Co-culture of postnatal mouse spinal cord and skeletal muscle explants as an experimental model of neuromuscular interactions

The intercommunication between nerves and muscles plays an important role in the functioning of our body, and its failure leads to severe neuromuscular disorders such as spinal muscular atrophy and amyotrophic lateral sclerosis. Understanding the cellular and molecular mechanisms underlying nerve–mu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Histochemistry and cell biology 2024-12, Vol.163 (1), p.15
Hauptverfasser: Mikhailova, Mariya M., Klein, Olga I., Patsaev, Timofey D., Panteleyev, Andrey A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 15
container_title Histochemistry and cell biology
container_volume 163
creator Mikhailova, Mariya M.
Klein, Olga I.
Patsaev, Timofey D.
Panteleyev, Andrey A.
description The intercommunication between nerves and muscles plays an important role in the functioning of our body, and its failure leads to severe neuromuscular disorders such as spinal muscular atrophy and amyotrophic lateral sclerosis. Understanding the cellular and molecular mechanisms underlying nerve–muscle interactions and mediating their mutual influence is an integral part of strategies aimed at curing neuromuscular diseases. Here, we propose a novel ex vivo experimental model for the spinal cord (SC) and skeletal muscle interactions which for the first time utilizes only fully formed (but not yet quite functional) postnatal tissues. The model represents an organotypic co-culture comprising a longitudinal slice of the mouse postnatal SC and an extensor digitorum longus (EDL) muscle explant placed in the “damage zone” of transversally dissected longitudinal slice of the SC. Using this model, we have shown that SC tissue stimulates muscle contractions and reduces the area occupied by acetylcholine receptors on muscle surface. In turn, EDL muscles stimulate the growth of SC-derived neurites. Thus, our organotypic model allows one to assess the mutual influence of neurons and muscles in a nearly natural setting which maintains the architecture and cellular composition of intact tissues. Therefore, this model may provide an effective platform for studying molecular and cellular mechanisms linked to defective neuromuscular interactions in associated pathologies.
doi_str_mv 10.1007/s00418-024-02343-4
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_3140922969</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3135009106</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1284-c9910a36d870c1986e625f26fe043a8200eaabfdb4b27058fe611cb44753b89a3</originalsourceid><addsrcrecordid>eNpdkU1r3DAQhkVp6G6S_oEciqCXXpyMPqy1jmVJk0CglwZyE7I9Lt5oJVeyoDnkv0fObikEJMRonnmZmZeQCwaXDGBzlQAkayrgslwhRSU_kDWTgleM6cePZA1aNpUqPytymtIOgNWa809kJbTijHG1Ji_bUHXZzTkiDQOdQpq9na2j-5AT0jSNvgRdiD21vqfpCR2-pXPqHFL8Oznr50RtOX4JMY579AeFHt0i6jHHsBRkZyMd_YzRdvMYfDonJ4N1CT8f3zPy8OP61_a2uv95c7f9fl9NjDey6rRmYIXqmw10TDcKFa8HrgYEKWzDAdDaduhb2fIN1M2AirGulXJTi7bRVpyRbwfdKYY_GdNs9mPq0JXescxpBJNQNqOVLujXd-gu5FiWsFCiBiitqEJ9OVK53WNvpjK1jc_m32ILIA5AKin_G-N_GQZmsc8c7DPFPvNmn5HiFf8GjB0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3135009106</pqid></control><display><type>article</type><title>Co-culture of postnatal mouse spinal cord and skeletal muscle explants as an experimental model of neuromuscular interactions</title><source>MEDLINE</source><source>SpringerNature Journals</source><creator>Mikhailova, Mariya M. ; Klein, Olga I. ; Patsaev, Timofey D. ; Panteleyev, Andrey A.</creator><creatorcontrib>Mikhailova, Mariya M. ; Klein, Olga I. ; Patsaev, Timofey D. ; Panteleyev, Andrey A.