Structural and dynamic insights into acyl carrier protein in Cutibacterium acnes reveal mechanisms for fatty acid synthesis and transport

Cutibacterium acnes thrives in anaerobic environments and plays a role in acne vulgaris and the emergence of antibiotic-resistant strains. To maintain membrane fluidity and protect against toxins under anaerobic conditions, C. acnes balances branched-chain fatty acids (BCFAs) and straight-chain fatt...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemical and biophysical research communications 2024-12, Vol.741, p.151090, Article 151090
Hauptverfasser: Son, Minwon, Oh, Sujung, Oh, Yoojin, Cheon, Dasom, Jang, Ahjin, Kim, Eunhee, Kim, Nak-Kyoon, Kim, Yangmee
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 151090
container_title Biochemical and biophysical research communications
container_volume 741
creator Son, Minwon
Oh, Sujung
Oh, Yoojin
Cheon, Dasom
Jang, Ahjin
Kim, Eunhee
Kim, Nak-Kyoon
Kim, Yangmee
description Cutibacterium acnes thrives in anaerobic environments and plays a role in acne vulgaris and the emergence of antibiotic-resistant strains. To maintain membrane fluidity and protect against toxins under anaerobic conditions, C. acnes balances branched-chain fatty acids (BCFAs) and straight-chain fatty acids, produced by its fatty acid synthase. In this study, we investigated the molecular mechanisms of fatty acid synthesis in C. acnes by determining the first-solution structure and dynamics of the acyl carrier protein (CaACP) using NMR spectroscopy. Our analyses, integrating backbone dynamics and molecular dynamics simulations, revealed that CaACP contains two distinct subpockets that facilitate effective acyl chain transport, with critical residues—Met11, Ile46, and Cys50—regulating the binding cavity structure. Molecular dynamics simulations showed dynamic conformational changes within the protein, especially in the α2α3 loop, influencing substrate entry and binding. These movements align with the backbone relaxation data, indicating a conformational exchange in residues Phe32, Val56, and Ile58. A structural switch involving the orientation of Met11 and Cys50 adjusts the acyl chain positioning within these subpockets, promoting the deep sequestration of long fatty acid chains and BCFAs. These insights advance our understanding of C. acnes’ survival mechanisms and suggest potential therapeutic targets for combating antibiotic-resistant bacterial strains. [Display omitted] •The ACP structure in C. acnes reveals two subpockets for fatty acid transport.•Met11, Ile46, and Cys50 expand binding cavities for BCFAs and long acyl chains.•The structural switch formed by Met11 and Cys50 regulates acyl chain arrangement.•MD simulation and spin relaxation show substrate entry and sequestration dynamics.•Unique features of CaACP suggest new targets for antibiotic-resistant C. acnes.
doi_str_mv 10.1016/j.bbrc.2024.151090
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3140892781</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006291X24016267</els_id><sourcerecordid>3140892781</sourcerecordid><originalsourceid>FETCH-LOGICAL-c237t-57f398e26ea9ab761392cbdfeaaf0a72b093f5c1794c0e6e2358f6a0fa5755823</originalsourceid><addsrcrecordid>eNp9kc9uFDEMxqMK1G4LL8AB5chlliTzNxIXtCoUqRIHqNRb5Mk4bFYzmSXOVJpH4K3JsoUjJ1vyz5_1-WPsjRRbKWTz_rDt-2i3SqhqK2sptLhgm1MplBTVC7YRQjSF0vLxil0THYSQsmr0JbsqdSMbXckN-_UtxcWmJcLIIQx8WANM3nIfyP_YJ8pNmjnYdeQWYvQY-THOCX3IE75bku_BJox-mTIVkHjEJ8xiE9o9BE8TcTdH7iClNRN-4LSGtEfy9OdgihDoOMf0ir10MBK-fq437OHT7ffdXXH_9fOX3cf7wqqyTUXdulJ3qBoEDX3byFIr2w8OAZyAVvVCl662stWVFdigKuvONSAc1G1dd6q8Ye_OutnHzwUpmcmTxXGEgPNCppSV6LRqO5lRdUZtnIkiOnOMfoK4GinMKQJzMKcIzCkCc44gL7191l_6CYd_K39_noEPZwCzy6f8UUPWY7A4-Ig2mWH2_9P_DVLtmuk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3140892781</pqid></control><display><type>article</type><title>Structural