Information-Theoretic Biodescriptors for Proteomics Maps: Applications to Rodent Hepatotoxicity

This paper describes an approach using information theory to derive a complexity measure for proteomics maps generated using 2-dimensional gel electrophoresis (2DE gel). The maps used in this study were partitioned into 5X5 grids and total protein abundance in each grid square was compared to the to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Basak, Subhash C, Gute, Brian D, Geiss, Kevin T, Witzmann, Frank A
Format: Tagungsbericht
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13
container_issue
container_start_page 10
container_title
container_volume 963
creator Basak, Subhash C
Gute, Brian D
Geiss, Kevin T
Witzmann, Frank A
description This paper describes an approach using information theory to derive a complexity measure for proteomics maps generated using 2-dimensional gel electrophoresis (2DE gel). The maps used in this study were partitioned into 5X5 grids and total protein abundance in each grid square was compared to the total abundance for the entire map. Next, Shannon's relation was applied to characterize the distribution of protein abundance across the entire map. Details of the approach are discussed, including an example of the calculations for one proteomics map containing 200 spots. Finally, results for the Map Information Content index are presented for a set of six maps calculated using 200, 500, and 1,400 protein spots. It is hoped that the application of information-theoretic techniques to characterize the complexity of these maps, thus reducing the amount of information presented to the researcher, will help in comparing maps containing a great deal of information and yield information useful in computational toxicology.
doi_str_mv 10.1063/1.2835935
format Conference Proceeding
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_31363789</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>31363789</sourcerecordid><originalsourceid>FETCH-LOGICAL-p101t-ef45299dec0754875cdf84b7247718c1ede7cea9dd28b767ae2e146ae359fd8a3</originalsourceid><addsrcrecordid>eNotj81KAzEURgMq2FYXvkFW7qbmb-Ym7mpRW6goUqG7kiZ3MDKdxEkK-vYWdXU23_ngEHLF2ZSzRt7wqdCyNrI-IWMGslZMgd6ckhFjRlVCyc05Gef8wZgwAHpEtsu-jcPelhD7av2OccASHL0L0WN2Q0glDpkeJ_RliAXjPrhMn2zKt3SWUhfcr5lpifT1qPSFLjDZEkv8Ci6U7wty1tou4-U_J-Tt4X49X1Sr58flfLaqEme8VNiqWhjj0TGolYba-VarHQgFwLXj6BEcWuO90DtowKJArhqLx9jWaysn5PrvNw3x84C5bPchO-w622M85K3kspGgjfwBJZ5ZDQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>31363789</pqid></control><display><type>conference_proceeding</type><title>Information-Theoretic Biodescriptors for Proteomics Maps: Applications to Rodent Hepatotoxicity</title><source>American Institute of Physics (AIP) Journals</source><creator>Basak, Subhash C ; Gute, Brian D ; Geiss, Kevin T ; Witzmann, Frank A</creator><creatorcontrib>Basak, Subhash C ; Gute, Brian D ; Geiss, Kevin T ; Witzmann, Frank A</creatorcontrib><description>This paper describes an approach using information theory to derive a complexity measure for proteomics maps generated using 2-dimensional gel electrophoresis (2DE gel). The maps used in this study were partitioned into 5X5 grids and total protein abundance in each grid square was compared to the total abundance for the entire map. Next, Shannon's relation was applied to characterize the distribution of protein abundance across the entire map. Details of the approach are discussed, including an example of the calculations for one proteomics map containing 200 spots. Finally, results for the Map Information Content index are presented for a set of six maps calculated using 200, 500, and 1,400 protein spots. It is hoped that the application of information-theoretic techniques to characterize the complexity of these maps, thus reducing the amount of information presented to the researcher, will help in comparing maps containing a great deal of information and yield information useful in computational toxicology.</description><identifier>ISSN: 0094-243X</identifier><identifier>ISBN: 073540478X</identifier><identifier>ISBN: 9780735404786</identifier><identifier>DOI: 10.1063/1.2835935</identifier><language>eng</language><ispartof>Computation in Modern Science and Engineering, Volume 2, Part A (AIP Conference Proceedings Volume 963), 2007, Vol.963, p.10-13</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Basak, Subhash C</creatorcontrib><creatorcontrib>Gute, Brian D</creatorcontrib><creatorcontrib>Geiss, Kevin T</creatorcontrib><creatorcontrib>Witzmann, Frank A</creatorcontrib><title>Information-Theoretic Biodescriptors for Proteomics Maps: Applications to Rodent Hepatotoxicity</title><title>Computation in Modern Science and Engineering, Volume 2, Part A (AIP Conference Proceedings Volume 963)</title><description>This paper describes an approach using information theory to derive a complexity measure for proteomics maps generated using 2-dimensional gel electrophoresis (2DE gel). The maps used in this study were partitioned