Particle grouping in oscillating flows
An equation describing the dynamics of spherical particles in an oscillating Stokesian flow in the frame of reference moving with the phase velocity of the wave, and only taking into account the contribution of the drag force, is simplified in two limiting cases. Firstly, the case when Stokes number...
Gespeichert in:
Veröffentlicht in: | European journal of mechanics, B, Fluids B, Fluids, 2008-03, Vol.27 (2), p.131-149 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 149 |
---|---|
container_issue | 2 |
container_start_page | 131 |
container_title | European journal of mechanics, B, Fluids |
container_volume | 27 |
creator | Sazhin, Sergei Shakked, Tal Sobolev, Vladimir Katoshevski, David |
description | An equation describing the dynamics of spherical particles in an oscillating Stokesian flow in the frame of reference moving with the phase velocity of the wave, and only taking into account the contribution of the drag force, is simplified in two limiting cases. Firstly, the case when Stokes numbers are small is considered. Secondly, the analysis focuses on the case when the initial location of the particles is close to the location where the particles are grouped (their velocities and accelerations in the wave frame of reference are equal to zero),
x
lim
. This is followed by an analysis of the dynamics of non-Stokesian particles. In all cases, the analytical results are validated against the results of numerical solution of the equation of particle motion. Three types of trajectories are predicted when particles approach
x
lim
: the trajectories describing the monotonic approach to
x
lim
, the trajectories describing the approach to
x
lim
with oscillations and trajectories repelled from
x
lim
. These are identified with stable nodes, stable foci and saddles. The trajectories in the zone between stable nodes and foci are identified as stable stars. Using Dulac's criterion, it is pointed out that none of the particle trajectories in the position–velocity plane can be closed. This result is illustrated by the trajectories calculated using the numerical solution of the equation for particle dynamics for various parameter values. |
doi_str_mv | 10.1016/j.euromechflu.2007.04.003 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_31404405</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0997754607000453</els_id><sourcerecordid>1770321045</sourcerecordid><originalsourceid>FETCH-LOGICAL-c418t-d1d1f1e5da1d73c757d7e274283b7fec4225e4e1eeba09a63a535ec7077cdd323</originalsourceid><addsrcrecordid>eNqNkEtLw0AUhQdRsFb_Q90UN4l3HslNllJ8QUEXuh6mMzd1SprUmUTx3zulLlyJq8uB7xwuH2OXHHIOvLze5DSGfkv2rWnHXABgDioHkEdswiuUGcoajtkE6hozLFR5ys5i3ACAErKcsPmzCYO3Lc3WoR93vlvPfDfro_Vta4Z9bNr-M56zk8a0kS5-7pS93t2-LB6y5dP94-JmmVnFqyFz3PGGU-EMdygtFuiQBCpRyRU2ZJUQBSniRCsDtSmlKWRBFgHROieFnLL5YXcX-veR4qC3PlpKv3TUj1FLrkApKBJ49SfIEUEKDuofKFRCgMQaE1ofUBv6GAM1ehf81oSvBOm9b73Rv3zrvW8NSiffqbs4dCn5-fAUdJJInSXnA9lBu97_Y-UbCI-ONQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1082203797</pqid></control><display><type>article</type><title>Particle grouping in oscillating flows</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Sazhin, Sergei ; Shakked, Tal ; Sobolev, Vladimir ; Katoshevski, David</creator><creatorcontrib>Sazhin, Sergei ; Shakked, Tal ; Sobolev, Vladimir ; Katoshevski, David</creatorcontrib><description>An equation describing the dynamics of spherical particles in an oscillating Stokesian flow in the frame of reference moving with the phase velocity of the wave, and only taking into account the contribution of the drag force, is simplified in two limiting cases. Firstly, the case when Stokes numbers are small is considered. Secondly, the analysis focuses on the case when the initial location of the particles is close to the location where the particles are grouped (their velocities and accelerations in the wave frame of reference are equal to zero),
x
lim
. This is followed by an analysis of the dynamics of non-Stokesian particles. In all cases, the analytical results are validated against the results of numerical solution of the equation of particle motion. Three types of trajectories are predicted when particles approach
x
lim