and dynamic insights into acyl carrier protein in Cutibacterium acnes reveal mechanisms for fatty acid synthesis and transport</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Son, Minwon ; Oh, Sujung ; Oh, Yoojin ; Cheon, Dasom ; Jang, Ahjin ; Kim, Eunhee ; Kim, Nak-Kyoon ; Kim, Yangmee</creator><creatorcontrib>Son, Minwon ; Oh, Sujung ; Oh, Yoojin ; Cheon, Dasom ; Jang, Ahjin ; Kim, Eunhee ; Kim, Nak-Kyoon ; Kim, Yangmee</creatorcontrib><description>Cutibacterium acnes thrives in anaerobic environments and plays a role in acne vulgaris and the emergence of antibiotic-resistant strains. To maintain membrane fluidity and protect against toxins under anaerobic conditions, C. acnes balances branched-chain fatty acids (BCFAs) and straight-chain fatty acids, produced by its fatty acid synthase. In this study, we investigated the molecular mechanisms of fatty acid synthesis in C. acnes by determining the first-solution structure and dynamics of the acyl carrier protein (CaACP) using NMR spectroscopy. Our analyses, integrating backbone dynamics and molecular dynamics simulations, revealed that CaACP contains two distinct subpockets that facilitate effective acyl chain transport, with critical residues—Met11, Ile46, and Cys50—regulating the binding cavity structure. Molecular dynamics simulations showed dynamic conformational changes within the protein, especially in the α2α3 loop, influencing substrate entry and binding. These movements align with the backbone relaxation data, indicating a conformational exchange in residues Phe32, Val56, and Ile58. A structural switch involving the orientation of Met11 and Cys50 adjusts the acyl chain positioning within these subpockets, promoting the deep sequestration of long fatty acid chains and BCFAs. These insights advance our understanding of C. acnes’ survival mechanisms and suggest potential therapeutic targets for combating antibiotic-resistant bacterial strains. [Display omitted] •The ACP structure in C. acnes reveals two subpockets for fatty acid transport.•Met11, Ile46, and Cys50 expand binding cavities for BCFAs and long acyl chains.•The structural switch formed by Met11 and Cys50 regulates acyl chain arrangement.•MD simulation and spin relaxation show substrate entry and sequestration dynamics.•Unique features of CaACP suggest new targets for antibiotic-resistant C. acnes.</description><identifier>ISSN: 0006-291X</identifier><identifier>ISSN: 1090-2104</identifier><identifier>EISSN: 1090-2104</identifier><identifier>DOI: 10.1016/j.bbrc.2024.151090</identifier><identifier>PMID: 39616941</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Acyl carrier protein ; Acyl Carrier Protein - chemistry ; Acyl Carrier Protein - metabolism ; Bacterial Proteins - chemistry ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; Biological Transport ; Cutibacterium acnes ; Dynamics ; Fatty acid synthesis ; Fatty Acids - metabolism ; Molecular Dynamics Simulation ; NMR spectroscopy ; Propionibacteriaceae - metabolism ; Protein Conformation ; Structure</subject><ispartof>Biochemical and biophysical research communications, 2024-12, Vol.741, p.151090, Article 151090</ispartof><rights>2024 Elsevier Inc.