Evaluating predictive artificial intelligence approaches used in mobile health platforms to forecast mental health symptoms among youth: a systematic review

•Multimodal approaches via wearables and smartphones enhance prediction.•Successful predictors are smartphone usage, sleep patterns, and physical activity.•Current challenges are small sample sizes, data privacy issues, & incomplete data.•Key prediction algorithms include Logistic Regression and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Psychiatry research 2025-01, Vol.343, p.116277, Article 116277
Hauptverfasser: Patel, Jamin, Hung, Caitlin, Katapally, Tarun Reddy
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 116277
container_title Psychiatry research
container_volume 343
creator Patel, Jamin
Hung, Caitlin
Katapally, Tarun Reddy
description •Multimodal approaches via wearables and smartphones enhance prediction.•Successful predictors are smartphone usage, sleep patterns, and physical activity.•Current challenges are small sample sizes, data privacy issues, & incomplete data.•Key prediction algorithms include Logistic Regression and Support Vector Machines.•Current predictive models lack human-centred artificial intelligence. The youth mental health crisis is exacerbated by limited access to care and resources. Mobile health (mHealth) platforms using predictive artificial intelligence (AI) can improve access and reduce barriers, enabling real-time responses and precision prevention. This systematic review evaluates predictive AI approaches in mHealth platforms for forecasting mental health symptoms among youth (13–25 years). We searched studies from Embase, PubMed, Web of Science, PsycInfo, and CENTRAL, to identify relevant studies. From 11 studies identified, three studies predicted multiple symptoms, with depression being the most common (63%). Most platforms used smartphones and 25% integrated wearables. Key predictors included smartphone usage (N=5), sleep metrics (N=6), and physical activity (N=5). Nuanced predictors like usage locations and sleep stages improved prediction. Logistic regression was most used (N=6), followed by Support Vector Machines (N=3) and ensemble methods (N=4). F-scores for anxiety and depression ranged from 0.73 to 0.84, and AUCs from 0.50 to 0.74. Stress models had AUCs of 0.68 to 0.83. Bayesian model selection and Shapley values enhanced robustness and interpretability. Barriers included small sample sizes, privacy concerns, missing data, and underrepresentation bias. Rigorous evaluation of predictive performance, generalizability, and user engagement is critical before mHealth platforms are integrated into psychiatric care. [Display omitted]
doi_str_mv 10.1016/j.psychres.2024.116277
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3140893857</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0165178124005626</els_id><sourcerecordid>3140893857</sourcerecordid><originalsourceid>FETCH-LOGICAL-c245t-3efb24f6e1ea4d31ef427d424a47e9de9ffde6959ace49a0d779fc1c5d5924a63</originalsourceid><addsrcrecordid>eNqFkc1u3CAUhVHVqpmkfYWIZTeeAMbGdNUqSn-kSN20a8TAJWZkjAt4qnmXPGwZzaTbrkCX797DuQehW0q2lND-br9d8tGMCfKWEca3lPZMiFdoQwfBGkFZ-xptKtg1VAz0Cl3nvCeEMCrlW3TVyp72cqAb9Pxw0NOqi5-f8JLAelP8AbBOxTtvvJ6wnwtMk3-C2dT6sqSozQgZrxlsfcQh7vwEeAQ9lREvky4uppBxibhewOhccIC51FEXJh_DUmJFdIhV9hjXMn7EutZzgVD_YnCCg4c_79Abp6cM7y_nDfr15eHn_bfm8cfX7_efHxvDeFeaFtyOcdcDBc1tS8FxJixnXHMB0oJ0zkIvO6kNcKmJFUI6Q01nO1mhvr1BH85zq7nfK-Sigs-mutYzxDWrlnIyyHboREX7M2pSzDmBU0vyQaejokSdklF79ZKMOiWjzsnUxtuLxroLYP-1vURRgU9nAKrT6j6pbPxp6dbXLRZlo_-fxl-S2qjl</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3140893857</pqid></control><display><type>article</type><title>Evaluating predictive artificial intelligence approaches used in mobile health platforms to forecast mental health symptoms among youth: a systematic review</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Patel, Jamin ; Hung, Caitlin ; Katapally, Tarun Reddy</creator><creatorcontrib>Patel, Jamin ; Hung, Caitlin ; Katapally, Tarun Reddy</creatorcontrib><description>•Multimodal approaches via wearables and smartphones enhance prediction.