Co-culture of postnatal mouse spinal cord and skeletal muscle explants as an experimental model of neuromuscular interactions
The intercommunication between nerves and muscles plays an important role in the functioning of our body, and its failure leads to severe neuromuscular disorders such as spinal muscular atrophy and amyotrophic lateral sclerosis. Understanding the cellular and molecular mechanisms underlying nerve–mu...
Gespeichert in:
Veröffentlicht in: | Histochemistry and cell biology 2024-12, Vol.163 (1), p.15 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 15 |
container_title | Histochemistry and cell biology |
container_volume | 163 |
creator | Mikhailova, Mariya M. Klein, Olga I. Patsaev, Timofey D. Panteleyev, Andrey A. |
description | The intercommunication between nerves and muscles plays an important role in the functioning of our body, and its failure leads to severe neuromuscular disorders such as spinal muscular atrophy and amyotrophic lateral sclerosis. Understanding the cellular and molecular mechanisms underlying nerve–muscle interactions and mediating their mutual influence is an integral part of strategies aimed at curing neuromuscular diseases. Here, we propose a novel ex vivo experimental model for the spinal cord (SC) and skeletal muscle interactions which for the first time utilizes only fully formed (but not yet quite functional) postnatal tissues. The model represents an organotypic co-culture comprising a longitudinal slice of the mouse postnatal SC and an extensor digitorum longus (EDL) muscle explant placed in the “damage zone” of transversally dissected longitudinal slice of the SC. Using this model, we have shown that SC tissue stimulates muscle contractions and reduces the area occupied by acetylcholine receptors on muscle surface. In turn, EDL muscles stimulate the growth of SC-derived neurites. Thus, our organotypic model allows one to assess the mutual influence of neurons and muscles in a nearly natural setting which maintains the architecture and cellular composition of intact tissues. Therefore, this model may provide an effective platform for studying molecular and cellular mechanisms linked to defective neuromuscular interactions in associated pathologies. |
doi_str_mv | 10.1007/s00418-024-02343-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_3140922969</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3135009106</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1284-c9910a36d870c1986e625f26fe043a8200eaabfdb4b27058fe611cb44753b89a3</originalsourceid><addsrcrecordid>eNpdkU1r3DAQhkVp6G6S_oEciqCXXpyMPqy1jmVJk0CglwZyE7I9Lt5oJVeyoDnkv0fObikEJMRonnmZmZeQCwaXDGBzlQAkayrgslwhRSU_kDWTgleM6cePZA1aNpUqPytymtIOgNWa809kJbTijHG1Ji_bUHXZzTkiDQOdQpq9na2j-5AT0jSNvgRdiD21vqfpCR2-pXPqHFL8Oznr50RtOX4JMY579AeFHt0i6jHHsBRkZyMd_YzRdvMYfDonJ4N1CT8f3zPy8OP61_a2uv95c7f9fl9NjDey6rRmYIXqmw10TDcKFa8HrgYEKWzDAdDaduhb2fIN1M2AirGulXJTi7bRVpyRbwfdKYY_GdNs9mPq0JXescxpBJNQNqOVLujXd-gu5FiWsFCiBiitqEJ9OVK53WNvpjK1jc_m32ILIA5AKin_G-N_GQZmsc8c7DPFPvNmn5HiFf8GjB0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3135009106</pqid></control><display><type>article</type><title>Co-culture of postnatal mouse spinal cord and skeletal muscle explants as an experimental model of neuromuscular interactions</title><source>MEDLINE</source><source>SpringerNature Journals</source><creator>Mikhailova, Mariya M. ; Klein, Olga I. ; Patsaev, Timofey D. ; Panteleyev, Andrey A.</creator><creatorcontrib>Mikhailova, Mariya M. ; Klein, Olga I. ; Patsaev, Timofey D. ; Panteleyev, Andrey A.