Investigation of Dissolution Behavior of Metallic Substrates and Intermetallic Compound in Molten Lead-free Solders

This study investigates the dissolution behavior of the metallic substrates Cu and Ag and the intermetallic compound (IMC)-Ag 3 Sn in molten Sn, Sn-3.0Ag-0.5Cu, Sn-58Bi and Sn-9Zn (in wt.%) at 300, 270 and 240°C. The dissolution rates of both Cu and Ag in molten solder follow the order Sn > Sn-3....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of electronic materials 2008-01, Vol.37 (1), p.73-83
Hauptverfasser: Yen, Yee-Wen, Chou, Weng-Ting, Tseng, Yu, Lee, Chiapyng, Hsu, Chun-Lei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 83
container_issue 1
container_start_page 73
container_title Journal of electronic materials
container_volume 37
creator Yen, Yee-Wen
Chou, Weng-Ting
Tseng, Yu
Lee, Chiapyng
Hsu, Chun-Lei
description This study investigates the dissolution behavior of the metallic substrates Cu and Ag and the intermetallic compound (IMC)-Ag 3 Sn in molten Sn, Sn-3.0Ag-0.5Cu, Sn-58Bi and Sn-9Zn (in wt.%) at 300, 270 and 240°C. The dissolution rates of both Cu and Ag in molten solder follow the order Sn > Sn-3.0Ag-0.5Cu >Sn-58Bi > Sn-9Zn. Planar Cu 3 Sn and scalloped Cu 6 Sn 5 phases in Cu/solders and the scalloped Ag 3 Sn phase in Ag/solders are observed at the metallic substrate/solder interface. The dissolution mechanism is controlled by grain boundary diffusion. The planar Cu 5 Zn 8 layer formed in the Sn-9Zn/Cu systems. AgZn 3 , Ag5Zn 8 and AgZn phases are found in the Sn-9Zn/Ag system and the dissolution mechanism is controlled by lattice diffusion. Massive Ag 3 Sn phases dissolved into the solders and formed during solidification processes in the Ag 3 Sn/Sn or Sn-3.0Ag-0.5Cu systems. AgZn 3 and Ag 5 Zn 8 phases are formed at the Sn-9Zn/Ag 3 Sn interface. Zn atoms diffuse through Ag-Zn IMCs to form (Ag, Zn)Sn 4 and Sn-rich regions between Ag 5 Zn 8 and Ag 3 Sn.
doi_str_mv 10.1007/s11664-007-0266-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_31402309</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1415016701</sourcerecordid><originalsourceid>FETCH-LOGICAL-c442t-8b955f6babdbab2a7013f2ac58d1e3805be2011e928eb7d4993a0a5bc017cda73</originalsourceid><addsrcrecordid>eNp1kU2LFDEQhhtRcFz9Ad4aQW_RVL66-6jj18AsHlbBW6hOV69ZMsmYdC_47804q4LgIaRS9dTLG96meQr8JXDevSoAxihWS8aFMczcazaglWTQm6_3mw2XBpgWUj9sHpVywzlo6GHTlF28pbL4a1x8im2a27e-lBTWX8839A1vfcqn_iUtGIJ37dU6liXjQqXFOLW7uFA-_B5u0-GY1tr2sb1MYaHY7gknNmei9iqFiXJ53DyYMRR6cndfNF_ev_u8_cj2nz7stq_3zCklFtaPg9azGXGc6hHYcZCzQKf7CUj2XI8kOAANoqexm9QwSOSoR8ehcxN28qJ5cdY95vR9rb-0B18chYCR0lqsBMWF5EMFn_0D3qQ1x-rNCq56pUwvKgRnyOVUSqbZHrM_YP5hgdtTBvacgT2VpwysqTvP74SxOAxzxuh8-bNY7XegtK6cOHOljuI15b8G_i_-E2Fdl_0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>204844682</pqid></control><display><type>article</type><title>Investigation of Dissolution Behavior of Metallic Substrates and Intermetallic Compound in Molten Lead-free Solders</title><source>SpringerNature Journals</source><creator>Yen, Yee-Wen ; Chou, Weng-Ting ; Tseng, Yu ; Lee, Chiapyng ; Hsu, Chun-Lei</creator><creatorcontrib>Yen, Yee-Wen ; Chou, Weng-Ting ; Tseng, Yu ; Lee, Chiapyng ; Hsu, Chun-Lei</creatorcontrib><description>This study investigates the dissolution behavior of the metallic substrates Cu and Ag and the intermetallic compound (IMC)-Ag 3 Sn in molten Sn, Sn-3.0Ag-0.5Cu, Sn-58Bi and Sn-9Zn (in wt.