Clinician as editor: notes in the era of AI scribes

[...]these notes are increasingly burdensome to write, thanks in part to the electronic health record (EHR). AI-generated notes are not transcriptions; like clinicians, the scribes group distinct problems and split appointments into recognisable components, creating the visit narrative. [...]in addi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Lancet (British edition) 2024-11, Vol.404 (10468), p.2154-2155
Hauptverfasser: Altschuler, Sari, Huntington, Ian, Antoniak, Maria, Klein, Lauren F
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2155
container_issue 10468
container_start_page 2154
container_title The Lancet (British edition)
container_volume 404
creator Altschuler, Sari
Huntington, Ian
Antoniak, Maria
Klein, Lauren F
description [...]these notes are increasingly burdensome to write, thanks in part to the electronic health record (EHR). AI-generated notes are not transcriptions; like clinicians, the scribes group distinct problems and split appointments into recognisable components, creating the visit narrative. [...]in addition to reducing administrative work, some argue AI scribes can create more time for the clinical attention. Generative AI scribes do not create narratives from scratch; they incorporate information from current recordings, past examples of medical notes, preference and ranking data provided by human annotators, large sets of internet training data, and patterns encoded in the AI model. Most immediately, seasoned clinicians will need to reduce transcription errors, odd word choices, extraneous details, and disclosures inappropriate for the record as well as adding missed details and often rewriting AI-generated assessment and plan sections, which contain the cognitive work of differential diagnosis building, test selection, plan formulation, and patient education.
doi_str_mv 10.1016/S0140-6736(24)02568-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3140888677</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0140673624025686</els_id><sourcerecordid>3133959443</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1860-636bc18c883b0af3c1f3cf833523eb759f977a9249c90c55afc8b0070a697f503</originalsourceid><addsrcrecordid>eNqFkEtLAzEQgIMoWh8_QQl4qYfVyebtRUrxBYIHFbyFbJrFSLvRZFfw35u26sGLh2Hm8M3rQ-iQwCkBIs4egDCohKRiXLMTqLlQldhAI8IkqziTz5to9IvsoN2cXwGACeDbaIdqQbjWMEJ0Og9dcMF22GbsZ6GP6Rx3sfcZhw73Lx77ZHFs8eQWZ5dC4_M-2mrtPPuD77yHnq4uH6c31d399e10clc5okRZTEVTKqcUbcC21JESraKU19Q3kutWS2l1zbTT4Di3rVMNgAQrtGw50D00Xs99S_F98Lk3i5Cdn89t5-OQDS3vKaWElAU9_oO-xiF15bpCUaq5ZowWiq8pl2LOybfmLYWFTZ-GgFlaNSurZqnM1MysrBpR-o6-pw_Nws9-u340FuBiDfii4yP4ZLILvnPFZ_KuN7MY_lnxBVTlgxc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3133959443</pqid></control><display><type>article</type><title>Clinician as editor: notes in the era of AI scribes</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Altschuler, Sari ; Huntington, Ian ; Antoniak, Maria ; Klein, Lauren F</creator><creatorcontrib>Altschuler, Sari ; Huntington, Ian ; Antoniak, Maria ; Klein, Lauren F</creatorcontrib><description>[...]these notes are increasingly burdensome to write, thanks in part to the electronic health record (EHR). AI-generated notes are not transcriptions; like clinicians, the scribes group distinct problems and split appointments into recognisable components, creating the visit narrative. [...]in addition to reducing administrative work, some argue AI scribes can create more time for the clinical attention. Generative AI scribes do not create narratives from scratch; they incorporate information from current recordings, past examples of medical notes, preference and ranking data provided by human annotators, large sets of internet training data, and patterns encoded in the AI model. Most immediately, seasoned clinicians will need to reduce transcription errors, odd word choices, extraneous details, and disclosures inappropriate for the record as well as adding missed details and often rewriting AI-generated assessment and plan sections, which contain the cognitive work of differential diagnosis building, test selection, plan formulation, and patient education.