</creatorcontrib><description>The intercommunication between nerves and muscles plays an important role in the functioning of our body, and its failure leads to severe neuromuscular disorders such as spinal muscular atrophy and amyotrophic lateral sclerosis. Understanding the cellular and molecular mechanisms underlying nerve–muscle interactions and mediating their mutual influence is an integral part of strategies aimed at curing neuromuscular diseases. Here, we propose a novel ex vivo experimental model for the spinal cord (SC) and skeletal muscle interactions which for the first time utilizes only fully formed (but not yet quite functional) postnatal tissues. The model represents an organotypic co-culture comprising a longitudinal slice of the mouse postnatal SC and an extensor digitorum longus (EDL) muscle explant placed in the “damage zone” of transversally dissected longitudinal slice of the SC. Using this model, we have shown that SC tissue stimulates muscle contractions and reduces the area occupied by acetylcholine receptors on muscle surface. In turn, EDL muscles stimulate the growth of SC-derived neurites. Thus, our organotypic model allows one to assess the mutual influence of neurons and muscles in a nearly natural setting which maintains the architecture and cellular composition of intact tissues. Therefore, this model may provide an effective platform for studying molecular and cellular mechanisms linked to defective neuromuscular interactions in associated pathologies.</description><identifier>ISSN: 0948-6143</identifier><identifier>ISSN: 1432-119X</identifier><identifier>EISSN: 1432-119X</identifier><identifier>DOI: 10.1007/s00418-024-02343-4</identifier><identifier>PMID: 39621126</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Acetylcholine receptors ; Amyotrophic lateral sclerosis ; Animals ; Animals, Newborn ; Axonogenesis ; Biochemistry ; Biomedical and Life Sciences ; Biomedicine ; Cell Biology ; Cell culture ; Coculture Techniques ; Developmental Biology ; Explants ; Mice ; Mice, Inbred C57BL ; Molecular modelling ; Muscle contraction ; Muscle, Skeletal - metabolism ; Musculoskeletal system ; Nerves ; Neuromuscular diseases ; Original Paper ; Postpartum period ; Skeletal muscle ; Spinal cord ; Spinal Cord - metabolism ; Spinal muscular atrophy</subject><ispartof>Histochemistry and cell biology, 2024-12, Vol.163 (1), p.15</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.</rights><rights>Copyright Springer Nature B.V. Dec 2025</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00418-024-02343-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00418-024-02343-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27928,27929,41492,42561,51323</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39621126$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mikhailova, Mariya M.</creatorcontrib><creatorcontrib>Klein, Olga I.</creatorcontrib><creatorcontrib>Patsaev, Timofey D.</creatorcontrib><creatorcontrib>Panteleyev, Andrey A.</creatorcontrib><title>Co-culture of postnatal mouse spinal cord and skeletal muscle explants as an experimental model of neuromuscular interactions</title><title>Histochemistry and cell biology</title><addtitle>Histochem Cell Biol</addtitle><addtitle>Histochem Cell Biol</addtitle><description>The intercommunication between nerves and muscles plays an important role in the functioning of our body, and its failure leads to severe neuromuscular disorders such as spinal muscular atrophy and amyotrophic lateral sclerosis. Understanding the cellular and molecular mechanisms underlying nerve–muscle interactions and mediating their mutual influence is an integral part of strategies aimed at curing neuromuscular diseases. Here, we propose a novel ex vivo experimental model for the spinal cord (SC) and skeletal muscle interactions which for the first time utilizes only fully formed (but not yet quite functional) postnatal tissues. The model represents an organotypic co-culture comprising a longitudinal slice of the mouse postnatal SC and an extensor digitorum longus (EDL) muscle explant placed in the “damage zone” of transversally dissected longitudinal slice of the SC. Using this model, we have shown that SC tissue stimulates muscle contractions and reduces the area occupied by acetylcholine receptors on muscle surface. In turn, EDL muscles stimulate the growth of SC-derived neurites. Thus, our organotypic model allows one to assess the mutual influence of neurons and muscles in a nearly natural setting which maintains the architecture and cellular composition of intact tissues. Therefore, this model may provide an effective platform for studying molecular and cellular mechanisms linked to defective neuromuscular interactions in associated pathologies.