A combined support vector regression with a firefly algorithm for prediction of energy consumption in wastewater treatment plants

Wastewater treatment plants (WWTPs) comprise energy-intensive processes, serving as primary contributors to overall WWTP costs. This research study proposes a novel approach that integrates support vector regression (SVR) with the firefly algorithm (FFA) for the prediction of energy consumption in a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water science and technology 2024-11, Vol.90 (10), p.2747-2763
Hauptverfasser: Achite, Mohammed, Samadianfard, Saeed, Elshaboury, Nehal, Toubal, Kamel Abderezak, Abdelkader, Eslam Mohammed, Sharafi, Milad
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2763
container_issue 10
container_start_page 2747
container_title Water science and technology
container_volume 90
creator Achite, Mohammed
Samadianfard, Saeed
Elshaboury, Nehal
Toubal, Kamel Abderezak
Abdelkader, Eslam Mohammed
Sharafi, Milad
description Wastewater treatment plants (WWTPs) comprise energy-intensive processes, serving as primary contributors to overall WWTP costs. This research study proposes a novel approach that integrates support vector regression (SVR) with the firefly algorithm (FFA) for the prediction of energy consumption in a WWTP in Chlef City, Algeria. The database comprises a comprehensive set of 1,653 samples, capturing diverse information categories. It includes chemical and physical characteristics, encompassing chemical oxygen demand, 5-day biochemical oxygen demand, potential of hydrogen, water temperature, total suspended sediment in water and basin, influent N-NH concentration, number of aerators, and operating time. Additionally, the hydraulic and energy-related parameters are represented by the flow entered at the station and the energy consumed by aerators, respectively. Finally, meteorological data, comprising rainfall, temperature, relative humidity, and the aridity index, are part of the dataset required for analysis. In this regard, 15 different models that correspond to 15 different combinations of input parameters are assessed in this study. The results show that the SVR-FFA-15 can render an improvement in the prediction accuracy of energy consumption in WWTPs. This study provides a useful tool for managing the energy consumption of wastewater treatment and makes insightful recommendations for future energy savings.
doi_str_mv 10.2166/wst.2024.375
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3134069870</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3134069870</sourcerecordid><originalsourceid>FETCH-LOGICAL-c206t-9f35f48b86d23ff370e8f673dc66f64365ca41e7138d7a7c88a0f52cbe2d27cb3</originalsourceid><addsrcrecordid>eNpdkTtPwzAUhS0EoqWwMSNLLAyk-JHYyVghXhISC8yR41yXVEkcbIeqI_8clxYGpisdfTo6uh9C55TMGRXiZu3DnBGWzrnMDtCUFoVICsnZIZoSJnlCGeMTdOL9ihAieUqO0YQXgjIq2RR9LbC2XdX0UGM_DoN1AX-CDtZhB0sH3je2x-smvGOFTePAtBus2qV1MeqwidzgoG502HLWYOjBLTextPdjN_ykTSxQPsBaBXA4OFChgz7goVV98KfoyKjWw9n-ztDb_d3r7WPy_PLwdLt4TjQjIiSF4ZlJ8yoXNePGcEkgN0LyWgthRMpFplVKQVKe11JJneeKmIzpCljNpK74DF3tegdnP0bwoewar6GNI8COvuQ0_kYUuSQRvfyHruzo-rguUikTLKM5j9T1jtLOeh8_Uw6u6ZTblJSUWzVlVFNu1ZRRTcQv9qVj1UH9B_-64N98nIy4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3142625183</pqid></control><display><type>article</type><title>A combined support vector regression with a firefly algorithm for prediction of energy consumption in wastewater treatment plants</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Achite, Mohammed ; Samadianfard, Saeed ; Elshaboury, Nehal ; Toubal, Kamel Abderezak ; Abdelkader, Eslam Mohammed ; Sharafi, Milad</creator><creatorcontrib>Achite, Mohammed ; Samadianfard, Saeed ; Elshaboury, Nehal ; Toubal, Kamel Abderezak ; Abdelkader, Eslam Mohammed ; Sharafi, Milad</creatorcontrib><description>Wastewater treatment plants (WWTPs) comprise energy-intensive processes, serving