Analysis of thermal fields in orthogonal machining with infrared imaging

The validation of a previously developed finite difference temperature prediction model is carried out for orthogonal machining process with a high precision infrared camera set-up, considering the temperature distribution in the tool. The thermal experiments are conducted with two different materia...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials processing technology 2008-03, Vol.198 (1), p.147-154
Hauptverfasser: Dinc, C., Lazoglu, I., Serpenguzel, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 154
container_issue 1
container_start_page 147
container_title Journal of materials processing technology
container_volume 198
creator Dinc, C.
Lazoglu, I.
Serpenguzel, A.
description The validation of a previously developed finite difference temperature prediction model is carried out for orthogonal machining process with a high precision infrared camera set-up, considering the temperature distribution in the tool. The thermal experiments are conducted with two different materials; Al 7075, AISI 1050, with two different tool geometries; inserts having a rake angle of 6° and 18°, for different cutting velocities and feedrates. An infrared camera set-up is utilized for the thermal experiments. The results of the high precision infrared thermal measurements are compared with the outputs of the finite difference temperature model, considering the maximum and the mean temperatures in the tool–chip interface zone and the temperature distributions on the tool take face. The maximum tool–chip interface temperature increases with increasing cutting velocity and feedrate. The relationship between the maximum tool–chip interface temperature and the rake angle of the tool is not distinctive. The experimental results show good agreement with the simulations.
doi_str_mv 10.1016/j.jmatprotec.2007.07.002
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_31380219</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0924013607006620</els_id><sourcerecordid>31380219</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-12cb00a205ed25ae9daccf79ea46e2752ed89630960420bbce8246e59470efa83</originalsourceid><addsrcrecordid>eNqFUE1LAzEQzUHBWv0POXnbdZL9zLEWtYWCFz2HNDvbzbK7qUmq9N-bpYJHYWBg3gfzHiGUQcqAlY992o8qHJ0NqFMOUKXzAL8iCxA8T4Bl5Q259b4HYBXU9YJsVpMazt54alsaOnSjGmhrcGg8NRO1LnT2YCOHjkp3ZjLTgX6b0EWwdcphQ82oDvF6R65bNXi8_91L8vHy_L7eJLu31-16tUt0louQMK73AIpDgQ0vFIpGad1WAlVeIq8Kjk0tygxECTmH_V5jzSNSiLwCbFWdLcnDxTfG_DyhD3I0XuMwqAntycuMZTVwJiKxvhC1s947bOXRxV_dWTKQc12yl391ybkuOQ_wKH26SDEG-TLopNcGJ42NcaiDbKz53-QHivV8Bw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>31380219</pqid></control><display><type>article</type><title>Analysis of thermal fields in orthogonal machining with infrared imaging</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Dinc, C. ; Lazoglu, I. ; Serpenguzel, A.</creator><creatorcontrib>Dinc, C. ; Lazoglu, I. ; Serpenguzel, A.</creatorcontrib><description>The validation of a previously developed finite difference temperature prediction model is carried out for orthogonal machining process with a high precision infrared camera set-up, considering the temperature distribution in the tool. The thermal experiments are conducted with two different materials; Al 7075, AISI 1050, with two different tool geometries; inserts having a rake angle of 6° and 18°, for different cutting velocities and feedrates. An infrared camera set-up is utilized for the thermal experiments. The results of the high precision infrared thermal measurements are compared with the outputs of the finite difference temperature model, considering the maximum and the mean temperatures in the tool–chip interface zone and the temperature distributions on the tool take face. The maximum tool–chip interface temperature increases with increasing cutting velocity and feedrate. The relationship between the maximum tool–chip interface temperature and the rake angle of the tool is not distinctive. The experimental results show good agreement with the simulations.</description><identifier>ISSN: 0924-0136</identifier><identifier>DOI: 10.1016/j.jmatprotec.2007.07.002</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>AISI 1050 ; Al7075 ; Rake angle ; Temperature ; Velocity</subject><ispartof>Journal of materials processing technology, 2008-03, Vol.198 (1), p.147-154</ispartof><rights>2007 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-12cb00a205ed25ae9daccf79ea46e2752ed89630960420bbce8246e59470efa83</citedby><cites>FETCH-LOGICAL-c349t-12cb00a205ed25ae9daccf79ea46e2752ed89630960420bbce8246e59470efa83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jmatprotec.2007.07.002$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Dinc, C.</creatorcontrib><creatorcontrib>Lazoglu, I.</creatorcontrib><creatorcontrib>Serpenguzel, A.