</creatorcontrib><description>The intercommunication between nerves and muscles plays an important role in the functioning of our body, and its failure leads to severe neuromuscular disorders such as spinal muscular atrophy and amyotrophic lateral sclerosis. Understanding the cellular and molecular mechanisms underlying nerve–muscle interactions and mediating their mutual influence is an integral part of strategies aimed at curing neuromuscular diseases. Here, we propose a novel ex vivo experimental model for the spinal cord (SC) and skeletal muscle interactions which for the first time utilizes only fully formed (but not yet quite functional) postnatal tissues. The model represents an organotypic co-culture comprising a longitudinal slice of the mouse postnatal SC and an extensor digitorum longus (EDL) muscle explant placed in the “damage zone” of transversally dissected longitudinal slice of the SC. Using this model, we have shown that SC tissue stimulates muscle contractions and reduces the area occupied by acetylcholine receptors on muscle surface. In turn, EDL muscles stimulate the growth of SC-derived neurites. Thus, our organotypic model allows one to assess the mutual influence of neurons and muscles in a nearly natural setting which maintains the architecture and cellular composition of intact tissues. Therefore, this model may provide an effective platform for studying molecular and cellular mechanisms linked to defective neuromuscular interactions in associated pathologies.</description><identifier>ISSN: 0948-6143</identifier><identifier>ISSN: 1432-119X</identifier><identifier>EISSN: 1432-119X</identifier><identifier>DOI: 10.1007/s00418-024-02343-4</identifier><identifier>PMID: 39621126</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Acetylcholine receptors ; Amyotrophic lateral sclerosis ; Animals ; Animals, Newborn ; Axonogenesis ; Biochemistry ; Biomedical and Life Sciences ; Biomedicine ; Cell Biology ; Cell culture ; Coculture Techniques ; Developmental Biology ; Explants ; Mice ; Mice, Inbred C57BL ; Molecular modelling ; Muscle contraction ; Muscle, Skeletal - metabolism ; Musculoskeletal system ; Nerves ; Neuromuscular diseases ; Original Paper ; Postpartum period ; Skeletal muscle ; Spinal cord ; Spinal Cord - metabolism ; Spinal muscular atrophy</subject><ispartof>Histochemistry and cell biology, 2024-12, Vol.163 (1), p.15</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.</rights><rights>Copyright Springer Nature B.V. Dec 2025</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00418-024-02343-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00418-024-02343-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27928,27929,41492,42561,51323</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39621126$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mikhailova, Mariya M.</creatorcontrib><creatorcontrib>Klein, Olga I.</creatorcontrib><creatorcontrib>Patsaev, Timofey D.</creatorcontrib><creatorcontrib>Panteleyev, Andrey A.</creatorcontrib><title>Co-culture of postnatal mouse spinal cord and skeletal muscle explants as an experimental model of neuromuscular interactions</title><title>Histochemistry and cell biology</title><addtitle>Histochem Cell Biol</addtitle><addtitle>Histochem Cell Biol</addtitle><description>The intercommunication between nerves and muscles plays an important role in the functioning of our body, and its failure leads to severe neuromuscular disorders such as spinal muscular atrophy and amyotrophic lateral sclerosis. Understanding the cellular and molecular mechanisms underlying nerve–muscle interactions and mediating their mutual influence is an integral part of strategies aimed at curing neuromuscular diseases. Here, we propose a novel ex vivo experimental model for the spinal cord (SC) and skeletal muscle interactions which for the first time utilizes only fully formed (but not yet quite functional) postnatal tissues. The model represents an organotypic co-culture comprising a longitudinal slice of the mouse postnatal SC and an extensor digitorum longus (EDL) muscle explant placed in the “damage zone” of transversally