</description><identifier>ISSN: 0140-6736</identifier><identifier>ISSN: 1474-547X</identifier><identifier>EISSN: 1474-547X</identifier><identifier>DOI: 10.1016/S0140-6736(24)02568-6</identifier><identifier>PMID: 39615990</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Artificial intelligence ; Automation ; Communication ; Differential diagnosis ; Documentation ; Editors ; Electronic health records ; Electronic medical records ; Error reduction ; Generative artificial intelligence ; Medical records ; Medicine ; Narratives ; Patients ; Physicians</subject><ispartof>The Lancet (British edition), 2024-11, Vol.404 (10468), p.2154-2155</ispartof><rights>2024 Elsevier Ltd</rights><rights>2024. Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1860-636bc18c883b0af3c1f3cf833523eb759f977a9249c90c55afc8b0070a697f503</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0140-6736(24)02568-6$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27923,27924,45994</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39615990$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Altschuler, Sari</creatorcontrib><creatorcontrib>Huntington, Ian</creatorcontrib><creatorcontrib>Antoniak, Maria</creatorcontrib><creatorcontrib>Klein, Lauren F</creatorcontrib><title>Clinician as editor: notes in the era of AI scribes</title><title>The Lancet (British edition)</title><addtitle>Lancet</addtitle><description>[...]these notes are increasingly burdensome to write, thanks in part to the electronic health record (EHR). AI-generated notes are not transcriptions; like clinicians, the scribes group distinct problems and split appointments into recognisable components, creating the visit narrative. [...]in addition to reducing administrative work, some argue AI scribes can create more time for the clinical attention. Generative AI scribes do not create narratives from scratch; they incorporate information from current recordings, past examples of medical notes, preference and ranking data provided by human annotators, large sets of internet training data, and patterns encoded in the AI model. Most immediately, seasoned clinicians will need to reduce transcription errors, odd word choices, extraneous details, and disclosures inappropriate for the record as well as adding missed details and often rewriting AI-generated assessment and plan sections, which contain the cognitive work of differential diagnosis building, test selection, plan formulation, and patient education.</description><subject>Artificial intelligence</subject><subject>Automation</subject><subject>Communication</subject><subject>Differential diagnosis</subject><subject>Documentation</subject><subject>Editors</subject><subject>Electronic health records</subject><subject>Electronic medical records</subject><subject>Error reduction</subject><subject>Generative artificial intelligence</subject><subject>Medical records</subject><subject>Medicine</subject><subject>Narratives</subject><subject>Patients</subject><subject>Physicians</subject><issn>0140-6736</issn><issn>1474-547X</issn><issn>1474-547X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLAzEQgIMoWh8_QQl4qYfVyebtRUrxBYIHFbyFbJrFSLvRZFfw35u26sGLh2Hm8M3rQ-iQwCkBIs4egDCohKRiXLMTqLlQldhAI8IkqziTz5to9IvsoN2cXwGACeDbaIdqQbjWMEJ0Og9dcMF22GbsZ6GP6Rx3sfcZhw73Lx77ZHFs8eQWZ5dC4_M-2mrtPPuD77yHnq4uH6c31d399e10clc5okRZTEVTKqcUbcC21JESraKU19Q3kutWS2l1zbTT4Di3rVMNgAQrtGw50D00Xs99S_F98Lk3i5Cdn89t5-OQDS3vKaWElAU9_oO-xiF15bpCUaq5ZowWiq8pl2LOybfmLYWFTZ-GgFlaNSurZqnM1MysrBpR-o6-pw_Nws9-u340FuBiDfii4yP4ZLILvnPFZ_KuN7MY_lnxBVTlgxc</recordid><startdate>20241130</startdate><enddate>20241130</enddate><creator>Altschuler, Sari</creator><creator>Huntington, Ian</creator><creator>Antoniak, Maria</creator><creator>Klein, Lauren F</creator><general>Elsevier Ltd</general><general>Elsevier Limited</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QP</scope><scope>7TK</scope><scope>7U7</scope><scope>7U9</scope><scope>ASE</scope><scope>C1K</scope><scope>FPQ</scope><scope>H94</scope><scope>K6X</scope><scope>K9.