</rights><rights>Copyright © 2024 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c237t-57f398e26ea9ab761392cbdfeaaf0a72b093f5c1794c0e6e2358f6a0fa5755823</cites><orcidid>0000-0001-7228-1583 ; 0000-0002-5580-9646 ; 0000-0002-6619-9513 ; 0000-0002-0208-1663 ; 0009-0009-7774-7560 ; 0000-0001-6438-4718</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.bbrc.2024.151090$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27922,27923,45993</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39616941$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Son, Minwon</creatorcontrib><creatorcontrib>Oh, Sujung</creatorcontrib><creatorcontrib>Oh, Yoojin</creatorcontrib><creatorcontrib>Cheon, Dasom</creatorcontrib><creatorcontrib>Jang, Ahjin</creatorcontrib><creatorcontrib>Kim, Eunhee</creatorcontrib><creatorcontrib>Kim, Nak-Kyoon</creatorcontrib><creatorcontrib>Kim, Yangmee</creatorcontrib><title>Structural and dynamic insights into acyl carrier protein in Cutibacterium acnes reveal mechanisms for fatty acid synthesis and transport</title><title>Biochemical and biophysical research communications</title><addtitle>Biochem Biophys Res Commun</addtitle><description>Cutibacterium acnes thrives in anaerobic environments and plays a role in acne vulgaris and the emergence of antibiotic-resistant strains. To maintain membrane fluidity and protect against toxins under anaerobic conditions, C. acnes balances branched-chain fatty acids (BCFAs) and straight-chain fatty acids, produced by its fatty acid synthase. In this study, we investigated the molecular mechanisms of fatty acid synthesis in C. acnes by determining the first-solution structure and dynamics of the acyl carrier protein (CaACP) using NMR spectroscopy. Our analyses, integrating backbone dynamics and molecular dynamics simulations, revealed that CaACP contains two distinct subpockets that facilitate effective acyl chain transport, with critical residues—Met11, Ile46, and Cys50—regulating the binding cavity structure. Molecular dynamics simulations showed dynamic conformational changes within the protein, especially in the α2α3 loop, influencing substrate entry and binding. These movements align with the backbone relaxation data, indicating a conformational exchange in residues Phe32, Val56, and Ile58. A structural switch involving the orientation of Met11 and Cys50 adjusts the acyl chain positioning within these subpockets, promoting the deep sequestration of long fatty acid chains and BCFAs. These insights advance our understanding of C. acnes’ survival mechanisms and suggest potential therapeutic targets for combating antibiotic-resistant bacterial strains. [Display omitted] •The ACP structure in C. acnes reveals two subpockets for fatty acid transport.•Met11, Ile46, and Cys50 expand binding cavities for BCFAs and long acyl chains.•The structural switch formed by Met11 and Cys50 regulates acyl chain arrangement.•MD simulation and spin relaxation show substrate entry and sequestration dynamics.•Unique features of CaACP suggest new targets for antibiotic-resistant C. acnes.</description><subject>Acyl carrier protein</subject><subject>Acyl Carrier Protein - chemistry</subject><subject>Acyl Carrier Protein - metabolism</subject><subject>Bacterial Proteins - chemistry</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>Biological Transport</subject><subject>Cutibacterium acnes</subject><subject>Dynamics</subject><subject>Fatty acid synthesis</subject><subject>Fatty Acids - metabolism</subject><subject>Molecular Dynamics Simulation</subject><subject>NMR spectroscopy</subject><subject>Propionibacteriaceae - metabolism</subject><subject>Protein