Numerical modeling of a high pressure thawing process of a biomaterial

A numerical model for predicting temperature and velocity fields during conjugate heat transfer in a high pressure (HP) (~200 MPa) thawing process presented. This model considers the apparent specific heat formulation to solve the energy equation with phase change and the shift approach to extrapola...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIChE journal 2008-02, Vol.54 (2), p.544-553
Hauptverfasser: Ousegui, A, LeBail, A, Havet, M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 553
container_issue 2
container_start_page 544
container_title AIChE journal
container_volume 54
creator Ousegui, A
LeBail, A
Havet, M
description A numerical model for predicting temperature and velocity fields during conjugate heat transfer in a high pressure (HP) (~200 MPa) thawing process presented. This model considers the apparent specific heat formulation to solve the energy equation with phase change and the shift approach to extrapolate thermophysical properties at HP. It does not require the adjustement of the convective heat transfer coefficient. The compressible flow of water in the HP vessel is calculated. It is shown that the fluid motion is dominated by forced convection in the compression phase and by natural convection during the holding phase. A very good agreement between numerical and experimental results is obtained. Additional simulations carried out at various pressures permit to assess the influence of the pressure level on the thawing time. The analysis of the phase change inside the food and of the velocity field inside the vessel clearly demonstrates the great potential of this model to optimize this HP process at an industrial scale. © 2007 American Institute of Chemical Engineers AIChE J, 2008
doi_str_mv 10.1002/aic.11391
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_31376870</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>21258007</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4501-abdbd4c25016543a4d692a6bc843a16642706862290c884300befb1fd655a6853</originalsourceid><addsrcrecordid>eNqFkF9LHDEUxUOx0NX2oZ-gg1ChD6NJJn8fdalWkPXBSh_DnUxmN3ZmZ5vsoH77XjtWQRCfknvyO4ebQ8hnRg8ZpfwIoj9krLLsHZkxKXQpLZU7ZEYpZSUK7APZzfkGJ64Nn5HTxdiHFD10RT80oYvrZTG0BRSruFwVmxRyHlMotiu4fXjapMGjNCF1HHrYohu6j-R9C10Onx7PPXJ9-v3n_Ed5cXl2Pj--KL2QuADUTd0Iz_GupKhANMpyULU3ODClBNdUGcW5pd6gRmkd2pq1jZISlJHVHjmYcnGRP2PIW9fH7EPXwToMY3YVq7Qymr4JcsaloVQjuP8CvBnGtMZPOGZtpTkzFqFvE-TTkHMKrduk2EO6d4y6h94d9u7-9Y7s18dAyFhrm2DtY342WGu1tQq5o4m7jV24fz3QHZ_P_yeXkyPmbbh7ckD67ZSutHS_FmdOLhbixMi548h_mfgWBgfLhFtcX3HKsFYjjBC8-guISKZU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>199372189</pqid></control><display><type>article</type><title>Numerical modeling of a high pressure thawing process of a biomaterial</title><source>Wiley-Blackwell Journals</source><creator>Ousegui, A ; LeBail, A ; Havet, M</creator><creatorcontrib>Ousegui, A ; LeBail, A ; Havet, M</creatorcontrib><description>A numerical model for predicting temperature and velocity fields during conjugate heat transfer in a high pressure (HP) (~200 MPa) thawing process presented. This model considers the apparent specific heat formulation to solve the energy equation with phase change and the shift approach to extrapolate thermophysical properties at HP. It does not require the adjustement of the convective heat transfer coefficient. The compressible flow of water in the HP vessel is calculated. It is shown that the fluid motion is dominated by forced convection in the compression phase and by natural convection during the holding phase. A very good agreement between numerical and experimental results is obtained. Additional simulations carried out at various pressures permit to assess the influence of the pressure level on the thawing time. The analysis of the phase change inside the food and of the velocity field inside the vessel clearly demonstrates the great potential of this model to optimize this HP process at an industrial scale. © 2007 American Institute of Chemical Engineers AIChE J, 2008</description><identifier>ISSN: 