dissected longitudinal slice of the SC. Using this model, we have shown that SC tissue stimulates muscle contractions and reduces the area occupied by acetylcholine receptors on muscle surface. In turn, EDL muscles stimulate the growth of SC-derived neurites. Thus, our organotypic model allows one to assess the mutual influence of neurons and muscles in a nearly natural setting which maintains the architecture and cellular composition of intact tissues. Therefore, this model may provide an effective platform for studying molecular and cellular mechanisms linked to defective neuromuscular interactions in associated pathologies.</description><subject>Acetylcholine receptors</subject><subject>Amyotrophic lateral sclerosis</subject><subject>Animals</subject><subject>Animals, Newborn</subject><subject>Axonogenesis</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Cell Biology</subject><subject>Cell culture</subject><subject>Coculture Techniques</subject><subject>Developmental Biology</subject><subject>Explants</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Molecular modelling</subject><subject>Muscle contraction</subject><subject>Muscle, Skeletal - metabolism</subject><subject>Musculoskeletal system</subject><subject>Nerves</subject><subject>Neuromuscular diseases</subject><subject>Original Paper</subject><subject>Postpartum period</subject><subject>Skeletal muscle</subject><subject>Spinal cord</subject><subject>Spinal Cord - metabolism</subject><subject>Spinal muscular atrophy</subject><issn>0948-6143</issn><issn>1432-119X</issn><issn>1432-119X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkU1r3DAQhkVp6G6S_oEciqCXXpyMPqy1jmVJk0CglwZyE7I9Lt5oJVeyoDnkv0fObikEJMRonnmZmZeQCwaXDGBzlQAkayrgslwhRSU_kDWTgleM6cePZA1aNpUqPytymtIOgNWa809kJbTijHG1Ji_bUHXZzTkiDQOdQpq9na2j-5AT0jSNvgRdiD21vqfpCR2-pXPqHFL8Oznr50RtOX4JMY579AeFHt0i6jHHsBRkZyMd_YzRdvMYfDonJ4N1CT8f3zPy8OP61_a2uv95c7f9fl9NjDey6rRmYIXqmw10TDcKFa8HrgYEKWzDAdDaduhb2fIN1M2AirGulXJTi7bRVpyRbwfdKYY_GdNs9mPq0JXescxpBJNQNqOVLujXd-gu5FiWsFCiBiitqEJ9OVK53WNvpjK1jc_m32ILIA5AKin_G-N_GQZmsc8c7DPFPvNmn5HiFf8GjB0</recordid><startdate>20241202</startdate><enddate>20241202</enddate><creator>Mikhailova, Mariya M.</creator><creator>Klein, Olga I.</creator><creator>Patsaev, Timofey D.</creator><creator>Panteleyev, Andrey A.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7QP</scope><scope>7TK</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>7X8</scope></search><sort><creationdate>20241202</creationdate><title>Co-culture of postnatal mouse spinal cord and skeletal muscle explants as an experimental model of neuromuscular interactions</title><author>Mikhailova, Mariya M. ; Klein, Olga I. ; Patsaev, Timofey D. ; Panteleyev, Andrey A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1284-c9910a36d870c1986e625f26fe043a8200eaabfdb4b27058fe611cb44753b89a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Acetylcholine receptors</topic><topic>Amyotrophic lateral sclerosis</topic><topic>Animals</topic><topic>Animals, Newborn</topic><topic>Axonogenesis</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Cell Biology</topic><topic>Cell culture</topic><topic>Coculture Techniques</topic><topic>Developmental Biology</topic><topic>Explants</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Molecular modelling</topic><topic>Muscle contraction</topic><topic>Muscle, Skeletal - metabolism</topic><topic>Musculoskeletal system</topic><topic>Nerves</topic><topic>Neuromuscular diseases</topic><topic>Original Paper</topic><topic>Postpartum period</topic><topic>Skeletal muscle</topic><topic>Spinal cord</topic><topic>Spinal Cord - metabolism</topic><topic>Spinal muscular atrophy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mikhailova, Mariya M.</creatorcontrib><creatorcontrib>Klein, Olga I.</creatorcontrib><creatorcontrib>Patsaev, Timofey D.