</description><subject>Acetylcholine receptors</subject><subject>Amyotrophic lateral sclerosis</subject><subject>Animals</subject><subject>Animals, Newborn</subject><subject>Axonogenesis</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Cell Biology</subject><subject>Cell culture</subject><subject>Coculture Techniques</subject><subject>Developmental Biology</subject><subject>Explants</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Molecular modelling</subject><subject>Muscle contraction</subject><subject>Muscle, Skeletal - metabolism</subject><subject>Musculoskeletal system</subject><subject>Nerves</subject><subject>Neuromuscular diseases</subject><subject>Original Paper</subject><subject>Postpartum period</subject><subject>Skeletal muscle</subject><subject>Spinal cord</subject><subject>Spinal Cord - metabolism</subject><subject>Spinal muscular atrophy</subject><issn>0948-6143</issn><issn>1432-119X</issn><issn>1432-119X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkU1r3DAQhkVp6G6S_oEciqCXXpyMPqy1jmVJk0CglwZyE7I9Lt5oJVeyoDnkv0fObikEJMRonnmZmZeQCwaXDGBzlQAkayrgslwhRSU_kDWTgleM6cePZA1aNpUqPytymtIOgNWa809kJbTijHG1Ji_bUHXZzTkiDQOdQpq9na2j-5AT0jSNvgRdiD21vqfpCR2-pXPqHFL8Oznr50RtOX4JMY579AeFHt0i6jHHsBRkZyMd_YzRdvMYfDonJ4N1CT8f3zPy8OP61_a2uv95c7f9fl9NjDey6rRmYIXqmw10TDcKFa8HrgYEKWzDAdDaduhb2fIN1M2AirGulXJTi7bRVpyRbwfdKYY_GdNs9mPq0JXescxpBJNQNqOVLujXd-gu5FiWsFCiBiitqEJ9OVK53WNvpjK1jc_m32ILIA5AKin_G-N_GQZmsc8c7DPFPvNmn5HiFf8GjB0</recordid><startdate>20241202</startdate><enddate>20241202</enddate><creator>Mikhailova, Mariya M.</creator><creator>Klein, Olga I.</creator><creator>Patsaev, Timofey D.</creator><creator>Panteleyev, Andrey A.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7QP</scope><scope>7TK</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>7X8</scope></search><sort><creationdate>20241202</creationdate><title>Co-culture of postnatal mouse spinal cord and skeletal muscle explants as an experimental model of neuromuscular interactions</title><author>Mikhailova, Mariya M. ; Klein, Olga I. ; Patsaev, Timofey D. ; Panteleyev, Andrey A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1284-c9910a36d870c1986e625f26fe043a8200eaabfdb4b27058fe611cb44753b89a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Acetylcholine receptors</topic><topic>Amyotrophic lateral sclerosis</topic><topic>Animals</topic><topic>Animals, Newborn</topic><topic>Axonogenesis</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Cell Biology</topic><topic>Cell culture</topic><topic>Coculture Techniques</topic><topic>Developmental Biology</topic><topic>Explants</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Molecular modelling</topic><topic>Muscle contraction</topic><topic>Muscle, Skeletal - metabolism</topic><topic>Musculoskeletal system</topic><topic>Nerves</topic><topic>Neuromuscular diseases</topic><topic>Original Paper</topic><topic>Postpartum period</topic><topic>Skeletal muscle</topic><topic>Spinal cord</topic><topic>Spinal Cord - metabolism</topic><topic>Spinal muscular atrophy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mikhailova, Mariya M.</creatorcontrib><creatorcontrib>Klein, Olga I.</creatorcontrib><creatorcontrib>Patsaev, Timofey D.