The dynamics of adaptive evolution in microalgae in a high‐CO2 ocean

Summary Marine microalgae demonstrate a notable capacity to adapt to high CO2 and warming in the context of global change. However, the dynamics of their evolutionary processes under simultaneous high CO₂ and warming conditions remain poorly understood. Here, we analyze the dynamics of evolution in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The New phytologist 2025-02, Vol.245 (4), p.1608-1624
Hauptverfasser: Wu, Fenghuang, Zhou, Yunyue, Beardall, John, Raven, John A., Peng, Baoyi, Xu, Leyao, Zhang, Hao, Li, Jingyao, Xia, Jianrong, Jin, Peng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1624
container_issue 4
container_start_page 1608
container_title The New phytologist
container_volume 245
creator Wu, Fenghuang
Zhou, Yunyue
Beardall, John
Raven, John A.
Peng, Baoyi
Xu, Leyao
Zhang, Hao
Li, Jingyao
Xia, Jianrong
Jin, Peng
description Summary Marine microalgae demonstrate a notable capacity to adapt to high CO2 and warming in the context of global change. However, the dynamics of their evolutionary processes under simultaneous high CO₂ and warming conditions remain poorly understood. Here, we analyze the dynamics of evolution in experimental populations of a model marine diatom Phaeodactylum tricornutum. We conducted whole‐genome resequencing of populations under ambient, high‐CO2, warming and high CO2 + warming at 2‐yr intervals over a 4‐yr adaptation period. The common genes selected between 2‐ and 4‐yr adaptation were found to be involved in protein ubiquitination and degradation and the tricarboxylic acid (TCA) cycle, and were consistently selected regardless of the experimental conditions or adaptation duration. The unique genes selected only by 4‐yr adaptation function in respiration, fatty acid, and amino acid metabolism, facilitating adaptation to prolonged high CO2 with warming conditions. Corresponding changes at the metabolomic level, with significant alterations in metabolites abundances involved in these pathways, support the genomic findings. Our study, integrating genomic and metabolomic data, demonstrates that long‐term adaptation of microalgae to high CO2 and/or warming can be characterized by a complex and dynamic genetic process and may advance our understanding of microalgae adaptation to global change.
doi_str_mv 10.1111/nph.20323
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_miscellaneous_3134070002</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3134070002</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1863-c7087ec761b28db6c6c440b1f6fa2a3052ca21e7c2cd291386f89d31e4e2b0613</originalsourceid><addsrcrecordid>eNpdkLFOwzAQQC0EEqUw8AeWWFjS2mfXcUZUUYpUUYYisVmO4zSu0jgkTVE2PoFv5EtwWyZuuTvd0-nuIXRLyYiGGFd1MQLCgJ2hAeUiiSRl8TkaEAIyEly8X6Krtt0QQpKJgAGarQqLs77SW2da7HOsM13v3N5iu_dlt3O-wq7CYdp4Xa61PXQaF25d_Hx9T5eAvbG6ukYXuS5be_OXh-ht9riazqPF8ul5-rCIaioFi0xMZGxNLGgKMkuFEYZzktJc5Bo0IxMwGqiNDZgMEsqkyGWSMWq5hZQIyobo_rS3bvxHZ9ud2rrW2LLUlfVdqxhlnMThOwjo3T9047umCtcFaiIh5hySQI1P1Kcrba_qxm110ytK1EGnCjrVUad6eZ0fC_YLOPxoqw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3158274429</pqid></control><display><type>article</type><title>The dynamics of adaptive evolution in microalgae in a high‐CO2 ocean</title><source>Wiley Online Library All Journals</source><creator>Wu, Fenghuang ; Zhou, Yunyue ; Beardall, John ; Raven, John A. ; Peng, Baoyi ; Xu, Leyao ; Zhang, Hao ; Li, Jingyao ; Xia, Jianrong ; Jin, Peng</creator><creatorcontrib>Wu, Fenghuang ; Zhou, Yunyue ; Beardall, John ; Raven, John A. ; Peng, Baoyi ; Xu, Leyao ; Zhang, Hao ; Li, Jingyao ; Xia, Jianrong ; Jin, Peng</creatorcontrib><description>Summary Marine microalgae demonstrate a notable capacity to adapt to high CO2 and warming in the context of global change. However, the dynamics of their evolutionary processes under simultaneous high CO₂ and warming conditions remain poorly understood. Here, we analyze the dynamics of