</creatorcontrib><creatorcontrib>Panteleyev, Andrey A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>MEDLINE - Academic</collection><jtitle>Histochemistry and cell biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mikhailova, Mariya M.</au><au>Klein, Olga I.</au><au>Patsaev, Timofey D.</au><au>Panteleyev, Andrey A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Co-culture of postnatal mouse spinal cord and skeletal muscle explants as an experimental model of neuromuscular interactions</atitle><jtitle>Histochemistry and cell biology</jtitle><stitle>Histochem Cell Biol</stitle><addtitle>Histochem Cell Biol</addtitle><date>2024-12-02</date><risdate>2024</risdate><volume>163</volume><issue>1</issue><spage>15</spage><pages>15-</pages><issn>0948-6143</issn><issn>1432-119X</issn><eissn>1432-119X</eissn><abstract>The intercommunication between nerves and muscles plays an important role in the functioning of our body, and its failure leads to severe neuromuscular disorders such as spinal muscular atrophy and amyotrophic lateral sclerosis. Understanding the cellular and molecular mechanisms underlying nerve–muscle interactions and mediating their mutual influence is an integral part of strategies aimed at curing neuromuscular diseases. Here, we propose a novel ex vivo experimental model for the spinal cord (SC) and skeletal muscle interactions which for the first time utilizes only fully formed (but not yet quite functional) postnatal tissues. The model represents an organotypic co-culture comprising a longitudinal slice of the mouse postnatal SC and an extensor digitorum longus (EDL) muscle explant placed in the “damage zone” of transversally dissected longitudinal slice of the SC. Using this model, we have shown that SC tissue stimulates muscle contractions and reduces the area occupied by acetylcholine receptors on muscle surface. In turn, EDL muscles stimulate the growth of SC-derived neurites. Thus, our organotypic model allows one to assess the mutual influence of neurons and muscles in a nearly natural setting which maintains the architecture and cellular composition of intact tissues. Therefore, this model may provide an effective platform for studying molecular and cellular mechanisms linked to defective neuromuscular interactions in associated pathologies.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>39621126</pmid><doi>10.1007/s00418-024-02343-4</doi></addata></record>
fulltext fulltext
identifier ISSN: 0948-6143
ispartof Histochemistry and cell biology, 2024-12, Vol.163 (1), p.15
issn 0948-6143
1432-119X
1432-119X
language eng
recordid cdi_proquest_miscellaneous_3140922969
source MEDLINE; SpringerNature Journals
subjects Acetylcholine receptors
Amyotrophic lateral sclerosis
Animals
Animals, Newborn
Axonogenesis
Biochemistry
Biomedical and Life Sciences
Biomedicine
Cell Biology
Cell culture
Coculture Techniques
Developmental Biology
Explants
Mice
Mice, Inbred C57BL
Molecular modelling
Muscle contraction
Muscle, Skeletal - metabolism
Musculoskeletal system
Nerves
Neuromuscular diseases
Original Paper
Postpartum period
Skeletal muscle
Spinal cord
Spinal Cord - metabolism
Spinal muscular atrophy
title Co-culture of postnatal mouse spinal cord and skeletal muscle explants as an experimental model of neuromuscular interactions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T14%3A46%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Co-culture%20of%20postnatal%20mouse%20spinal%20cord%20and%20skeletal%20muscle%20explants%20as%20an%20experimental%20model%20of%20neuromuscular%20interactions&rft.jtitle=Histochemistry%20and%20cell%20biology&rft.au=Mikhailova,%20Mariya%20M.&rft.date=2024-12-02&rft.volume=163&rft.issue=1&rft.spage=15&rft.pages=15-&rft.issn=0948-6143&rft.eissn=1432-119X&rft_id=info:doi/10.1007/s00418-024-02343-4&rft_dat=%3Cproquest_pubme%3E3135009106%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3135009106&rft_id=info:pmid/39621126&rfr_iscdi=true