: the trajectories describing the monotonic approach to
x
lim
, the trajectories describing the approach to
x
lim
with oscillations and trajectories repelled from
x
lim
. These are identified with stable nodes, stable foci and saddles. The trajectories in the zone between stable nodes and foci are identified as stable stars. Using Dulac's criterion, it is pointed out that none of the particle trajectories in the position–velocity plane can be closed. This result is illustrated by the trajectories calculated using the numerical solution of the equation for particle dynamics for various parameter values.</description><identifier>ISSN: 0997-7546</identifier><identifier>EISSN: 1873-7390</identifier><identifier>DOI: 10.1016/j.euromechflu.2007.04.003</identifier><language>eng</language><publisher>Elsevier Masson SAS</publisher><subject>Acceleration ; Clustering ; Dynamics ; Mathematical analysis ; Mathematical models ; Oscillations ; Position (location) ; Spray ; Stokes number ; Stokesian flow ; Trajectories</subject><ispartof>European journal of mechanics, B, Fluids, 2008-03, Vol.27 (2), p.131-149</ispartof><rights>2007 Elsevier Masson SAS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c418t-d1d1f1e5da1d73c757d7e274283b7fec4225e4e1eeba09a63a535ec7077cdd323</citedby><cites>FETCH-LOGICAL-c418t-d1d1f1e5da1d73c757d7e274283b7fec4225e4e1eeba09a63a535ec7077cdd323</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.euromechflu.2007.04.003$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27923,27924,45994</link.rule.ids></links><search><creatorcontrib>Sazhin, Sergei</creatorcontrib><creatorcontrib>Shakked, Tal</creatorcontrib><creatorcontrib>Sobolev, Vladimir</creatorcontrib><creatorcontrib>Katoshevski, David</creatorcontrib><title>Particle grouping in oscillating flows</title><title>European journal of mechanics, B, Fluids</title><description>An equation describing the dynamics of spherical particles in an oscillating Stokesian flow in the frame of reference moving with the phase velocity of the wave, and only taking into account the contribution of the drag force, is simplified in two limiting cases. Firstly, the case when Stokes numbers are small is considered. Secondly, the analysis focuses on the case when the initial location of the particles is close to the location where the particles are grouped (their velocities and accelerations in the wave frame of reference are equal to zero),
x
lim
. This is followed by an analysis of the dynamics of non-Stokesian particles. In all cases, the analytical results are validated against the results of numerical solution of the equation of particle motion. Three types of trajectories are predicted when particles approach
x
lim
: the trajectories describing the monotonic approach to
x
lim
, the trajectories describing the approach to
x
lim
with oscillations and trajectories repelled from
x
lim
. These are identified with stable nodes, stable foci and saddles. The trajectories in the zone between stable nodes and foci are identified as stable stars. Using Dulac's criterion, it is pointed out that none of the particle trajectories in the position–velocity plane can be closed. This result is illustrated by the trajectories calculated using the numerical solution of the equation for particle dynamics for various parameter values.</description><subject>Acceleration</subject><subject>Clustering</subject><subject>Dynamics</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Oscillations</subject><subject>Position (location)</subject><subject>Spray</subject><subject>Stokes number</subject><subject>Stokesian flow</subject><subject>Trajectories</subject><issn>0997-7546</issn><issn>1873-7390</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqNkEtLw0AUhQdRsFb_Q90UN4l3HslNllJ8QUEXuh6mMzd1SprUmUTx3zulLlyJq8uB7xwuH2OXHHIOvLze5DSGfkv2rWnHXABgDioHkEdswiuUGcoajtkE6hozLFR5ys5i3ACAErKcsPmzCYO3Lc3WoR93vlvPfDfro_Vta4Z9bNr-M56zk8a0kS5-7pS93t2-LB6y5dP94-JmmVnFqyFz3PGGU-EMdygtFuiQBCpRyRU2ZJUQBSniRCsDtSmlKWRBFgHROieFnLL5YXcX-veR4qC3PlpKv3TUj1FLrkApKBJ49SfIEUEKDuofKFRCgMQaE1ofUBv6GAM1ehf81oSvBOm9b73Rv3zrvW8NSiffqbs4dCn5-fAUdJJInSXnA9lBu97_Y-UbCI-ONQ</recordid><startdate>20080301</startdate><enddate>20080301</enddate><creator>Sazhin, Sergei</creator><creator>Shakked, Tal</creator><creator>Sobolev, Vladimir</creator><creator>Katoshevski, David</creator><general>Elsevier