•Successful predictors are smartphone usage, sleep patterns, and physical activity.•Current challenges are small sample sizes, data privacy issues, &amp; incomplete data.•Key prediction algorithms include Logistic Regression and Support Vector Machines.•Current predictive models lack human-centred artificial intelligence. The youth mental health crisis is exacerbated by limited access to care and resources. Mobile health (mHealth) platforms using predictive artificial intelligence (AI) can improve access and reduce barriers, enabling real-time responses and precision prevention. This systematic review evaluates predictive AI approaches in mHealth platforms for forecasting mental health symptoms among youth (13–25 years). We searched studies from Embase, PubMed, Web of Science, PsycInfo, and CENTRAL, to identify relevant studies. From 11 studies identified, three studies predicted multiple symptoms, with depression being the most common (63%). Most platforms used smartphones and 25% integrated wearables. Key predictors included smartphone usage (N=5), sleep metrics (N=6), and physical activity (N=5). Nuanced predictors like usage locations and sleep stages improved prediction. Logistic regression was most used (N=6), followed by Support Vector Machines (N=3) and ensemble methods (N=4). F-scores for anxiety and depression ranged from 0.73 to 0.84, and AUCs from 0.50 to 0.74. Stress models had AUCs of 0.68 to 0.83. Bayesian model selection and Shapley values enhanced robustness and interpretability. Barriers included small sample sizes, privacy concerns, missing data, and underrepresentation bias. Rigorous evaluation of predictive performance, generalizability, and user engagement is critical before mHealth platforms are integrated into psychiatric care. [Display omitted]</description><identifier>ISSN: 0165-1781</identifier><identifier>ISSN: 1872-7123</identifier><identifier>EISSN: 1872-7123</identifier><identifier>DOI: 10.1016/j.psychres.2024.116277</identifier><identifier>PMID: 39616981</identifier><language>eng</language><publisher>Ireland: Elsevier B.V</publisher><subject>Adolescent ; Adult ; Anxiety - diagnosis ; Anxiety - epidemiology ; Artificial Intelligence ; Depression - diagnosis ; Depression - epidemiology ; Digital health ; Digital psychiatry ; Human-centered AI ; Humans ; Machine learning ; Mental Health ; mHealth ; Precision medicine ; Precision prediction ; Smartphone ; Telemedicine ; Young Adult</subject><ispartof>Psychiatry research, 2025-01, Vol.343, p.116277, Article 116277</ispartof><rights>2024 The Author(s)</rights><rights>Copyright © 2024 The Author(s). Published by Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c245t-3efb24f6e1ea4d31ef427d424a47e9de9ffde6959ace49a0d779fc1c5d5924a63</cites><orcidid>0000-0001-5765-1435 ; 0009-0001-7338-7467</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.psychres.2024.116277$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,45974</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39616981$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Patel, Jamin</creatorcontrib><creatorcontrib>Hung, Caitlin</creatorcontrib><creatorcontrib>Katapally, Tarun Reddy</creatorcontrib><title>Evaluating predictive artificial intelligence approaches used in mobile health platforms to forecast mental health symptoms among youth: a systematic review</title><title>Psychiatry research</title><addtitle>Psychiatry Res</addtitle><description>•Multimodal approaches via wearables and smartphones enhance prediction.•Successful predictors are smartphone usage, sleep patterns, and physical activity.•Current challenges are small sample sizes, data privacy issues, &amp; incomplete data.•Key prediction algorithms include Logistic Regression and Support Vector Machines.