Particle grouping in oscillating flows

An equation describing the dynamics of spherical particles in an oscillating Stokesian flow in the frame of reference moving with the phase velocity of the wave, and only taking into account the contribution of the drag force, is simplified in two limiting cases. Firstly, the case when Stokes number...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of mechanics, B, Fluids B, Fluids, 2008-03, Vol.27 (2), p.131-149
Hauptverfasser: Sazhin, Sergei, Shakked, Tal, Sobolev, Vladimir, Katoshevski, David
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 149
container_issue 2
container_start_page 131
container_title European journal of mechanics, B, Fluids
container_volume 27
creator Sazhin, Sergei
Shakked, Tal
Sobolev, Vladimir
Katoshevski, David
description An equation describing the dynamics of spherical particles in an oscillating Stokesian flow in the frame of reference moving with the phase velocity of the wave, and only taking into account the contribution of the drag force, is simplified in two limiting cases. Firstly, the case when Stokes numbers are small is considered. Secondly, the analysis focuses on the case when the initial location of the particles is close to the location where the particles are grouped (their velocities and accelerations in the wave frame of reference are equal to zero), x lim . This is followed by an analysis of the dynamics of non-Stokesian particles. In all cases, the analytical results are validated against the results of numerical solution of the equation of particle motion. Three types of trajectories are predicted when particles approach x lim : the trajectories describing the monotonic approach to x lim , the trajectories describing the approach to x lim with oscillations and trajectories repelled from x lim . These are identified with stable nodes, stable foci and saddles. The trajectories in the zone between stable nodes and foci are identified as stable stars. Using Dulac's criterion, it is pointed out that none of the particle trajectories in the position–velocity plane can be closed. This result is illustrated by the trajectories calculated using the numerical solution of the equation for particle dynamics for various parameter values.
doi_str_mv 10.1016/j.euromechflu.2007.04.003
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_31404405</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0997754607000453</els_id><sourcerecordid>1770321045</sourcerecordid><originalsourceid>FETCH-LOGICAL-c418t-d1d1f1e5da1d73c757d7e274283b7fec4225e4e1eeba09a63a535ec7077cdd323</originalsourceid><addsrcrecordid>eNqNkEtLw0AUhQdRsFb_Q90UN4l3HslNllJ8QUEXuh6mMzd1SprUmUTx3zulLlyJq8uB7xwuH2OXHHIOvLze5DSGfkv2rWnHXABgDioHkEdswiuUGcoajtkE6hozLFR5ys5i3ACAErKcsPmzCYO3Lc3WoR93vlvPfDfro_Vta4Z9bNr-M56zk8a0kS5-7pS93t2-LB6y5dP94-JmmVnFqyFz3PGGU-EMdygtFuiQBCpRyRU2ZJUQBSniRCsDtSmlKWRBFgHROieFnLL5YXcX-veR4qC3PlpKv3TUj1FLrkApKBJ49SfIEUEKDuofKFRCgMQaE1ofUBv6GAM1ehf81oSvBOm9b73Rv3zrvW8NSiffqbs4dCn5-fAUdJJInSXnA9lBu97_Y-UbCI-ONQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1082203797</pqid></control><display><type>article</type><title>Particle grouping in oscillating flows</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Sazhin, Sergei ; Shakked, Tal ; Sobolev, Vladimir ; Katoshevski, David</creator><creatorcontrib>Sazhin, Sergei ; Shakked, Tal ; Sobolev, Vladimir ; Katoshevski, David</creatorcontrib><description>An equation describing the dynamics of spherical particles in an oscillating Stokesian flow in the frame of reference moving with the phase velocity of the wave, and only taking into account the contribution of the drag force, is simplified in two limiting cases. Firstly, the case when Stokes numbers are small is considered. Secondly, the analysis focuses on the case when the initial location of the particles is close to the location where the particles are grouped (their velocities and accelerations in the wave frame of reference are equal to zero), x lim . This is followed by an analysis of the dynamics of non-Stokesian particles. In all cases, the analytical results are validated against the results of numerical solution of the equation of particle motion. Three types of trajectories are predicted