Masson SAS</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20080301</creationdate><title>Particle grouping in oscillating flows</title><author>Sazhin, Sergei ; Shakked, Tal ; Sobolev, Vladimir ; Katoshevski, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c418t-d1d1f1e5da1d73c757d7e274283b7fec4225e4e1eeba09a63a535ec7077cdd323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Acceleration</topic><topic>Clustering</topic><topic>Dynamics</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Oscillations</topic><topic>Position (location)</topic><topic>Spray</topic><topic>Stokes number</topic><topic>Stokesian flow</topic><topic>Trajectories</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sazhin, Sergei</creatorcontrib><creatorcontrib>Shakked, Tal</creatorcontrib><creatorcontrib>Sobolev, Vladimir</creatorcontrib><creatorcontrib>Katoshevski, David</creatorcontrib><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>European journal of mechanics, B, Fluids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sazhin, Sergei</au><au>Shakked, Tal</au><au>Sobolev, Vladimir</au><au>Katoshevski, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Particle grouping in oscillating flows</atitle><jtitle>European journal of mechanics, B, Fluids</jtitle><date>2008-03-01</date><risdate>2008</risdate><volume>27</volume><issue>2</issue><spage>131</spage><epage>149</epage><pages>131-149</pages><issn>0997-7546</issn><eissn>1873-7390</eissn><abstract>An equation describing the dynamics of spherical particles in an oscillating Stokesian flow in the frame of reference moving with the phase velocity of the wave, and only taking into account the contribution of the drag force, is simplified in two limiting cases. Firstly, the case when Stokes numbers are small is considered. Secondly, the analysis focuses on the case when the initial location of the particles is close to the location where the particles are grouped (their velocities and accelerations in the wave frame of reference are equal to zero),
x
lim
. This is followed by an analysis of the dynamics of non-Stokesian particles. In all cases, the analytical results are validated against the results of numerical solution of the equation of particle motion. Three types of trajectories are predicted when particles approach
x
lim
: the trajectories describing the monotonic approach to
x
lim
, the trajectories describing the approach to
x
lim
with oscillations and trajectories repelled from
x
lim
. These are identified with stable nodes, stable foci and saddles. The trajectories in the zone between stable nodes and foci are identified as stable stars. Using Dulac's criterion, it is pointed out that none of the particle trajectories in the position–velocity plane can be closed. This result is illustrated by the trajectories calculated using the numerical solution of the equation for particle dynamics for various parameter values.</abstract><pub>Elsevier Masson SAS</pub><doi>10.1016/j.euromechflu.2007.04.003</doi><tpages>19</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0997-7546 |
ispartof | European journal of mechanics, B, Fluids, 2008-03, Vol.27 (2), p.131-149 |
issn | 0997-7546 1873-7390 |
language | eng |
recordid | cdi_proquest_miscellaneous_31404405 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Acceleration Clustering Dynamics Mathematical analysis Mathematical models Oscillations Position (location) Spray Stokes number Stokesian flow Trajectories |
title | Particle grouping in oscillating flows |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T04%3A51%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Particle%20grouping%20in%20oscillating%20flows&rft.jtitle=European%20journal%20of%20mechanics,%20B,%20Fluids&rft.au=Sazhin,%20Sergei&rft.date=2008-03-01&rft.volume=27&rft.issue=2&rft.spage=131&rft.epage=149&rft.pages=131-149&rft.issn=0997-7546&rft.eissn=1873-7390&rft_id=info:doi/10.1016/j.euromechflu.2007.04.003&rft_dat=%3Cproquest_cross%3E1770321045%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1082203797&rft_id=info:pmid/&rft_els_id=S0997754607000453&rfr_iscdi=true |