•Current predictive models lack human-centred artificial intelligence. The youth mental health crisis is exacerbated by limited access to care and resources. Mobile health (mHealth) platforms using predictive artificial intelligence (AI) can improve access and reduce barriers, enabling real-time responses and precision prevention. This systematic review evaluates predictive AI approaches in mHealth platforms for forecasting mental health symptoms among youth (13–25 years). We searched studies from Embase, PubMed, Web of Science, PsycInfo, and CENTRAL, to identify relevant studies. From 11 studies identified, three studies predicted multiple symptoms, with depression being the most common (63%). Most platforms used smartphones and 25% integrated wearables. Key predictors included smartphone usage (N=5), sleep metrics (N=6), and physical activity (N=5). Nuanced predictors like usage locations and sleep stages improved prediction. Logistic regression was most used (N=6), followed by Support Vector Machines (N=3) and ensemble methods (N=4). F-scores for anxiety and depression ranged from 0.73 to 0.84, and AUCs from 0.50 to 0.74. Stress models had AUCs of 0.68 to 0.83. Bayesian model selection and Shapley values enhanced robustness and interpretability. Barriers included small sample sizes, privacy concerns, missing data, and underrepresentation bias. Rigorous evaluation of predictive performance, generalizability, and user engagement is critical before mHealth platforms are integrated into psychiatric care. [Display omitted]</description><subject>Adolescent</subject><subject>Adult</subject><subject>Anxiety - diagnosis</subject><subject>Anxiety - epidemiology</subject><subject>Artificial Intelligence</subject><subject>Depression - diagnosis</subject><subject>Depression - epidemiology</subject><subject>Digital health</subject><subject>Digital psychiatry</subject><subject>Human-centered AI</subject><subject>Humans</subject><subject>Machine learning</subject><subject>Mental Health</subject><subject>mHealth</subject><subject>Precision medicine</subject><subject>Precision prediction</subject><subject>Smartphone</subject><subject>Telemedicine</subject><subject>Young Adult</subject><issn>0165-1781</issn><issn>1872-7123</issn><issn>1872-7123</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc1u3CAUhVHVqpmkfYWIZTeeAMbGdNUqSn-kSN20a8TAJWZkjAt4qnmXPGwZzaTbrkCX797DuQehW0q2lND-br9d8tGMCfKWEca3lPZMiFdoQwfBGkFZ-xptKtg1VAz0Cl3nvCeEMCrlW3TVyp72cqAb9Pxw0NOqi5-f8JLAelP8AbBOxTtvvJ6wnwtMk3-C2dT6sqSozQgZrxlsfcQh7vwEeAQ9lREvky4uppBxibhewOhccIC51FEXJh_DUmJFdIhV9hjXMn7EutZzgVD_YnCCg4c_79Abp6cM7y_nDfr15eHn_bfm8cfX7_efHxvDeFeaFtyOcdcDBc1tS8FxJixnXHMB0oJ0zkIvO6kNcKmJFUI6Q01nO1mhvr1BH85zq7nfK-Sigs-mutYzxDWrlnIyyHboREX7M2pSzDmBU0vyQaejokSdklF79ZKMOiWjzsnUxtuLxroLYP-1vURRgU9nAKrT6j6pbPxp6dbXLRZlo_-fxl-S2qjl</recordid><startdate>202501</startdate><enddate>202501</enddate><creator>Patel, Jamin</creator><creator>Hung, Caitlin</creator><creator>Katapally, Tarun Reddy</creator><general>Elsevier B.V</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5765-1435</orcidid><orcidid>https://orcid.org/0009-0001-7338-7467</orcidid></search><sort><creationdate>202501</creationdate><title>Evaluating predictive artificial intelligence approaches used in mobile health platforms to forecast mental health symptoms among youth: a systematic review</title><author>Patel, Jamin ; Hung, Caitlin ; Katapally, Tarun Reddy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c245t-3efb24f6e1ea4d31ef427d424a47e9de9ffde6959ace49a0d779fc1c5d5924a63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Adolescent</topic><topic>Adult</topic><topic>Anxiety - diagnosis</topic><topic>Anxiety - epidemiology</topic><topic>Artificial Intelligence</topic><topic>Depression - diagnosis</topic><topic>Depression - epidemiology</topic><topic>Digital health</topic><topic>Digital psychiatry</topic><topic>Human-centered AI</topic><topic>Humans</topic><topic>Machine learning</topic><topic>Mental Health</topic><topic>mHealth</topic><topic>Precision medicine</topic><topic>Precision prediction</topic><topic>Smartphone</topic><topic>Telemedicine</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Patel, Jamin</creatorcontrib><creatorcontrib>Hung, Caitlin</creatorcontrib><creatorcontrib>Katapally, Tarun Reddy</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Psychiatry