</creatorcontrib><title>Analysis of thermal fields in orthogonal machining with infrared imaging</title><title>Journal of materials processing technology</title><description>The validation of a previously developed finite difference temperature prediction model is carried out for orthogonal machining process with a high precision infrared camera set-up, considering the temperature distribution in the tool. The thermal experiments are conducted with two different materials; Al 7075, AISI 1050, with two different tool geometries; inserts having a rake angle of 6° and 18°, for different cutting velocities and feedrates. An infrared camera set-up is utilized for the thermal experiments. The results of the high precision infrared thermal measurements are compared with the outputs of the finite difference temperature model, considering the maximum and the mean temperatures in the tool–chip interface zone and the temperature distributions on the tool take face. The maximum tool–chip interface temperature increases with increasing cutting velocity and feedrate. The relationship between the maximum tool–chip interface temperature and the rake angle of the tool is not distinctive. The experimental results show good agreement with the simulations.</description><subject>AISI 1050</subject><subject>Al7075</subject><subject>Rake angle</subject><subject>Temperature</subject><subject>Velocity</subject><issn>0924-0136</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqFUE1LAzEQzUHBWv0POXnbdZL9zLEWtYWCFz2HNDvbzbK7qUmq9N-bpYJHYWBg3gfzHiGUQcqAlY992o8qHJ0NqFMOUKXzAL8iCxA8T4Bl5Q259b4HYBXU9YJsVpMazt54alsaOnSjGmhrcGg8NRO1LnT2YCOHjkp3ZjLTgX6b0EWwdcphQ82oDvF6R65bNXi8_91L8vHy_L7eJLu31-16tUt0louQMK73AIpDgQ0vFIpGad1WAlVeIq8Kjk0tygxECTmH_V5jzSNSiLwCbFWdLcnDxTfG_DyhD3I0XuMwqAntycuMZTVwJiKxvhC1s947bOXRxV_dWTKQc12yl391ybkuOQ_wKH26SDEG-TLopNcGJ42NcaiDbKz53-QHivV8Bw</recordid><startdate>20080303</startdate><enddate>20080303</enddate><creator>Dinc, C.</creator><creator>Lazoglu, I.</creator><creator>Serpenguzel, A.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20080303</creationdate><title>Analysis of thermal fields in orthogonal machining with infrared imaging</title><author>Dinc, C. ; Lazoglu, I. ; Serpenguzel, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-12cb00a205ed25ae9daccf79ea46e2752ed89630960420bbce8246e59470efa83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>AISI 1050</topic><topic>Al7075</topic><topic>Rake angle</topic><topic>Temperature</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dinc, C.</creatorcontrib><creatorcontrib>Lazoglu, I.</creatorcontrib><creatorcontrib>Serpenguzel, A.</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of materials processing technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dinc, C.</au><au>Lazoglu, I.</au><au>Serpenguzel, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of thermal fields in orthogonal machining with infrared imaging</atitle><jtitle>Journal of materials processing technology</jtitle><date>2008-03-03</date><risdate>2008</risdate><volume>198</volume><issue>1</issue><spage>147</spage><epage>154</epage><pages>147-154</pages><issn>0924-0136</issn><abstract>The validation of a previously developed finite difference temperature prediction model is carried out for orthogonal machining process with a high precision infrared camera set-up, considering the temperature distribution in the tool. The thermal experiments are conducted with two different materials; Al 7075, AISI 1050, with two different tool geometries; inserts having a rake angle of 6° and 18°, for different cutting velocities and feedrates. An infrared camera set-up is utilized for the thermal experiments. The results of the high precision infrared thermal measurements are compared with the outputs of the finite difference temperature model, considering the maximum and the mean temperatures in the tool–chip interface zone and the temperature distributions on the tool take face. The maximum tool–chip interface temperature increases with increasing cutting velocity and feedrate. The relationship between the maximum tool–chip interface temperature and the rake angle of the tool is not distinctive. The experimental results show good agreement with the simulations.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.jmatprotec.2007.07.002</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0924-0136
ispartof Journal of materials processing technology, 2008-03, Vol.198 (1), p.147-154
issn 0924-0136
language eng
recordid cdi_proquest_miscellaneous_31380219
source Elsevier ScienceDirect Journals Complete
subjects AISI 1050
Al7075
Rake angle
Temperature
Velocity
title Analysis of thermal fields in orthogonal machining with infrared imaging
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T08%3A57%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20thermal%20fields%20in%20orthogonal%20machining%20with%20infrared%20imaging&rft.jtitle=Journal%20of%20materials%20processing%20technology&rft.au=Dinc,%20C.&rft.date=2008-03-03&rft.volume=198&rft.issue=1&rft.spage=147&rft.epage=154&rft.pages=147-154&rft.issn=0924-0136&rft_id=info:doi/10.1016/j.jmatprotec.2007.07.002&rft_dat=%3Cproquest_cross%3E31380219%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=31380219&rft_id=info:pmid/&rft_els_id=S0924013607006620&rfr_iscdi=true