as primary contributors to overall WWTP costs. This research study proposes a novel approach that integrates support vector regression (SVR) with the firefly algorithm (FFA) for the prediction of energy consumption in a WWTP in Chlef City, Algeria. The database comprises a comprehensive set of 1,653 samples, capturing diverse information categories. It includes chemical and physical characteristics, encompassing chemical oxygen demand, 5-day biochemical oxygen demand, potential of hydrogen, water temperature, total suspended sediment in water and basin, influent N-NH concentration, number of aerators, and operating time. Additionally, the hydraulic and energy-related parameters are represented by the flow entered at the station and the energy consumed by aerators, respectively. Finally, meteorological data, comprising rainfall, temperature, relative humidity, and the aridity index, are part of the dataset required for analysis. In this regard, 15 different models that correspond to 15 different combinations of input parameters are assessed in this study. The results show that the SVR-FFA-15 can render an improvement in the prediction accuracy of energy consumption in WWTPs. This study provides a useful tool for managing the energy consumption of wastewater treatment and makes insightful recommendations for future energy savings.</description><identifier>ISSN: 0273-1223</identifier><identifier>EISSN: 1996-9732</identifier><identifier>DOI: 10.2166/wst.2024.375</identifier><identifier>PMID: 39612172</identifier><language>eng</language><publisher>England: IWA Publishing</publisher><subject>Aeration ; Aerators ; Algorithms ; Alternative energy sources ; Ammonia ; Aridity ; Biochemical oxygen demand ; Chemical oxygen demand ; Climate change ; Cost control ; Deep learning ; Effluents ; Emission standards ; Energy ; Energy conservation ; Energy consumption ; Energy costs ; Energy efficiency ; Energy resources ; Feature selection ; Heuristic methods ; Influents ; Investigations ; Mean square errors ; Meteorological data ; Neural networks ; Oxygen ; Oxygen requirement ; Parameters ; Physical characteristics ; Physical properties ; Predictions ; Quality standards ; Rainfall ; Regression analysis ; Relative humidity ; Sludge ; Support Vector Machine ; Support vector machines ; Suspended sediments ; Sustainable development ; Temperature requirements ; Total oxygen demand ; Waste Disposal, Fluid - methods ; Wastewater ; Wastewater treatment ; Wastewater treatment plants ; Water Purification - methods ; Water quality ; Water temperature ; Water treatment</subject><ispartof>Water science and technology, 2024-11, Vol.90 (10), p.2747-2763</ispartof><rights>2024 The Authors This is an Open Access article distributed under the terms of the Creative Commons Attribution Licence (CC BY 4.0), which permits copying, adaptation and redistribution, provided the original work is properly cited (http://creativecommons.org/licenses/by/4.0/).</rights><rights>Copyright IWA Publishing 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c206t-9f35f48b86d23ff370e8f673dc66f64365ca41e7138d7a7c88a0f52cbe2d27cb3</cites><orcidid>0000-0002-7531-4173</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39612172$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Achite, Mohammed</creatorcontrib><creatorcontrib>Samadianfard, Saeed</creatorcontrib><creatorcontrib>Elshaboury, Nehal</creatorcontrib><creatorcontrib>Toubal, Kamel Abderezak</creatorcontrib><creatorcontrib>Abdelkader, Eslam Mohammed</creatorcontrib><creatorcontrib>Sharafi, Milad</creatorcontrib><title>A combined support vector regression with a firefly algorithm for prediction of energy consumption in wastewater treatment plants</title><title>Water science and technology</title><addtitle>Water Sci Technol</addtitle><description>Wastewater treatment plants (WWTPs) comprise energy-intensive processes, serving