research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Patel, Jamin</au><au>Hung, Caitlin</au><au>Katapally, Tarun Reddy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaluating predictive artificial intelligence approaches used in mobile health platforms to forecast mental health symptoms among youth: a systematic review</atitle><jtitle>Psychiatry research</jtitle><addtitle>Psychiatry Res</addtitle><date>2025-01</date><risdate>2025</risdate><volume>343</volume><spage>116277</spage><pages>116277-</pages><artnum>116277</artnum><issn>0165-1781</issn><issn>1872-7123</issn><eissn>1872-7123</eissn><abstract>•Multimodal approaches via wearables and smartphones enhance prediction.•Successful predictors are smartphone usage, sleep patterns, and physical activity.•Current challenges are small sample sizes, data privacy issues, &amp; incomplete data.•Key prediction algorithms include Logistic Regression and Support Vector Machines.•Current predictive models lack human-centred artificial intelligence. The youth mental health crisis is exacerbated by limited access to care and resources. Mobile health (mHealth) platforms using predictive artificial intelligence (AI) can improve access and reduce barriers, enabling real-time responses and precision prevention. This systematic review evaluates predictive AI approaches in mHealth platforms for forecasting mental health symptoms among youth (13–25 years). We searched studies from Embase, PubMed, Web of Science, PsycInfo, and CENTRAL, to identify relevant studies. From 11 studies identified, three studies predicted multiple symptoms, with depression being the most common (63%). Most platforms used smartphones and 25% integrated wearables. Key predictors included smartphone usage (N=5), sleep metrics (N=6), and physical activity (N=5). Nuanced predictors like usage locations and sleep stages improved prediction. Logistic regression was most used (N=6), followed by Support Vector Machines (N=3) and ensemble methods (N=4). F-scores for anxiety and depression ranged from 0.73 to 0.84, and AUCs from 0.50 to 0.74. Stress models had AUCs of 0.68 to 0.83. Bayesian model selection and Shapley values enhanced robustness and interpretability. Barriers included small sample sizes, privacy concerns, missing data, and underrepresentation bias. Rigorous evaluation of predictive performance, generalizability, and user engagement is critical before mHealth platforms are integrated into psychiatric care. [Display omitted]</abstract><cop>Ireland</cop><pub>Elsevier B.V</pub><pmid>39616981</pmid><doi>10.1016/j.psychres.2024.116277</doi><orcidid>https://orcid.org/0000-0001-5765-1435</orcidid><orcidid>https://orcid.org/0009-0001-7338-7467</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0165-1781
ispartof Psychiatry research, 2025-01, Vol.343, p.116277, Article 116277
issn 0165-1781
1872-7123
1872-7123
language eng
recordid cdi_proquest_miscellaneous_3140893857
source MEDLINE; Elsevier ScienceDirect Journals
subjects Adolescent
Adult
Anxiety - diagnosis
Anxiety - epidemiology
Artificial Intelligence
Depression - diagnosis
Depression - epidemiology
Digital health
Digital psychiatry
Human-centered AI
Humans
Machine learning
Mental Health
mHealth
Precision medicine
Precision prediction
Smartphone
Telemedicine
Young Adult
title Evaluating predictive artificial intelligence approaches used in mobile health platforms to forecast mental health symptoms among youth: a systematic review
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T19%3A46%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaluating%20predictive%20artificial%20intelligence%20approaches%20used%20in%20mobile%20health%20platforms%20to%20forecast%20mental%20health%20symptoms%20among%20youth:%20a%20systematic%20review&rft.jtitle=Psychiatry%20research&rft.au=Patel,%20Jamin&rft.date=2025-01&rft.volume=343&rft.spage=116277&rft.pages=116277-&rft.artnum=116277&rft.issn=0165-1781&rft.eissn=1872-7123&rft_id=info:doi/10.1016/j.psychres.2024.116277&rft_dat=%3Cproquest_cross%3E3140893857%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3140893857&rft_id=info:pmid/39616981&rft_els_id=S0165178124005626&rfr_iscdi=true