0001-1541</identifier><identifier>EISSN: 1547-5905</identifier><identifier>DOI: 10.1002/aic.11391</identifier><identifier>CODEN: AICEAC</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Applied sciences ; Biological and medical sciences ; Biomedical materials ; CFD ; Chemical engineering ; Exact sciences and technology ; Food engineering ; Food industries ; Fundamental and applied biological sciences. Psychology ; General aspects ; Heat and mass transfer. Packings, plates ; Heat transfer ; Mathematical models ; Melting ; phase change ; Temperature</subject><ispartof>AIChE journal, 2008-02, Vol.54 (2), p.544-553</ispartof><rights>Copyright © 2007 American Institute of Chemical Engineers (AIChE)</rights><rights>2008 INIST-CNRS</rights><rights>Copyright American Institute of Chemical Engineers Feb 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4501-abdbd4c25016543a4d692a6bc843a16642706862290c884300befb1fd655a6853</citedby><cites>FETCH-LOGICAL-c4501-abdbd4c25016543a4d692a6bc843a16642706862290c884300befb1fd655a6853</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faic.11391$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faic.11391$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=19997996$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Ousegui, A</creatorcontrib><creatorcontrib>LeBail, A</creatorcontrib><creatorcontrib>Havet, M</creatorcontrib><title>Numerical modeling of a high pressure thawing process of a biomaterial</title><title>AIChE journal</title><addtitle>AIChE J</addtitle><description>A numerical model for predicting temperature and velocity fields during conjugate heat transfer in a high pressure (HP) (~200 MPa) thawing process presented. This model considers the apparent specific heat formulation to solve the energy equation with phase change and the shift approach to extrapolate thermophysical properties at HP. It does not require the adjustement of the convective heat transfer coefficient. The compressible flow of water in the HP vessel is calculated. It is shown that the fluid motion is dominated by forced convection in the compression phase and by natural convection during the holding phase. A very good agreement between numerical and experimental results is obtained. Additional simulations carried out at various pressures permit to assess the influence of the pressure level on the thawing time. The analysis of the phase change inside the food and of the velocity field inside the vessel clearly demonstrates the great potential of this model to optimize this HP process at an industrial scale. © 2007 American Institute of Chemical Engineers AIChE J, 2008</description><subject>Applied sciences</subject><subject>Biological and medical sciences</subject><subject>Biomedical materials</subject><subject>CFD</subject><subject>Chemical engineering</subject><subject>Exact sciences and technology</subject><subject>Food engineering</subject><subject>Food industries</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General aspects</subject><subject>Heat and mass transfer. Packings, plates</subject><subject>Heat transfer</subject><subject>Mathematical models</subject><subject>Melting</subject><subject>phase change</subject><subject>Temperature</subject><issn>0001-1541</issn><issn>1547-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqFkF9LHDEUxUOx0NX2oZ-gg1ChD6NJJn8fdalWkPXBSh_DnUxmN3ZmZ5vsoH77XjtWQRCfknvyO4ebQ8hnRg8ZpfwIoj9krLLsHZkxKXQpLZU7ZEYpZSUK7APZzfkGJ64Nn5HTxdiHFD10RT80oYvrZTG0BRSruFwVmxRyHlMotiu4fXjapMGjNCF1HHrYohu6j-R9C10Onx7PPXJ9-v3n_Ed5cXl2Pj--KL2QuADUTd0Iz_GupKhANMpyULU3ODClBNdUGcW5pd6gRmkd2pq1jZISlJHVHjmYcnGRP2PIW9fH7EPXwToMY3YVq7Qymr4JcsaloVQjuP8CvBnGtMZPOGZtpTkzFqFvE-TTkHMKrduk2EO6d4y6h94d9u7-9Y7s18dAyFhrm2DtY342WGu1tQq5o4m7jV24fz3QHZ_P_yeXkyPmbbh7ckD67ZSutHS_FmdOLhbixMi548h_mfgWBgfLhFtcX3HKsFYjjBC8-guISKZU</recordid><startdate>200802</startdate><enddate>200802</enddate><creator>Ousegui, A</creator><creator>LeBail, A</creator><creator>Havet, M</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley Subscription Services</general><general>American Institute of Chemical