when particles approach x lim : the trajectories describing the monotonic approach to x lim , the trajectories describing the approach to x lim with oscillations and trajectories repelled from x lim . These are identified with stable nodes, stable foci and saddles. The trajectories in the zone between stable nodes and foci are identified as stable stars. Using Dulac's criterion, it is pointed out that none of the particle trajectories in the position–velocity plane can be closed. This result is illustrated by the trajectories calculated using the numerical solution of the equation for particle dynamics for various parameter values.</description><identifier>ISSN: 0997-7546</identifier><identifier>EISSN: 1873-7390</identifier><identifier>DOI: 10.1016/j.euromechflu.2007.04.003</identifier><language>eng</language><publisher>Elsevier Masson SAS</publisher><subject>Acceleration ; Clustering ; Dynamics ; Mathematical analysis ; Mathematical models ; Oscillations ; Position (location) ; Spray ; Stokes number ; Stokesian flow ; Trajectories</subject><ispartof>European journal of mechanics, B, Fluids, 2008-03, Vol.27 (2), p.131-149</ispartof><rights>2007 Elsevier Masson SAS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c418t-d1d1f1e5da1d73c757d7e274283b7fec4225e4e1eeba09a63a535ec7077cdd323</citedby><cites>FETCH-LOGICAL-c418t-d1d1f1e5da1d73c757d7e274283b7fec4225e4e1eeba09a63a535ec7077cdd323</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.euromechflu.2007.04.003$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27923,27924,45994</link.rule.ids></links><search><creatorcontrib>Sazhin, Sergei</creatorcontrib><creatorcontrib>Shakked, Tal</creatorcontrib><creatorcontrib>Sobolev, Vladimir</creatorcontrib><creatorcontrib>Katoshevski, David</creatorcontrib><title>Particle grouping in oscillating flows</title><title>European journal of mechanics, B, Fluids</title><description>An equation describing the dynamics of spherical particles in an oscillating Stokesian flow in the frame of reference moving with the phase velocity of the wave, and only taking into account the contribution of the drag force, is simplified in two limiting cases. Firstly, the case when Stokes numbers are small is considered. Secondly, the analysis focuses on the case when the initial location of the particles is close to the location where the particles are grouped (their velocities and accelerations in the wave frame of reference are equal to zero), x lim . This is followed by an analysis of the dynamics of non-Stokesian particles. In all cases, the analytical results are validated against the results of numerical solution of the equation of particle motion. Three types of trajectories are predicted when particles approach x lim : the trajectories describing the monotonic approach to x lim , the trajectories describing the approach to x lim with oscillations and trajectories repelled from x lim . These are identified with stable nodes, stable foci and saddles. The trajectories in the zone between stable nodes and foci are identified as stable stars. Using Dulac's criterion, it is pointed out that none of the particle trajectories in the position–velocity plane can be closed. This result is illustrated by the trajectories calculated using the numerical solution of the equation for particle dynamics for various parameter values.</description><subject>Acceleration</subject><subject>Clustering</subject><subject>Dynamics</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Oscillations</subject><subject>Position (location)</subject><subject>Spray</subject><subject>Stokes number</subject><subject>Stokesian flow</subject><subject>Trajectories</subject><issn>0997-7546</issn><issn>1873-7390</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqNkEtLw0AUhQdRsFb_Q90UN4l3HslNllJ8QUEXuh6mMzd1SprUmUTx3zulLlyJq8uB7xwuH2OXHHIOvLze5DSGfkv2rWnHXABgDioHkEdswiuUGcoajtkE6hozLFR5ys5i3ACAErKcsPmzCYO3Lc3WoR93vlvPfDfro_Vta4Z9bNr-M56zk8a0kS5-7pS93t2-LB6y5dP94-JmmVnFqyFz3PGGU-EMdygtFuiQBCpRyRU2ZJUQBSniRCsDtSmlKWRBFgHROieFnLL5YXcX-veR4qC3PlpKv3TUj1FLrkApKBJ49SfIEUEKDuofKFRCgMQaE1ofUBv6GAM1ehf81oSvBOm9b73Rv3zrvW8NSiffqbs4dCn5-fAUdJJInSXnA9lBu97_Y-UbCI-ONQ</recordid><startdate>20080301</startdate><enddate>20080301</enddate><creator>Sazhin, Sergei</creator><creator>Shakked, Tal</creator><creator>Sobolev, Vladimir</creator><creator>Katoshevski, David</creator><general>Elsevier