</scope><scope>KB~</scope><scope>M7N</scope><scope>NAPCQ</scope><scope>7X8</scope></search><sort><creationdate>20241130</creationdate><title>Clinician as editor: notes in the era of AI scribes</title><author>Altschuler, Sari ; Huntington, Ian ; Antoniak, Maria ; Klein, Lauren F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1860-636bc18c883b0af3c1f3cf833523eb759f977a9249c90c55afc8b0070a697f503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial intelligence</topic><topic>Automation</topic><topic>Communication</topic><topic>Differential diagnosis</topic><topic>Documentation</topic><topic>Editors</topic><topic>Electronic health records</topic><topic>Electronic medical records</topic><topic>Error reduction</topic><topic>Generative artificial intelligence</topic><topic>Medical records</topic><topic>Medicine</topic><topic>Narratives</topic><topic>Patients</topic><topic>Physicians</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Altschuler, Sari</creatorcontrib><creatorcontrib>Huntington, Ian</creatorcontrib><creatorcontrib>Antoniak, Maria</creatorcontrib><creatorcontrib>Klein, Lauren F</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>British Nursing Index</collection><collection>Environmental Sciences and Pollution Management</collection><collection>British Nursing Index (BNI) (1985 to Present)</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>British Nursing Index</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Newsstand Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>MEDLINE - Academic</collection><jtitle>The Lancet (British edition)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Altschuler, Sari</au><au>Huntington, Ian</au><au>Antoniak, Maria</au><au>Klein, Lauren F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Clinician as editor: notes in the era of AI scribes</atitle><jtitle>The Lancet (British edition)</jtitle><addtitle>Lancet</addtitle><date>2024-11-30</date><risdate>2024</risdate><volume>404</volume><issue>10468</issue><spage>2154</spage><epage>2155</epage><pages>2154-2155</pages><issn>0140-6736</issn><issn>1474-547X</issn><eissn>1474-547X</eissn><abstract>[...]these notes are increasingly burdensome to write, thanks in part to the electronic health record (EHR). AI-generated notes are not transcriptions; like clinicians, the scribes group distinct problems and split appointments into recognisable components, creating the visit narrative. [...]in addition to reducing administrative work, some argue AI scribes can create more time for the clinical attention. Generative AI scribes do not create narratives from scratch; they incorporate information from current recordings, past examples of medical notes, preference and ranking data provided by human annotators, large sets of internet training data, and patterns encoded in the AI model. Most immediately, seasoned clinicians will need to reduce transcription errors, odd word choices, extraneous details, and disclosures inappropriate for the record as well as adding missed details and often rewriting AI-generated assessment and plan sections, which contain the cognitive work of differential diagnosis building, test selection, plan formulation, and patient education.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>39615990</pmid><doi>10.1016/S0140-6736(24)02568-6</doi><tpages>2</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0140-6736
ispartof The Lancet (British edition), 2024-11, Vol.404 (10468), p.2154-2155
issn 0140-6736
1474-547X
1474-547X
language eng
recordid cdi_proquest_miscellaneous_3140888677
source ScienceDirect Journals (5 years ago - present)
subjects Artificial intelligence
Automation
Communication
Differential diagnosis
Documentation
Editors
Electronic health records
Electronic medical records
Error reduction
Generative artificial intelligence
Medical records
Medicine
Narratives
Patients
Physicians
title Clinician as editor: notes in the era of AI scribes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T18%3A58%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Clinician%20as%20editor:%20notes%20in%20the%20era%20of%20AI%20scribes&rft.jtitle=The%20Lancet%20(British%20edition)&rft.au=Altschuler,%20Sari&rft.date=2024-11-30&rft.volume=404&rft.issue=10468&rft.spage=2154&rft.epage=2155&rft.pages=2154-2155&rft.issn=0140-6736&rft.eissn=1474-547X&rft_id=info:doi/10.1016/S0140-6736(24)02568-6&rft_dat=%3Cproquest_cross%3E3133959443%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3133959443&rft_id=info:pmid/39615990&rft_els_id=S0140673624025686&rfr_iscdi=true