</creatorcontrib><creatorcontrib>Panteleyev, Andrey A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Premium</collection><collection>MEDLINE - Academic</collection><jtitle>Histochemistry and cell biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mikhailova, Mariya M.</au><au>Klein, Olga I.</au><au>Patsaev, Timofey D.</au><au>Panteleyev, Andrey A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Co-culture of postnatal mouse spinal cord and skeletal muscle explants as an experimental model of neuromuscular interactions</atitle><jtitle>Histochemistry and cell biology</jtitle><stitle>Histochem Cell Biol</stitle><addtitle>Histochem Cell Biol</addtitle><date>2024-12-02</date><risdate>2024</risdate><volume>163</volume><issue>1</issue><spage>15</spage><pages>15-</pages><issn>0948-6143</issn><issn>1432-119X</issn><eissn>1432-119X</eissn><abstract>The intercommunication between nerves and muscles plays an important role in the functioning of our body, and its failure leads to severe neuromuscular disorders such as spinal muscular atrophy and amyotrophic lateral sclerosis. Understanding the cellular and molecular mechanisms underlying nerve–muscle interactions and mediating their mutual influence is an integral part of strategies aimed at curing neuromuscular diseases. Here, we propose a novel ex vivo experimental model for the spinal cord (SC) and skeletal muscle interactions which for the first time utilizes only fully formed (but not yet quite functional) postnatal tissues. The model represents an organotypic co-culture comprising a longitudinal slice of the mouse postnatal SC and an extensor digitorum longus (EDL) muscle explant placed in the “damage zone” of transversally dissected longitudinal slice of the SC. Using this model, we have shown that SC tissue stimulates muscle contractions and reduces the area occupied by acetylcholine receptors on muscle surface. In turn, EDL muscles stimulate the growth of SC-derived neurites. Thus, our organotypic model allows one to assess the mutual influence of neurons and muscles in a nearly natural setting which maintains the architecture and cellular composition of intact tissues. Therefore, this model may provide an effective platform for studying molecular and cellular mechanisms linked to defective neuromuscular interactions in associated pathologies.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>39621126</pmid><doi>10.1007/s00418-024-02343-4</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0948-6143 |
ispartof | Histochemistry and cell biology, 2024-12, Vol.163 (1), p.15 |
issn | 0948-6143 1432-119X 1432-119X |
language | eng |
recordid | cdi_proquest_miscellaneous_3140922969 |
source | MEDLINE; SpringerNature Journals |
subjects | Acetylcholine receptors Amyotrophic lateral sclerosis Animals Animals, Newborn Axonogenesis Biochemistry Biomedical and Life Sciences Biomedicine Cell Biology Cell culture Coculture Techniques Developmental Biology Explants Mice Mice, Inbred C57BL Molecular modelling Muscle contraction Muscle, Skeletal - metabolism Musculoskeletal system Nerves Neuromuscular diseases Original Paper Postpartum period Skeletal muscle Spinal cord Spinal Cord - metabolism Spinal muscular atrophy |
title | Co-culture of postnatal mouse spinal cord and skeletal muscle explants as an experimental model of neuromuscular interactions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T14%3A46%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Co-culture%20of%20postnatal%20mouse%20spinal%20cord%20and%20skeletal%20muscle%20explants%20as%20an%20experimental%20model%20of%20neuromuscular%20interactions&rft.jtitle=Histochemistry%20and%20cell%20biology&rft.au=Mikhailova,%20Mariya%20M.&rft.date=2024-12-02&rft.volume=163&rft.issue=1&rft.spage=15&rft.pages=15-&rft.issn=0948-6143&rft.eissn=1432-119X&rft_id=info:doi/10.1007/s00418-024-02343-4&rft_dat=%3Cproquest_pubme%3E3135009106%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3135009106&rft_id=info:pmid/39621126&rfr_iscdi=true |