Analysis of thermal fields in orthogonal machining with infrared imaging
The validation of a previously developed finite difference temperature prediction model is carried out for orthogonal machining process with a high precision infrared camera set-up, considering the temperature distribution in the tool. The thermal experiments are conducted with two different materia...
Gespeichert in:
Veröffentlicht in: | Journal of materials processing technology 2008-03, Vol.198 (1), p.147-154 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 154 |
---|---|
container_issue | 1 |
container_start_page | 147 |
container_title | Journal of materials processing technology |
container_volume | 198 |
creator | Dinc, C. Lazoglu, I. Serpenguzel, A. |
description | The validation of a previously developed finite difference temperature prediction model is carried out for orthogonal machining process with a high precision infrared camera set-up, considering the temperature distribution in the tool. The thermal experiments are conducted with two different materials; Al 7075, AISI 1050, with two different tool geometries; inserts having a rake angle of 6° and 18°, for different cutting velocities and feedrates. An infrared camera set-up is utilized for the thermal experiments. The results of the high precision infrared thermal measurements are compared with the outputs of the finite difference temperature model, considering the maximum and the mean temperatures in the tool–chip interface zone and the temperature distributions on the tool take face. The maximum tool–chip interface temperature increases with increasing cutting velocity and feedrate. The relationship between the maximum tool–chip interface temperature and the rake angle of the tool is not distinctive. The experimental results show good agreement with the simulations. |
doi_str_mv | 10.1016/j.jmatprotec.2007.07.002 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_31380219</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0924013607006620</els_id><sourcerecordid>31380219</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-12cb00a205ed25ae9daccf79ea46e2752ed89630960420bbce8246e59470efa83</originalsourceid><addsrcrecordid>eNqFUE1LAzEQzUHBWv0POXnbdZL9zLEWtYWCFz2HNDvbzbK7qUmq9N-bpYJHYWBg3gfzHiGUQcqAlY992o8qHJ0NqFMOUKXzAL8iCxA8T4Bl5Q259b4HYBXU9YJsVpMazt54alsaOnSjGmhrcGg8NRO1LnT2YCOHjkp3ZjLTgX6b0EWwdcphQ82oDvF6R65bNXi8_91L8vHy_L7eJLu31-16tUt0louQMK73AIpDgQ0vFIpGad1WAlVeIq8Kjk0tygxECTmH_V5jzSNSiLwCbFWdLcnDxTfG_DyhD3I0XuMwqAntycuMZTVwJiKxvhC1s947bOXRxV_dWTKQc12yl391ybkuOQ_wKH26SDEG-TLopNcGJ42NcaiDbKz53-QHivV8Bw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>31380219</pqid></control><display><type>article</type><title>Analysis of thermal fields in orthogonal machining with infrared imaging</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Dinc, C. ; Lazoglu, I. ; Serpenguzel, A.</creator><creatorcontrib>Dinc, C. ; Lazoglu, I. ; Serpenguzel, A.</creatorcontrib><description>The validation of a previously developed finite difference temperature prediction model is carried out for orthogonal machining process with a high precision infrared camera set-up, considering the temperature distribution in the tool. The thermal experiments are conducted with two different materials; Al 7075, AISI 1050, with two different tool geometries; inserts having a rake angle of 6° and 18°, for different cutting velocities and feedrates. An infrared camera set-up is utilized for the thermal experiments. The results of the high precision infrared thermal measurements are compared with the outputs of the finite difference temperature model, considering the maximum and the mean temperatures in the tool–chip interface zone and the temperature distributions on the tool take face. The maximum tool–chip interface temperature increases with increasing cutting velocity and feedrate. The relationship between the maximum tool–chip interface temperature and the rake angle of the tool is not distinctive. The experimental results show good agreement with the simulations.</description><identifier>ISSN: 0924-0136</identifier><identifier>DOI: 10.1016/j.jmatprotec.2007.07.002</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>AISI 1050 ; Al7075 ; Rake angle ; Temperature ; Velocity</subject><ispartof>Journal of materials processing technology, 2008-03, Vol.198 (1), p.147-154</ispartof><rights>2007 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-12cb00a205ed25ae9daccf79ea46e2752ed89630960420bbce8246e59470efa83</citedby><cites>FETCH-LOGICAL-c349t-12cb00a205ed25ae9daccf79ea46e2752ed89630960420bbce8246e59470efa83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jmatprotec.2007.07.002$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Dinc, C.</creatorcontrib><creatorcontrib>Lazoglu, I.</creatorcontrib><creatorcontrib>Serpenguzel, A.