%) at 300, 270 and 240°C. The dissolution rates of both Cu and Ag in molten solder follow the order Sn &gt; Sn-3.0Ag-0.5Cu &gt;Sn-58Bi &gt; Sn-9Zn. Planar Cu 3 Sn and scalloped Cu 6 Sn 5 phases in Cu/solders and the scalloped Ag 3 Sn phase in Ag/solders are observed at the metallic substrate/solder interface. The dissolution mechanism is controlled by grain boundary diffusion. The planar Cu 5 Zn 8 layer formed in the Sn-9Zn/Cu systems. AgZn 3 , Ag5Zn 8 and AgZn phases are found in the Sn-9Zn/Ag system and the dissolution mechanism is controlled by lattice diffusion. Massive Ag 3 Sn phases dissolved into the solders and formed during solidification processes in the Ag 3 Sn/Sn or Sn-3.0Ag-0.5Cu systems. AgZn 3 and Ag 5 Zn 8 phases are formed at the Sn-9Zn/Ag 3 Sn interface. Zn atoms diffuse through Ag-Zn IMCs to form (Ag, Zn)Sn 4 and Sn-rich regions between Ag 5 Zn 8 and Ag 3 Sn.</description><identifier>ISSN: 0361-5235</identifier><identifier>EISSN: 1543-186X</identifier><identifier>DOI: 10.1007/s11664-007-0266-6</identifier><identifier>CODEN: JECMA5</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Alloys ; Applied sciences ; Brazing. Soldering ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Condensed matter: structure, mechanical and thermal properties ; Cross-disciplinary physics: materials science; rheology ; Diffusion ; Dissolution ; Electronics ; Electronics and Microelectronics ; Equations of state, phase equilibria, and phase transitions ; Exact sciences and technology ; Instrumentation ; Intermetallic compounds ; Joining, thermal cutting: metallurgical aspects ; Lead free solders ; Materials ; Materials Science ; Metals. Metallurgy ; Optical and Electronic Materials ; Phase diagrams and microstructures developed by solidification and solid-solid phase transformations ; Physics ; Solid State Physics ; Solidification ; Solubility, segregation, and mixing; phase separation ; Substrates</subject><ispartof>Journal of electronic materials, 2008-01, Vol.37 (1), p.73-83</ispartof><rights>TMS 2007</rights><rights>2008 INIST-CNRS</rights><rights>Copyright Minerals, Metals &amp; Materials Society Jan 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c442t-8b955f6babdbab2a7013f2ac58d1e3805be2011e928eb7d4993a0a5bc017cda73</citedby><cites>FETCH-LOGICAL-c442t-8b955f6babdbab2a7013f2ac58d1e3805be2011e928eb7d4993a0a5bc017cda73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11664-007-0266-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11664-007-0266-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,23930,23931,25140,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20171455$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Yen, Yee-Wen</creatorcontrib><creatorcontrib>Chou, Weng-Ting</creatorcontrib><creatorcontrib>Tseng, Yu</creatorcontrib><creatorcontrib>Lee, Chiapyng</creatorcontrib><creatorcontrib>Hsu, Chun-Lei</creatorcontrib><title>Investigation of Dissolution Behavior of Metallic Substrates and Intermetallic Compound in Molten Lead-free Solders</title><title>Journal of electronic materials</title><addtitle>Journal of Elec Materi</addtitle><description>This study investigates the dissolution behavior of the metallic substrates Cu and Ag and the intermetallic compound (IMC)-Ag 3 Sn in molten Sn, Sn-3.0Ag-0.5Cu, Sn-58Bi and Sn-9Zn (in wt.%) at 300, 270 and 240°C. The dissolution rates of both Cu and Ag in molten solder follow the order Sn &gt; Sn-3.0Ag-0.5Cu &gt;Sn-58Bi &gt; Sn-9Zn. Planar Cu 3 Sn and scalloped Cu 6 Sn 5 phases in Cu/solders and the scalloped Ag 3 Sn phase in Ag/solders are observed at the metallic substrate/solder interface. The dissolution mechanism is controlled by grain boundary diffusion. The planar Cu 5 Zn 8 layer formed in the Sn-9Zn/Cu systems. AgZn 3 , Ag5Zn 8 and AgZn phases are found in the Sn-9Zn/Ag system and the dissolution mechanism is controlled by lattice diffusion. Massive Ag 3 Sn phases dissolved into the solders and formed during solidification processes in the Ag 3 Sn/Sn or Sn-3.0Ag-0.5Cu systems. AgZn 3 and Ag 5 Zn 8 phases are formed at the Sn-9Zn/Ag 3 Sn interface. Zn atoms diffuse through Ag-Zn IMCs to form (Ag, Zn)Sn 4 and Sn-rich regions between Ag 5 Zn 8 and Ag 3 Sn.