Conformation</subject><subject>Structure</subject><issn>0006-291X</issn><issn>1090-2104</issn><issn>1090-2104</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kc9uFDEMxqMK1G4LL8AB5chlliTzNxIXtCoUqRIHqNRb5Mk4bFYzmSXOVJpH4K3JsoUjJ1vyz5_1-WPsjRRbKWTz_rDt-2i3SqhqK2sptLhgm1MplBTVC7YRQjSF0vLxil0THYSQsmr0JbsqdSMbXckN-_UtxcWmJcLIIQx8WANM3nIfyP_YJ8pNmjnYdeQWYvQY-THOCX3IE75bku_BJox-mTIVkHjEJ8xiE9o9BE8TcTdH7iClNRN-4LSGtEfy9OdgihDoOMf0ir10MBK-fq437OHT7ffdXXH_9fOX3cf7wqqyTUXdulJ3qBoEDX3byFIr2w8OAZyAVvVCl662stWVFdigKuvONSAc1G1dd6q8Ye_OutnHzwUpmcmTxXGEgPNCppSV6LRqO5lRdUZtnIkiOnOMfoK4GinMKQJzMKcIzCkCc44gL7191l_6CYd_K39_noEPZwCzy6f8UUPWY7A4-Ig2mWH2_9P_DVLtmuk</recordid><startdate>20241231</startdate><enddate>20241231</enddate><creator>Son, Minwon</creator><creator>Oh, Sujung</creator><creator>Oh, Yoojin</creator><creator>Cheon, Dasom</creator><creator>Jang, Ahjin</creator><creator>Kim, Eunhee</creator><creator>Kim, Nak-Kyoon</creator><creator>Kim, Yangmee</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7228-1583</orcidid><orcidid>https://orcid.org/0000-0002-5580-9646</orcidid><orcidid>https://orcid.org/0000-0002-6619-9513</orcidid><orcidid>https://orcid.org/0000-0002-0208-1663</orcidid><orcidid>https://orcid.org/0009-0009-7774-7560</orcidid><orcidid>https://orcid.org/0000-0001-6438-4718</orcidid></search><sort><creationdate>20241231</creationdate><title>Structural and dynamic insights into acyl carrier protein in Cutibacterium acnes reveal mechanisms for fatty acid synthesis and transport</title><author>Son, Minwon ; Oh, Sujung ; Oh, Yoojin ; Cheon, Dasom ; Jang, Ahjin ; Kim, Eunhee ; Kim, Nak-Kyoon ; Kim, Yangmee</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c237t-57f398e26ea9ab761392cbdfeaaf0a72b093f5c1794c0e6e2358f6a0fa5755823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Acyl carrier protein</topic><topic>Acyl Carrier Protein - chemistry</topic><topic>Acyl Carrier Protein - metabolism</topic><topic>Bacterial Proteins - chemistry</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>Biological Transport</topic><topic>Cutibacterium acnes</topic><topic>Dynamics</topic><topic>Fatty acid synthesis</topic><topic>Fatty Acids - metabolism</topic><topic>Molecular Dynamics Simulation</topic><topic>NMR spectroscopy</topic><topic>Propionibacteriaceae - metabolism</topic><topic>Protein Conformation</topic><topic>Structure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Son, Minwon</creatorcontrib><creatorcontrib>Oh, Sujung</creatorcontrib><creatorcontrib>Oh, Yoojin</creatorcontrib><creatorcontrib>Cheon, Dasom</creatorcontrib><creatorcontrib>Jang, Ahjin</creatorcontrib><creatorcontrib>Kim, Eunhee</creatorcontrib><creatorcontrib>Kim, Nak-Kyoon</creatorcontrib><creatorcontrib>Kim, Yangmee</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Biochemical and biophysical research communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Son, Minwon</au><au>Oh, Sujung</au><au>Oh, Yoojin</au><au>Cheon, Dasom</au><au>Jang, Ahjin</au><au>Kim, Eunhee</au><au>Kim, Nak-Kyoon</au><au>Kim, Yangmee</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural and dynamic insights into acyl carrier protein in Cutibacterium acnes reveal mechanisms for fatty acid synthesis and transport</atitle><jtitle>Biochemical and biophysical research communications</jtitle><addtitle>Biochem Biophys Res Commun</addtitle><date>2024-12-31</date><risdate>2024</risdate><volume>741</volume><spage>151090</spage><pages>151090-</pages><artnum>151090</artnum><issn>0006-291X</issn><issn>1090-2104</issn><eissn>1090-2104</eissn><abstract>Cutibacterium acnes thrives in anaerobic environments and plays a role in acne vulgaris and the emergence of antibiotic-resistant strains. To maintain membrane fluidity and protect against toxins under anaerobic conditions, C. acnes balances branched-chain fatty acids (BCFAs) and