selectivity. Core-shell nanostructures as a unique SMSI system not only stabilize the metal nanoparticles in the core, but also offer tunable structural and electronic properties th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanoscale 2025-01, Vol.17 (3), p.1317-1325
Hauptverfasser: Zhan, Shaoqi, Song, Haohong, Wu, Zili, Jiang, De-En
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1325
container_issue 3
container_start_page 1317
container_title Nanoscale
container_volume 17
creator Zhan, Shaoqi
Song, Haohong
Wu, Zili
Jiang, De-En
description Strong metal-support interactions (SMSIs) are important in heterogeneous catalysis to control stability, activity, and selectivity. Core-shell nanostructures as a unique SMSI system not only stabilize the metal nanoparticles in the core, but also offer tunable structural and electronic properties their interaction with the support shell. The Au@NiO core-shell system, for example, is the first commercial nanogold catalyst to produce bulk chemicals the oxidative esterification of aldehydes. However, how the SMSI effect in Au@NiO manifests on its oxidative esterification activity is unclear. Here we use a model of an Au @(NiO) core-shell nanocatalyst to examine the Au-NiO interaction and the associated electronic and geometric factors in enabling the oxidation of a hemiacetal (an intermediate from a ready reaction between an aldehyde and an alcohol) to an ester. We found 1.27 (e ) electrons flowing from the NiO shell to the Au core, leading to a higher oxide state of Ni atoms and the stabilization of key intermediates on the NiO shell. More importantly, lower activation energy was found on the Au @(NiO) catalyst than on the Au(111) and NiO(100) surfaces for the rate-limiting step. Microkinetic modeling confirmed the high activity of the Au @(NiO) catalyst in ester production in the experimental temperature range. Our work demonstrates the unique geometric and electronic effects of the Au@NiO core-shell nanostructure on the catalytic oxidative esterification of aldehydes.
doi_str_mv 10.1039/d4nr03302g
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3140923310</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3140923310</sourcerecordid><originalsourceid>FETCH-LOGICAL-c204t-1ebfd061fe2378838247d374c00433c01940b247183835d6fcd81c83f4c3dad23</originalsourceid><addsrcrecordid>eNpdkclKBDEQhoMoLqMXH0ACXkRorXRlerpvDu4gCqLnJpNUnEhPokm3OG9vXA8eilr-j-KnirFdAUcCsDk20kdAhPJphW2WIKFAnJSrf3UlN9hWSs8AVYMVrrMNbKoSm_F4k8XzjnQfg3eaK2_4E4UF9TF3ZG1WEnc-C3w6nNy6O65DpCLNqeu4Vz5o1atumXoePO_nxMO7M6p3b8Qp9RSddZlwWQyWq87QfGkobbM1q7pEOz95xB4vzh9Or4qbu8vr0-lNobPvvhA0swYqYanESV1jXcqJwYnUABJRg2gkzPJMZAnHprLa1ELXaKVGo0yJI3bwvfclhtchG2oXLulsXXkKQ2pRSGhKxHzDEdv_hz6HIfrsLlPjCqDJkanDb0rHkFIk275Et1Bx2QpoPz_Rnsnb-69PXGZ472flMFuQ-UN_T48f1qeDEw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3156009600</pqid></control><display><type>article</type><title>Electronic and geometric effects in an Au@NiO core-shell nanocatalyst on the oxidative esterification of aldehydes</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Zhan, Shaoqi ; Song, Haohong ; Wu, Zili ; Jiang, De-En</creator><creatorcontrib>Zhan, Shaoqi ; Song, Haohong ; Wu, Zili ; Jiang, De-En</creatorcontrib><description>Strong metal-support interactions (SMSIs) are important in heterogeneous catalysis to control stability, activity, and selectivity. Core-shell nanostructures as a unique SMSI system not only stabilize the metal nanoparticles in the core, but also offer tunable structural and electronic properties their interaction with the support shell. The Au@NiO core-shell system, for example, is the first commercial nanogold catalyst to produce bulk chemicals the oxidative esterification of aldehydes. However, how the SMSI effect in Au@NiO manifests on its oxidative esterification activity is unclear. Here we use a model of an Au @(NiO) core-shell nanocatalyst to examine the Au-NiO interaction and the associated electronic and geometric factors in enabling the oxidation of a hemiacetal (an intermediate from a ready reaction between an aldehyde and an alcohol) to an ester. We found 1.27 (e ) electrons flowing from the NiO shell to the Au core, leading to a higher oxide state of Ni atoms and the stabilization of key intermediates on the NiO shell. More importantly, lower activation energy was found on the Au @(NiO) catalyst than on the Au(111) and NiO(100) surfaces for the rate-limiting step. Microkinetic modeling confirmed the high activity of the Au @(NiO) catalyst in ester production in the experimental temperature range. Our work demonstrates the unique geometric and electronic effects of the Au@NiO core-shell nanostructure on the catalytic oxidative esterification of aldehydes.