evolution in experimental populations of a model marine diatom Phaeodactylum tricornutum. We conducted whole‐genome resequencing of populations under ambient, high‐CO2, warming and high CO2 + warming at 2‐yr intervals over a 4‐yr adaptation period. The common genes selected between 2‐ and 4‐yr adaptation were found to be involved in protein ubiquitination and degradation and the tricarboxylic acid (TCA) cycle, and were consistently selected regardless of the experimental conditions or adaptation duration. The unique genes selected only by 4‐yr adaptation function in respiration, fatty acid, and amino acid metabolism, facilitating adaptation to prolonged high CO2 with warming conditions. Corresponding changes at the metabolomic level, with significant alterations in metabolites abundances involved in these pathways, support the genomic findings. Our study, integrating genomic and metabolomic data, demonstrates that long‐term adaptation of microalgae to high CO2 and/or warming can be characterized by a complex and dynamic genetic process and may advance our understanding of microalgae adaptation to global change.</description><identifier>ISSN: 0028-646X</identifier><identifier>ISSN: 1469-8137</identifier><identifier>EISSN: 1469-8137</identifier><identifier>DOI: 10.1111/nph.20323</identifier><language>eng</language><publisher>Lancaster: Wiley Subscription Services, Inc</publisher><subject>Adaptation ; Algae ; Amino acid sequence ; Amino acids ; Aquatic microorganisms ; Carbon dioxide ; Diatoms ; dynamic evolution ; Evolution ; Evolution &amp; development ; Evolutionary genetics ; Fatty acids ; Genes ; Genetic processes ; Genomes ; Genomics ; global change ; high CO2 ; Metabolism ; Metabolites ; Metabolomics ; Microalgae ; Phytoplankton ; Populations ; Tricarboxylic acid cycle ; Ubiquitination ; warming ; Whole genome sequencing</subject><ispartof>The New phytologist, 2025-02, Vol.245 (4), p.1608-1624</ispartof><rights>2024 The Author(s). © 2024 New Phytologist Foundation.</rights><rights>Copyright © 2025 New Phytologist Trust</rights><rights>2024 The Author(s). New Phytologist © 2024 New Phytologist Foundation.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-2789-3297 ; 0000-0003-0031-968X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fnph.20323$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fnph.20323$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Wu, Fenghuang</creatorcontrib><creatorcontrib>Zhou, Yunyue</creatorcontrib><creatorcontrib>Beardall, John</creatorcontrib><creatorcontrib>Raven, John A.</creatorcontrib><creatorcontrib>Peng, Baoyi</creatorcontrib><creatorcontrib>Xu, Leyao</creatorcontrib><creatorcontrib>Zhang, Hao</creatorcontrib><creatorcontrib>Li, Jingyao</creatorcontrib><creatorcontrib>Xia, Jianrong</creatorcontrib><creatorcontrib>Jin, Peng</creatorcontrib><title>The dynamics of adaptive evolution in microalgae in a high‐CO2 ocean</title><title>The New phytologist</title><description>Summary Marine microalgae demonstrate a notable capacity to adapt to high CO2 and warming in the context of global change. However, the dynamics of their evolutionary processes under simultaneous high CO₂ and warming conditions remain poorly understood. Here, we analyze the dynamics of evolution in experimental populations of a model marine diatom Phaeodactylum tricornutum. We conducted whole‐genome resequencing of populations under ambient, high‐CO2, warming and high CO2 + warming at 2‐yr intervals over a 4‐yr adaptation period. The common genes selected between 2‐ and 4‐yr adaptation were found to be involved in protein ubiquitination and degradation and the tricarboxylic acid (TCA) cycle, and were consistently selected regardless of the experimental conditions or adaptation duration. The unique genes selected only by 4‐yr adaptation function in respiration, fatty acid, and amino acid metabolism, facilitating adaptation to prolonged high CO2 with warming conditions. Corresponding changes at the metabolomic level, with significant alterations in metabolites abundances involved in these pathways, support the genomic findings. Our study, integrating genomic and metabolomic data, demonstrates that long‐term adaptation of microalgae to high CO2 and/or warming can be characterized by a complex and dynamic genetic process and may advance our understanding of microalgae adaptation to global change.