straight-chain fatty acids, produced by its fatty acid synthase. In this study, we investigated the molecular mechanisms of fatty acid synthesis in C. acnes by determining the first-solution structure and dynamics of the acyl carrier protein (CaACP) using NMR spectroscopy. Our analyses, integrating backbone dynamics and molecular dynamics simulations, revealed that CaACP contains two distinct subpockets that facilitate effective acyl chain transport, with critical residues—Met11, Ile46, and Cys50—regulating the binding cavity structure. Molecular dynamics simulations showed dynamic conformational changes within the protein, especially in the α2α3 loop, influencing substrate entry and binding. These movements align with the backbone relaxation data, indicating a conformational exchange in residues Phe32, Val56, and Ile58. A structural switch involving the orientation of Met11 and Cys50 adjusts the acyl chain positioning within these subpockets, promoting the deep sequestration of long fatty acid chains and BCFAs. These insights advance our understanding of C. acnes’ survival mechanisms and suggest potential therapeutic targets for combating antibiotic-resistant bacterial strains. [Display omitted] •The ACP structure in C. acnes reveals two subpockets for fatty acid transport.•Met11, Ile46, and Cys50 expand binding cavities for BCFAs and long acyl chains.•The structural switch formed by Met11 and Cys50 regulates acyl chain arrangement.•MD simulation and spin relaxation show substrate entry and sequestration dynamics.•Unique features of CaACP suggest new targets for antibiotic-resistant C. acnes.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>39616941</pmid><doi>10.1016/j.bbrc.2024.151090</doi><orcidid>https://orcid.org/0000-0001-7228-1583</orcidid><orcidid>https://orcid.org/0000-0002-5580-9646</orcidid><orcidid>https://orcid.org/0000-0002-6619-9513</orcidid><orcidid>https://orcid.org/0000-0002-0208-1663</orcidid><orcidid>https://orcid.org/0009-0009-7774-7560</orcidid><orcidid>https://orcid.org/0000-0001-6438-4718</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0006-291X
ispartof Biochemical and biophysical research communications, 2024-12, Vol.741, p.151090, Article 151090
issn 0006-291X
1090-2104
1090-2104
language eng
recordid cdi_proquest_miscellaneous_3140892781
source MEDLINE; ScienceDirect Journals (5 years ago - present)
subjects Acyl carrier protein
Acyl Carrier Protein - chemistry
Acyl Carrier Protein - metabolism
Bacterial Proteins - chemistry
Bacterial Proteins - genetics
Bacterial Proteins - metabolism
Biological Transport
Cutibacterium acnes
Dynamics
Fatty acid synthesis
Fatty Acids - metabolism
Molecular Dynamics Simulation
NMR spectroscopy
Propionibacteriaceae - metabolism
Protein Conformation
Structure
title Structural and dynamic insights into acyl carrier protein in Cutibacterium acnes reveal mechanisms for fatty acid synthesis and transport
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T22%3A18%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20and%20dynamic%20insights%20into%20acyl%20carrier%20protein%20in%20Cutibacterium%20acnes%20reveal%20mechanisms%20for%20fatty%20acid%20synthesis%20and%20transport&rft.jtitle=Biochemical%20and%20biophysical%20research%20communications&rft.au=Son,%20Minwon&rft.date=2024-12-31&rft.volume=741&rft.spage=151090&rft.pages=151090-&rft.artnum=151090&rft.issn=0006-291X&rft.eissn=1090-2104&rft_id=info:doi/10.1016/j.bbrc.2024.151090&rft_dat=%3Cproquest_cross%3E3140892781%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3140892781&rft_id=info:pmid/39616941&rft_els_id=S0006291X24016267&rfr_iscdi=true