</description><identifier>ISSN: 2040-3364</identifier><identifier>ISSN: 2040-3372</identifier><identifier>EISSN: 2040-3372</identifier><identifier>DOI: 10.1039/d4nr03302g</identifier><identifier>PMID: 39623955</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Aldehydes ; Catalysis ; Catalysts ; Chemical activity ; Control stability ; Core-shell structure ; Esterification ; Gold ; Nanostructure ; Nickel oxides ; Oxidation ; Shell stability</subject><ispartof>Nanoscale, 2025-01, Vol.17 (3), p.1317-1325</ispartof><rights>Copyright Royal Society of Chemistry 2025</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c204t-1ebfd061fe2378838247d374c00433c01940b247183835d6fcd81c83f4c3dad23</cites><orcidid>0000-0001-5167-0731 ; 0000-0002-4468-3240 ; 0009-0003-2037-7905 ; 0000-0002-6383-1771</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39623955$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhan, Shaoqi</creatorcontrib><creatorcontrib>Song, Haohong</creatorcontrib><creatorcontrib>Wu, Zili</creatorcontrib><creatorcontrib>Jiang, De-En</creatorcontrib><title>Electronic and geometric effects in an Au@NiO core-shell nanocatalyst on the oxidative esterification of aldehydes</title><title>Nanoscale</title><addtitle>Nanoscale</addtitle><description>Strong metal-support interactions (SMSIs) are important in heterogeneous catalysis to control stability, activity, and selectivity. Core-shell nanostructures as a unique SMSI system not only stabilize the metal nanoparticles in the core, but also offer tunable structural and electronic properties their interaction with the support shell. The Au@NiO core-shell system, for example, is the first commercial nanogold catalyst to produce bulk chemicals the oxidative esterification of aldehydes. However, how the SMSI effect in Au@NiO manifests on its oxidative esterification activity is unclear. Here we use a model of an Au @(NiO) core-shell nanocatalyst to examine the Au-NiO interaction and the associated electronic and geometric factors in enabling the oxidation of a hemiacetal (an intermediate from a ready reaction between an aldehyde and an alcohol) to an ester. We found 1.27 (e ) electrons flowing from the NiO shell to the Au core, leading to a higher oxide state of Ni atoms and the stabilization of key intermediates on the NiO shell. More importantly, lower activation energy was found on the Au @(NiO) catalyst than on the Au(111) and NiO(100) surfaces for the rate-limiting step. Microkinetic modeling confirmed the high activity of the Au @(NiO) catalyst in ester production in the experimental temperature range. Our work demonstrates the unique geometric and electronic effects of the Au@NiO core-shell nanostructure on the catalytic oxidative esterification of aldehydes.</description><subject>Aldehydes</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Chemical activity</subject><subject>Control stability</subject><subject>Core-shell structure</subject><subject>Esterification</subject><subject>Gold</subject><subject>Nanostructure</subject><subject>Nickel oxides</subject><subject>Oxidation</subject><subject>Shell stability</subject><issn>2040-3364</issn><issn>2040-3372</issn><issn>2040-3372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNpdkclKBDEQhoMoLqMXH0ACXkRorXRlerpvDu4gCqLnJpNUnEhPokm3OG9vXA8eilr-j-KnirFdAUcCsDk20kdAhPJphW2WIKFAnJSrf3UlN9hWSs8AVYMVrrMNbKoSm_F4k8XzjnQfg3eaK2_4E4UF9TF3ZG1WEnc-C3w6nNy6O65DpCLNqeu4Vz5o1atumXoePO_nxMO7M6p3b8Qp9RSddZlwWQyWq87QfGkobbM1q7pEOz95xB4vzh9Or4qbu8vr0-lNobPvvhA0swYqYanESV1jXcqJwYnUABJRg2gkzPJMZAnHprLa1ELXaKVGo0yJI3bwvfclhtchG2oXLulsXXkKQ2pRSGhKxHzDEdv_hz6HIfrsLlPjCqDJkanDb0rHkFIk275Et1Bx2QpoPz_Rnsnb-69PXGZ472flMFuQ-UN_T48f1qeDEw</recordid><startdate>20250116</startdate><enddate>20250116</enddate><creator>Zhan, Shaoqi</creator><creator>Song, Haohong</creator><creator>Wu, Zili</creator><creator>Jiang, De-En</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5167-0731</orcidid><orcidid>https://orcid.org/0000-0002-4468-3240</orcidid><orcidid>https://orcid.org/0009-0003-2037-7905</orcidid><orcidid>https://orcid.org/0000-0002-6383-1771</orcidid></search><sort><creationdate>20250116</creationdate><title>Electronic and