</description><subject>Adaptation</subject><subject>Algae</subject><subject>Amino acid sequence</subject><subject>Amino acids</subject><subject>Aquatic microorganisms</subject><subject>Carbon dioxide</subject><subject>Diatoms</subject><subject>dynamic evolution</subject><subject>Evolution</subject><subject>Evolution &amp; development</subject><subject>Evolutionary genetics</subject><subject>Fatty acids</subject><subject>Genes</subject><subject>Genetic processes</subject><subject>Genomes</subject><subject>Genomics</subject><subject>global change</subject><subject>high CO2</subject><subject>Metabolism</subject><subject>Metabolites</subject><subject>Metabolomics</subject><subject>Microalgae</subject><subject>Phytoplankton</subject><subject>Populations</subject><subject>Tricarboxylic acid cycle</subject><subject>Ubiquitination</subject><subject>warming</subject><subject>Whole genome sequencing</subject><issn>0028-646X</issn><issn>1469-8137</issn><issn>1469-8137</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNpdkLFOwzAQQC0EEqUw8AeWWFjS2mfXcUZUUYpUUYYisVmO4zSu0jgkTVE2PoFv5EtwWyZuuTvd0-nuIXRLyYiGGFd1MQLCgJ2hAeUiiSRl8TkaEAIyEly8X6Krtt0QQpKJgAGarQqLs77SW2da7HOsM13v3N5iu_dlt3O-wq7CYdp4Xa61PXQaF25d_Hx9T5eAvbG6ukYXuS5be_OXh-ht9riazqPF8ul5-rCIaioFi0xMZGxNLGgKMkuFEYZzktJc5Bo0IxMwGqiNDZgMEsqkyGWSMWq5hZQIyobo_rS3bvxHZ9ud2rrW2LLUlfVdqxhlnMThOwjo3T9047umCtcFaiIh5hySQI1P1Kcrba_qxm110ytK1EGnCjrVUad6eZ0fC_YLOPxoqw</recordid><startdate>202502</startdate><enddate>202502</enddate><creator>Wu, Fenghuang</creator><creator>Zhou, Yunyue</creator><creator>Beardall, John</creator><creator>Raven, John A.</creator><creator>Peng, Baoyi</creator><creator>Xu, Leyao</creator><creator>Zhang, Hao</creator><creator>Li, Jingyao</creator><creator>Xia, Jianrong</creator><creator>Jin, Peng</creator><general>Wiley Subscription Services, Inc</general><scope>7QO</scope><scope>7SN</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H95</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2789-3297</orcidid><orcidid>https://orcid.org/0000-0003-0031-968X</orcidid></search><sort><creationdate>202502</creationdate><title>The dynamics of adaptive evolution in microalgae in a high‐CO2 ocean</title><author>Wu, Fenghuang ; Zhou, Yunyue ; Beardall, John ; Raven, John A. ; Peng, Baoyi ; Xu, Leyao ; Zhang, Hao ; Li, Jingyao ; Xia, Jianrong ; Jin, Peng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1863-c7087ec761b28db6c6c440b1f6fa2a3052ca21e7c2cd291386f89d31e4e2b0613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Adaptation</topic><topic>Algae</topic><topic>Amino acid sequence</topic><topic>Amino acids</topic><topic>Aquatic microorganisms</topic><topic>Carbon dioxide</topic><topic>Diatoms</topic><topic>dynamic evolution</topic><topic>Evolution</topic><topic>Evolution &amp; development</topic><topic>Evolutionary genetics</topic><topic>Fatty acids</topic><topic>Genes</topic><topic>Genetic processes</topic><topic>Genomes</topic><topic>Genomics</topic><topic>global change</topic><topic>high CO2</topic><topic>Metabolism</topic><topic>Metabolites</topic><topic>Metabolomics</topic><topic>Microalgae</topic><topic>Phytoplankton</topic><topic>Populations</topic><topic>Tricarboxylic acid cycle</topic><topic>Ubiquitination</topic><topic>warming</topic><topic>Whole genome sequencing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Fenghuang</creatorcontrib><creatorcontrib>Zhou, Yunyue</creatorcontrib><creatorcontrib>Beardall, John</creatorcontrib><creatorcontrib>Raven, John A.