</creatorcontrib><title>Analysis of thermal fields in orthogonal machining with infrared imaging</title><title>Journal of materials processing technology</title><description>The validation of a previously developed finite difference temperature prediction model is carried out for orthogonal machining process with a high precision infrared camera set-up, considering the temperature distribution in the tool. The thermal experiments are conducted with two different materials; Al 7075, AISI 1050, with two different tool geometries; inserts having a rake angle of 6° and 18°, for different cutting velocities and feedrates. An infrared camera set-up is utilized for the thermal experiments. The results of the high precision infrared thermal measurements are compared with the outputs of the finite difference temperature model, considering the maximum and the mean temperatures in the tool–chip interface zone and the temperature distributions on the tool take face. The maximum tool–chip interface temperature increases with increasing cutting velocity and feedrate. The relationship between the maximum tool–chip interface temperature and the rake angle of the tool is not distinctive. The experimental results show good agreement with the simulations.</description><subject>AISI 1050</subject><subject>Al7075</subject><subject>Rake angle</subject><subject>Temperature</subject><subject>Velocity</subject><issn>0924-0136</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqFUE1LAzEQzUHBWv0POXnbdZL9zLEWtYWCFz2HNDvbzbK7qUmq9N-bpYJHYWBg3gfzHiGUQcqAlY992o8qHJ0NqFMOUKXzAL8iCxA8T4Bl5Q259b4HYBXU9YJsVpMazt54alsaOnSjGmhrcGg8NRO1LnT2YCOHjkp3ZjLTgX6b0EWwdcphQ82oDvF6R65bNXi8_91L8vHy_L7eJLu31-16tUt0louQMK73AIpDgQ0vFIpGad1WAlVeIq8Kjk0tygxECTmH_V5jzSNSiLwCbFWdLcnDxTfG_DyhD3I0XuMwqAntycuMZTVwJiKxvhC1s947bOXRxV_dWTKQc12yl391ybkuOQ_wKH26SDEG-TLopNcGJ42NcaiDbKz53-QHivV8Bw</recordid><startdate>20080303</startdate><enddate>20080303</enddate><creator>Dinc, C.</creator><creator>Lazoglu, I.</creator><creator>Serpenguzel, A.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20080303</creationdate><title>Analysis of thermal fields in orthogonal machining with infrared imaging</title><author>Dinc, C. ; Lazoglu, I. ; Serpenguzel, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-12cb00a205ed25ae9daccf79ea46e2752ed89630960420bbce8246e59470efa83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>AISI 1050</topic><topic>Al7075</topic><topic>Rake angle</topic><topic>Temperature</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dinc, C.</creatorcontrib><creatorcontrib>Lazoglu, I.</creatorcontrib><creatorcontrib>Serpenguzel, A.</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of materials processing technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dinc, C.</au><au>Lazoglu, I.</au><au>Serpenguzel, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of thermal fields in orthogonal machining with infrared imaging</atitle><jtitle>Journal of materials processing technology</jtitle><date>2008-03-03</date><risdate>2008</risdate><volume>198</volume><issue>1</issue><spage>147</spage><epage>154</epage><pages>147-154</pages><issn>0924-0136</issn><abstract>The validation of a previously developed finite difference temperature prediction model is carried out for orthogonal machining process with a high precision infrared camera set-up, considering the temperature distribution in the tool. The thermal experiments are conducted with two different materials; Al 7075, AISI 1050, with two different tool geometries; inserts having a rake angle of 6° and 18°, for different cutting velocities and feedrates. An infrared camera set-up is utilized for the thermal experiments. The results of the high precision infrared thermal measurements are compared with the outputs of the finite difference temperature model, considering the maximum and the mean temperatures in the tool–chip interface zone and the temperature distributions on the tool take face. The maximum tool–chip interface temperature increases with increasing cutting velocity and feedrate. The relationship between the maximum tool–chip interface temperature and the rake angle of the tool is not distinctive. The experimental results show good agreement with the simulations.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.jmatprotec.2007.07.002</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0924-0136 |
ispartof | Journal of materials processing technology, 2008-03, Vol.198 (1), p.147-154 |
issn | 0924-0136 |
language | eng |
recordid | cdi_proquest_miscellaneous_31380219 |
source | Elsevier ScienceDirect Journals Complete |
subjects | AISI 1050 Al7075 Rake angle Temperature Velocity |
title | Analysis of thermal fields in orthogonal machining with infrared imaging |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T08%3A57%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20thermal%20fields%20in%20orthogonal%20machining%20with%20infrared%20imaging&rft.jtitle=Journal%20of%20materials%20processing%20technology&rft.au=Dinc,%20C.&rft.date=2008-03-03&rft.volume=198&rft.issue=1&rft.spage=147&rft.epage=154&rft.pages=147-154&rft.issn=0924-0136&rft_id=info:doi/10.1016/j.jmatprotec.2007.07.002&rft_dat=%3Cproquest_cross%3E31380219%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=31380219&rft_id=info:pmid/&rft_els_id=S0924013607006620&rfr_iscdi=true |