</description><subject>Alloys</subject><subject>Applied sciences</subject><subject>Brazing. Soldering</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Diffusion</subject><subject>Dissolution</subject><subject>Electronics</subject><subject>Electronics and Microelectronics</subject><subject>Equations of state, phase equilibria, and phase transitions</subject><subject>Exact sciences and technology</subject><subject>Instrumentation</subject><subject>Intermetallic compounds</subject><subject>Joining, thermal cutting: metallurgical aspects</subject><subject>Lead free solders</subject><subject>Materials</subject><subject>Materials Science</subject><subject>Metals. Metallurgy</subject><subject>Optical and Electronic Materials</subject><subject>Phase diagrams and microstructures developed by solidification and solid-solid phase transformations</subject><subject>Physics</subject><subject>Solid State Physics</subject><subject>Solidification</subject><subject>Solubility, segregation, and mixing; phase separation</subject><subject>Substrates</subject><issn>0361-5235</issn><issn>1543-186X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kU2LFDEQhhtRcFz9Ad4aQW_RVL66-6jj18AsHlbBW6hOV69ZMsmYdC_47804q4LgIaRS9dTLG96meQr8JXDevSoAxihWS8aFMczcazaglWTQm6_3mw2XBpgWUj9sHpVywzlo6GHTlF28pbL4a1x8im2a27e-lBTWX8839A1vfcqn_iUtGIJ37dU6liXjQqXFOLW7uFA-_B5u0-GY1tr2sb1MYaHY7gknNmei9iqFiXJ53DyYMRR6cndfNF_ev_u8_cj2nz7stq_3zCklFtaPg9azGXGc6hHYcZCzQKf7CUj2XI8kOAANoqexm9QwSOSoR8ehcxN28qJ5cdY95vR9rb-0B18chYCR0lqsBMWF5EMFn_0D3qQ1x-rNCq56pUwvKgRnyOVUSqbZHrM_YP5hgdtTBvacgT2VpwysqTvP74SxOAxzxuh8-bNY7XegtK6cOHOljuI15b8G_i_-E2Fdl_0</recordid><startdate>20080101</startdate><enddate>20080101</enddate><creator>Yen, Yee-Wen</creator><creator>Chou, Weng-Ting</creator><creator>Tseng, Yu</creator><creator>Lee, Chiapyng</creator><creator>Hsu, Chun-Lei</creator><general>Springer US</general><general>Institute of Electrical and Electronics Engineers</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope><scope>7QQ</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20080101</creationdate><title>Investigation of Dissolution Behavior of Metallic Substrates and Intermetallic Compound in Molten Lead-free Solders</title><author>Yen, Yee-Wen ; Chou, Weng-Ting ; Tseng, Yu ; Lee, Chiapyng ; Hsu, Chun-Lei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c442t-8b955f6babdbab2a7013f2ac58d1e3805be2011e928eb7d4993a0a5bc017cda73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Alloys</topic><topic>Applied sciences</topic><topic>Brazing. Soldering</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Diffusion</topic><topic>Dissolution</topic><topic>Electronics</topic><topic>Electronics and Microelectronics</topic><topic>Equations of state, phase equilibria, and phase transitions</topic><topic>Exact sciences and technology</topic><topic>Instrumentation</topic><topic>Intermetallic compounds</topic><topic>Joining, thermal cutting: metallurgical aspects</topic><topic>Lead free solders</topic><topic>Materials</topic><topic>Materials Science</topic><topic>Metals. Metallurgy</topic><topic>Optical and Electronic Materials</topic><topic>Phase diagrams and microstructures developed by solidification and solid-solid phase transformations</topic><topic>Physics</topic><topic>Solid State Physics</topic><topic>Solidification</topic><topic>Solubility, segregation, and mixing; phase separation</topic><topic>Substrates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yen, Yee-Wen</creatorcontrib><creatorcontrib>Chou, Weng-Ting</creatorcontrib><creatorcontrib>Tseng, Yu</creatorcontrib><creatorcontrib>Lee, Chiapyng</creatorcontrib><creatorcontrib>Hsu, Chun-Lei</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>Ceramic Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of