Masson SAS</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20080301</creationdate><title>Particle grouping in oscillating flows</title><author>Sazhin, Sergei ; Shakked, Tal ; Sobolev, Vladimir ; Katoshevski, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c418t-d1d1f1e5da1d73c757d7e274283b7fec4225e4e1eeba09a63a535ec7077cdd323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Acceleration</topic><topic>Clustering</topic><topic>Dynamics</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Oscillations</topic><topic>Position (location)</topic><topic>Spray</topic><topic>Stokes number</topic><topic>Stokesian flow</topic><topic>Trajectories</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sazhin, Sergei</creatorcontrib><creatorcontrib>Shakked, Tal</creatorcontrib><creatorcontrib>Sobolev, Vladimir</creatorcontrib><creatorcontrib>Katoshevski, David</creatorcontrib><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>European journal of mechanics, B, Fluids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sazhin, Sergei</au><au>Shakked, Tal</au><au>Sobolev, Vladimir</au><au>Katoshevski, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Particle grouping in oscillating flows</atitle><jtitle>European journal of mechanics, B, Fluids</jtitle><date>2008-03-01</date><risdate>2008</risdate><volume>27</volume><issue>2</issue><spage>131</spage><epage>149</epage><pages>131-149</pages><issn>0997-7546</issn><eissn>1873-7390</eissn><abstract>An equation describing the dynamics of spherical particles in an oscillating Stokesian flow in the frame of reference moving with the phase velocity of the wave, and only taking into account the contribution of the drag force, is simplified in two limiting cases. Firstly, the case when Stokes numbers are small is considered. Secondly, the analysis focuses on the case when the initial location of the particles is close to the location where the particles are grouped (their velocities and accelerations in the wave frame of reference are equal to zero), x lim . This is followed by an analysis of the dynamics of non-Stokesian particles. In all cases, the analytical results are validated against the results of numerical solution of the equation of particle motion. Three types of trajectories are predicted when particles approach x lim : the trajectories describing the monotonic approach to x lim , the trajectories describing the approach to x lim with oscillations and trajectories repelled from x lim . These are identified with stable nodes, stable foci and saddles. The trajectories in the zone between stable nodes and foci are identified as stable stars. Using Dulac's criterion, it is pointed out that none of the particle trajectories in the position–velocity plane can be closed. This result is illustrated by the trajectories calculated using the numerical solution of the equation for particle dynamics for various parameter values.</abstract><pub>Elsevier Masson SAS</pub><doi>10.1016/j.euromechflu.2007.04.003</doi><tpages>19</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0997-7546
ispartof European journal of mechanics, B, Fluids, 2008-03, Vol.27 (2), p.131-149
issn 0997-7546
1873-7390
language eng
recordid cdi_proquest_miscellaneous_31404405
source ScienceDirect Journals (5 years ago - present)
subjects Acceleration
Clustering
Dynamics
Mathematical analysis
Mathematical models
Oscillations
Position (location)
Spray
Stokes number
Stokesian flow
Trajectories
title Particle grouping in oscillating flows
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T04%3A51%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Particle%20grouping%20in%20oscillating%20flows&rft.jtitle=European%20journal%20of%20mechanics,%20B,%20Fluids&rft.au=Sazhin,%20Sergei&rft.date=2008-03-01&rft.volume=27&rft.issue=2&rft.spage=131&rft.epage=149&rft.pages=131-149&rft.issn=0997-7546&rft.eissn=1873-7390&rft_id=info:doi/10.1016/j.euromechflu.2007.04.003&rft_dat=%3Cproquest_cross%3E1770321045%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1082203797&rft_id=info:pmid/&rft_els_id=S0997754607000453&rfr_iscdi=true