</creatorcontrib><creatorcontrib>Peng, Baoyi</creatorcontrib><creatorcontrib>Xu, Leyao</creatorcontrib><creatorcontrib>Zhang, Hao</creatorcontrib><creatorcontrib>Li, Jingyao</creatorcontrib><creatorcontrib>Xia, Jianrong</creatorcontrib><creatorcontrib>Jin, Peng</creatorcontrib><collection>Biotechnology Research Abstracts</collection><collection>Ecology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>The New phytologist</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Fenghuang</au><au>Zhou, Yunyue</au><au>Beardall, John</au><au>Raven, John A.</au><au>Peng, Baoyi</au><au>Xu, Leyao</au><au>Zhang, Hao</au><au>Li, Jingyao</au><au>Xia, Jianrong</au><au>Jin, Peng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The dynamics of adaptive evolution in microalgae in a high‐CO2 ocean</atitle><jtitle>The New phytologist</jtitle><date>2025-02</date><risdate>2025</risdate><volume>245</volume><issue>4</issue><spage>1608</spage><epage>1624</epage><pages>1608-1624</pages><issn>0028-646X</issn><issn>1469-8137</issn><eissn>1469-8137</eissn><abstract>Summary Marine microalgae demonstrate a notable capacity to adapt to high CO2 and warming in the context of global change. However, the dynamics of their evolutionary processes under simultaneous high CO₂ and warming conditions remain poorly understood. Here, we analyze the dynamics of evolution in experimental populations of a model marine diatom Phaeodactylum tricornutum. We conducted whole‐genome resequencing of populations under ambient, high‐CO2, warming and high CO2 + warming at 2‐yr intervals over a 4‐yr adaptation period. The common genes selected between 2‐ and 4‐yr adaptation were found to be involved in protein ubiquitination and degradation and the tricarboxylic acid (TCA) cycle, and were consistently selected regardless of the experimental conditions or adaptation duration. The unique genes selected only by 4‐yr adaptation function in respiration, fatty acid, and amino acid metabolism, facilitating adaptation to prolonged high CO2 with warming conditions. Corresponding changes at the metabolomic level, with significant alterations in metabolites abundances involved in these pathways, support the genomic findings. Our study, integrating genomic and metabolomic data, demonstrates that long‐term adaptation of microalgae to high CO2 and/or warming can be characterized by a complex and dynamic genetic process and may advance our understanding of microalgae adaptation to global change.</abstract><cop>Lancaster</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/nph.20323</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-2789-3297</orcidid><orcidid>https://orcid.org/0000-0003-0031-968X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0028-646X
ispartof The New phytologist, 2025-02, Vol.245 (4), p.1608-1624
issn 0028-646X
1469-8137
1469-8137
language eng
recordid cdi_proquest_miscellaneous_3134070002
source Wiley Online Library All Journals
subjects Adaptation
Algae
Amino acid sequence
Amino acids
Aquatic microorganisms
Carbon dioxide
Diatoms
dynamic evolution
Evolution
Evolution & development
Evolutionary genetics
Fatty acids
Genes
Genetic processes
Genomes
Genomics
global change
high CO2
Metabolism
Metabolites
Metabolomics
Microalgae
Phytoplankton
Populations
Tricarboxylic acid cycle
Ubiquitination
warming
Whole genome sequencing
title The dynamics of adaptive evolution in microalgae in a high‐CO2 ocean
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T14%3A54%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20dynamics%20of%20adaptive%20evolution%20in%20microalgae%20in%20a%20high%E2%80%90CO2%20ocean&rft.jtitle=The%20New%20phytologist&rft.au=Wu,%20Fenghuang&rft.date=2025-02&rft.volume=245&rft.issue=4&rft.spage=1608&rft.epage=1624&rft.pages=1608-1624&rft.issn=0028-646X&rft.eissn=1469-8137&rft_id=info:doi/10.1111/nph.20323&rft_dat=%3Cproquest_wiley%3E3134070002%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3158274429&rft_id=info:pmid/&rfr_iscdi=true