electronic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yen, Yee-Wen</au><au>Chou, Weng-Ting</au><au>Tseng, Yu</au><au>Lee, Chiapyng</au><au>Hsu, Chun-Lei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Investigation of Dissolution Behavior of Metallic Substrates and Intermetallic Compound in Molten Lead-free Solders</atitle><jtitle>Journal of electronic materials</jtitle><stitle>Journal of Elec Materi</stitle><date>2008-01-01</date><risdate>2008</risdate><volume>37</volume><issue>1</issue><spage>73</spage><epage>83</epage><pages>73-83</pages><issn>0361-5235</issn><eissn>1543-186X</eissn><coden>JECMA5</coden><abstract>This study investigates the dissolution behavior of the metallic substrates Cu and Ag and the intermetallic compound (IMC)-Ag 3 Sn in molten Sn, Sn-3.0Ag-0.5Cu, Sn-58Bi and Sn-9Zn (in wt.%) at 300, 270 and 240°C. The dissolution rates of both Cu and Ag in molten solder follow the order Sn &gt; Sn-3.0Ag-0.5Cu &gt;Sn-58Bi &gt; Sn-9Zn. Planar Cu 3 Sn and scalloped Cu 6 Sn 5 phases in Cu/solders and the scalloped Ag 3 Sn phase in Ag/solders are observed at the metallic substrate/solder interface. The dissolution mechanism is controlled by grain boundary diffusion. The planar Cu 5 Zn 8 layer formed in the Sn-9Zn/Cu systems. AgZn 3 , Ag5Zn 8 and AgZn phases are found in the Sn-9Zn/Ag system and the dissolution mechanism is controlled by lattice diffusion. Massive Ag 3 Sn phases dissolved into the solders and formed during solidification processes in the Ag 3 Sn/Sn or Sn-3.0Ag-0.5Cu systems. AgZn 3 and Ag 5 Zn 8 phases are formed at the Sn-9Zn/Ag 3 Sn interface. Zn atoms diffuse through Ag-Zn IMCs to form (Ag, Zn)Sn 4 and Sn-rich regions between Ag 5 Zn 8 and Ag 3 Sn.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s11664-007-0266-6</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0361-5235
ispartof Journal of electronic materials, 2008-01, Vol.37 (1), p.73-83
issn 0361-5235
1543-186X
language eng
recordid cdi_proquest_miscellaneous_31402309
source SpringerNature Journals
subjects Alloys
Applied sciences
Brazing. Soldering
Characterization and Evaluation of Materials
Chemistry and Materials Science
Condensed matter: structure, mechanical and thermal properties
Cross-disciplinary physics: materials science
rheology
Diffusion
Dissolution
Electronics
Electronics and Microelectronics
Equations of state, phase equilibria, and phase transitions
Exact sciences and technology
Instrumentation
Intermetallic compounds
Joining, thermal cutting: metallurgical aspects
Lead free solders
Materials
Materials Science
Metals. Metallurgy
Optical and Electronic Materials
Phase diagrams and microstructures developed by solidification and solid-solid phase transformations
Physics
Solid State Physics
Solidification
Solubility, segregation, and mixing
phase separation
Substrates
title Investigation of Dissolution Behavior of Metallic Substrates and Intermetallic Compound in Molten Lead-free Solders
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T13%3A21%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Investigation%20of%20Dissolution%20Behavior%20of%20Metallic%20Substrates%20and%20Intermetallic%20Compound%20in%20Molten%20Lead-free%20Solders&rft.jtitle=Journal%20of%20electronic%20materials&rft.au=Yen,%20Yee-Wen&rft.date=2008-01-01&rft.volume=37&rft.issue=1&rft.spage=73&rft.epage=83&rft.pages=73-83&rft.issn=0361-5235&rft.eissn=1543-186X&rft.coden=JECMA5&rft_id=info:doi/10.1007/s11664-007-0266-6&rft_dat=%3Cproquest_cross%3E1415016701%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=204844682&rft_id=info:pmid/&rfr_iscdi=true