into 5X5 grids and total protein abundance in each grid square was compared to the total abundance for the entire map. Next, Shannon's relation was applied to characterize the distribution of protein abundance across the entire map. Details of the approach are discussed, including an example of the calculations for one proteomics map containing 200 spots. Finally, results for the Map Information Content index are presented for a set of six maps calculated using 200, 500, and 1,400 protein spots. It is hoped that the application of information-theoretic techniques to characterize the complexity of these maps, thus reducing the amount of information presented to the researcher, will help in comparing maps containing a great deal of information and yield information useful in computational toxicology.</description><issn>0094-243X</issn><isbn>073540478X</isbn><isbn>9780735404786</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2007</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotj81KAzEURgMq2FYXvkFW7qbmb-Ym7mpRW6goUqG7kiZ3MDKdxEkK-vYWdXU23_ngEHLF2ZSzRt7wqdCyNrI-IWMGslZMgd6ckhFjRlVCyc05Gef8wZgwAHpEtsu-jcPelhD7av2OccASHL0L0WN2Q0glDpkeJ_RliAXjPrhMn2zKt3SWUhfcr5lpifT1qPSFLjDZEkv8Ci6U7wty1tou4-U_J-Tt4X49X1Sr58flfLaqEme8VNiqWhjj0TGolYba-VarHQgFwLXj6BEcWuO90DtowKJArhqLx9jWaysn5PrvNw3x84C5bPchO-w622M85K3kspGgjfwBJZ5ZDQ</recordid><startdate>20070101</startdate><enddate>20070101</enddate><creator>Basak, Subhash C</creator><creator>Gute, Brian D</creator><creator>Geiss, Kevin T</creator><creator>Witzmann, Frank A</creator><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20070101</creationdate><title>Information-Theoretic Biodescriptors for Proteomics Maps: Applications to Rodent Hepatotoxicity</title><author>Basak, Subhash C ; Gute, Brian D ; Geiss, Kevin T ; Witzmann, Frank A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p101t-ef45299dec0754875cdf84b7247718c1ede7cea9dd28b767ae2e146ae359fd8a3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2007</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Basak, Subhash C</creatorcontrib><creatorcontrib>Gute, Brian D</creatorcontrib><creatorcontrib>Geiss, Kevin T</creatorcontrib><creatorcontrib>Witzmann, Frank A</creatorcontrib><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Basak, Subhash C</au><au>Gute, Brian D</au><au>Geiss, Kevin T</au><au>Witzmann, Frank A</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Information-Theoretic Biodescriptors for Proteomics Maps: Applications to Rodent Hepatotoxicity</atitle><btitle>Computation in Modern Science and Engineering, Volume 2, Part A (AIP Conference Proceedings Volume 963)</btitle><date>2007-01-01</date><risdate>2007</risdate><volume>963</volume><spage>10</spage><epage>13</epage><pages>10-13</pages><issn>0094-243X</issn><isbn>073540478X</isbn><isbn>9780735404786</isbn><abstract>This paper describes an approach using information theory to derive a complexity measure for proteomics maps generated using 2-dimensional gel electrophoresis (2DE gel). The maps used in this study were partitioned into 5X5 grids and total protein abundance in each grid square was compared to the total abundance for the entire map. Next, Shannon's relation was applied to characterize the distribution of protein abundance across the entire map. Details of the approach are discussed, including an example of the calculations for one proteomics map containing 200 spots. Finally, results for the Map Information Content index are presented for a set of six maps calculated using 200, 500, and 1,400 protein spots. It is hoped that the application of information-theoretic techniques to characterize the complexity of these maps, thus reducing the amount of information presented to the researcher, will help in comparing maps containing a great deal of information and yield information useful in computational toxicology.</abstract><doi>10.1063/1.2835935</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof Computation in Modern Science and Engineering, Volume 2, Part A (AIP Conference Proceedings Volume 963), 2007, Vol.963, p.10-13
issn 0094-243X
language eng
recordid cdi_proquest_miscellaneous_31363789
source American Institute of Physics (AIP) Journals
title Information-Theoretic Biodescriptors for Proteomics Maps: Applications to Rodent Hepatotoxicity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T11%3A30%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Information-Theoretic%20Biodescriptors%20for%20Proteomics%20Maps:%20Applications%20to%20Rodent%20Hepatotoxicity&rft.btitle=Computation%20in%20Modern%20Science%20and%20Engineering,%20Volume%202,%20Part%20A%20(AIP%20Conference%20Proceedings%20Volume%20963)&rft.au=Basak,%20Subhash%20C&rft.date=2007-01-01&rft.volume=963&rft.spage=10&rft.epage=13&rft.pages=10-13&rft.issn=0094-243X&rft.isbn=073540478X&rft.isbn_list=9780735404786&rft_id=info:doi/10.1063/1.2835935&rft_dat=%3Cproquest%3E31363789%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=31363789&rft_id=info:pmid/&rfr_iscdi=true