geometric effects in an Au@NiO core-shell nanocatalyst on the oxidative esterification of aldehydes</title><author>Zhan, Shaoqi ; Song, Haohong ; Wu, Zili ; Jiang, De-En</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c204t-1ebfd061fe2378838247d374c00433c01940b247183835d6fcd81c83f4c3dad23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Aldehydes</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Chemical activity</topic><topic>Control stability</topic><topic>Core-shell structure</topic><topic>Esterification</topic><topic>Gold</topic><topic>Nanostructure</topic><topic>Nickel oxides</topic><topic>Oxidation</topic><topic>Shell stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhan, Shaoqi</creatorcontrib><creatorcontrib>Song, Haohong</creatorcontrib><creatorcontrib>Wu, Zili</creatorcontrib><creatorcontrib>Jiang, De-En</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Nanoscale</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhan, Shaoqi</au><au>Song, Haohong</au><au>Wu, Zili</au><au>Jiang, De-En</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electronic and geometric effects in an Au@NiO core-shell nanocatalyst on the oxidative esterification of aldehydes</atitle><jtitle>Nanoscale</jtitle><addtitle>Nanoscale</addtitle><date>2025-01-16</date><risdate>2025</risdate><volume>17</volume><issue>3</issue><spage>1317</spage><epage>1325</epage><pages>1317-1325</pages><issn>2040-3364</issn><issn>2040-3372</issn><eissn>2040-3372</eissn><abstract>Strong metal-support interactions (SMSIs) are important in heterogeneous catalysis to control stability, activity, and selectivity. Core-shell nanostructures as a unique SMSI system not only stabilize the metal nanoparticles in the core, but also offer tunable structural and electronic properties their interaction with the support shell. The Au@NiO core-shell system, for example, is the first commercial nanogold catalyst to produce bulk chemicals the oxidative esterification of aldehydes. However, how the SMSI effect in Au@NiO manifests on its oxidative esterification activity is unclear. Here we use a model of an Au @(NiO) core-shell nanocatalyst to examine the Au-NiO interaction and the associated electronic and geometric factors in enabling the oxidation of a hemiacetal (an intermediate from a ready reaction between an aldehyde and an alcohol) to an ester. We found 1.27 (e ) electrons flowing from the NiO shell to the Au core, leading to a higher oxide state of Ni atoms and the stabilization of key intermediates on the NiO shell. More importantly, lower activation energy was found on the Au @(NiO) catalyst than on the Au(111) and NiO(100) surfaces for the rate-limiting step. Microkinetic modeling confirmed the high activity of the Au @(NiO) catalyst in ester production in the experimental temperature range. Our work demonstrates the unique geometric and electronic effects of the Au@NiO core-shell nanostructure on the catalytic oxidative esterification of aldehydes.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>39623955</pmid><doi>10.1039/d4nr03302g</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-5167-0731</orcidid><orcidid>https://orcid.org/0000-0002-4468-3240</orcidid><orcidid>https://orcid.org/0009-0003-2037-7905</orcidid><orcidid>https://orcid.org/0000-0002-6383-1771</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2040-3364
ispartof Nanoscale, 2025-01, Vol.17 (3), p.1317-1325
issn 2040-3364
2040-3372
2040-3372
language eng
recordid cdi_proquest_miscellaneous_3140923310
source Royal Society Of Chemistry Journals 2008-
subjects Aldehydes
Catalysis
Catalysts
Chemical activity
Control stability
Core-shell structure
Esterification
Gold
Nanostructure
Nickel oxides
Oxidation
Shell stability
title Electronic and geometric effects in an Au@NiO core-shell nanocatalyst on the oxidative esterification of aldehydes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T19%3A13%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electronic%20and%20geometric%20effects%20in%20an%20Au@NiO%20core-shell%20nanocatalyst%20on%20the%20oxidative%20esterification%20of%20aldehydes&rft.jtitle=Nanoscale&rft.au=Zhan,%20Shaoqi&rft.date=2025-01-16&rft.volume=17&rft.issue=3&rft.spage=1317&rft.epage=1325&rft.pages=1317-1325&rft.issn=2040-3364&rft.eissn=2040-3372&rft_id=info:doi/10.1039/d4nr03302g&rft_dat=%3Cproquest_cross%3E3140923310%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3156009600&rft_id=info:pmid/39623955&rfr_iscdi=true