Engineers</general><scope>FBQ</scope><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7U5</scope><scope>8FD</scope><scope>C1K</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>200802</creationdate><title>Numerical modeling of a high pressure thawing process of a biomaterial</title><author>Ousegui, A ; LeBail, A ; Havet, M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4501-abdbd4c25016543a4d692a6bc843a16642706862290c884300befb1fd655a6853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Applied sciences</topic><topic>Biological and medical sciences</topic><topic>Biomedical materials</topic><topic>CFD</topic><topic>Chemical engineering</topic><topic>Exact sciences and technology</topic><topic>Food engineering</topic><topic>Food industries</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General aspects</topic><topic>Heat and mass transfer. Packings, plates</topic><topic>Heat transfer</topic><topic>Mathematical models</topic><topic>Melting</topic><topic>phase change</topic><topic>Temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ousegui, A</creatorcontrib><creatorcontrib>LeBail, A</creatorcontrib><creatorcontrib>Havet, M</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>AIChE journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ousegui, A</au><au>LeBail, A</au><au>Havet, M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical modeling of a high pressure thawing process of a biomaterial</atitle><jtitle>AIChE journal</jtitle><addtitle>AIChE J</addtitle><date>2008-02</date><risdate>2008</risdate><volume>54</volume><issue>2</issue><spage>544</spage><epage>553</epage><pages>544-553</pages><issn>0001-1541</issn><eissn>1547-5905</eissn><coden>AICEAC</coden><abstract>A numerical model for predicting temperature and velocity fields during conjugate heat transfer in a high pressure (HP) (~200 MPa) thawing process presented. This model considers the apparent specific heat formulation to solve the energy equation with phase change and the shift approach to extrapolate thermophysical properties at HP. It does not require the adjustement of the convective heat transfer coefficient. The compressible flow of water in the HP vessel is calculated. It is shown that the fluid motion is dominated by forced convection in the compression phase and by natural convection during the holding phase. A very good agreement between numerical and experimental results is obtained. Additional simulations carried out at various pressures permit to assess the influence of the pressure level on the thawing time. The analysis of the phase change inside the food and of the velocity field inside the vessel clearly demonstrates the great potential of this model to optimize this HP process at an industrial scale. © 2007 American Institute of Chemical Engineers AIChE J, 2008</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><doi>10.1002/aic.11391</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0001-1541
ispartof AIChE journal, 2008-02, Vol.54 (2), p.544-553
issn 0001-1541
1547-5905
language eng
recordid cdi_proquest_miscellaneous_31376870
source Wiley-Blackwell Journals
subjects Applied sciences
Biological and medical sciences
Biomedical materials
CFD
Chemical engineering
Exact sciences and technology
Food engineering
Food industries
Fundamental and applied biological sciences. Psychology
General aspects
Heat and mass transfer. Packings, plates
Heat transfer
Mathematical models
Melting
phase change
Temperature
title Numerical modeling of a high pressure thawing process of a biomaterial
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T19%3A13%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20modeling%20of%20a%20high%20pressure%20thawing%20process%20of%20a%20biomaterial&rft.jtitle=AIChE%20journal&rft.au=Ousegui,%20A&rft.date=2008-02&rft.volume=54&rft.issue=2&rft.spage=544&rft.epage=553&rft.pages=544-553&rft.issn=0001-1541&rft.eissn=1547-5905&rft.coden=AICEAC&rft_id=info:doi/10.1002/aic.11391&rft_dat=%3Cproquest_cross%3E21258007%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=199372189&rft_id=info:pmid/&rfr_iscdi=true