as primary contributors to overall WWTP costs. This research study proposes a novel approach that integrates support vector regression (SVR) with the firefly algorithm (FFA) for the prediction of energy consumption in a WWTP in Chlef City, Algeria. The database comprises a comprehensive set of 1,653 samples, capturing diverse information categories. It includes chemical and physical characteristics, encompassing chemical oxygen demand, 5-day biochemical oxygen demand, potential of hydrogen, water temperature, total suspended sediment in water and basin, influent N-NH concentration, number of aerators, and operating time. Additionally, the hydraulic and energy-related parameters are represented by the flow entered at the station and the energy consumed by aerators, respectively. Finally, meteorological data, comprising rainfall, temperature, relative humidity, and the aridity index, are part of the dataset required for analysis. In this regard, 15 different models that correspond to 15 different combinations of input parameters are assessed in this study. The results show that the SVR-FFA-15 can render an improvement in the prediction accuracy of energy consumption in WWTPs. This study provides a useful tool for managing the energy consumption of wastewater treatment and makes insightful recommendations for future energy savings.</description><subject>Aeration</subject><subject>Aerators</subject><subject>Algorithms</subject><subject>Alternative energy sources</subject><subject>Ammonia</subject><subject>Aridity</subject><subject>Biochemical oxygen demand</subject><subject>Chemical oxygen demand</subject><subject>Climate change</subject><subject>Cost control</subject><subject>Deep learning</subject><subject>Effluents</subject><subject>Emission standards</subject><subject>Energy</subject><subject>Energy conservation</subject><subject>Energy consumption</subject><subject>Energy costs</subject><subject>Energy efficiency</subject><subject>Energy resources</subject><subject>Feature selection</subject><subject>Heuristic methods</subject><subject>Influents</subject><subject>Investigations</subject><subject>Mean square errors</subject><subject>Meteorological data</subject><subject>Neural networks</subject><subject>Oxygen</subject><subject>Oxygen requirement</subject><subject>Parameters</subject><subject>Physical characteristics</subject><subject>Physical properties</subject><subject>Predictions</subject><subject>Quality standards</subject><subject>Rainfall</subject><subject>Regression analysis</subject><subject>Relative humidity</subject><subject>Sludge</subject><subject>Support Vector Machine</subject><subject>Support vector machines</subject><subject>Suspended sediments</subject><subject>Sustainable development</subject><subject>Temperature requirements</subject><subject>Total oxygen demand</subject><subject>Waste Disposal, Fluid - methods</subject><subject>Wastewater</subject><subject>Wastewater treatment</subject><subject>Wastewater treatment plants</subject><subject>Water Purification - methods</subject><subject>Water quality</subject><subject>Water temperature</subject><subject>Water treatment</subject><issn>0273-1223</issn><issn>1996-9732</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkTtPwzAUhS0EoqWwMSNLLAyk-JHYyVghXhISC8yR41yXVEkcbIeqI_8clxYGpisdfTo6uh9C55TMGRXiZu3DnBGWzrnMDtCUFoVICsnZIZoSJnlCGeMTdOL9ihAieUqO0YQXgjIq2RR9LbC2XdX0UGM_DoN1AX-CDtZhB0sH3je2x-smvGOFTePAtBus2qV1MeqwidzgoG502HLWYOjBLTextPdjN_ykTSxQPsBaBXA4OFChgz7goVV98KfoyKjWw9n-ztDb_d3r7WPy_PLwdLt4TjQjIiSF4ZlJ8yoXNePGcEkgN0LyWgthRMpFplVKQVKe11JJneeKmIzpCljNpK74DF3tegdnP0bwoewar6GNI8COvuQ0_kYUuSQRvfyHruzo-rguUikTLKM5j9T1jtLOeh8_Uw6u6ZTblJSUWzVlVFNu1ZRRTcQv9qVj1UH9B_-64N98nIy4</recordid><startdate>202411</startdate><enddate>202411</enddate><creator>Achite, Mohammed</creator><creator>Samadianfard, Saeed</creator><creator>Elshaboury, Nehal</creator><creator>Toubal, Kamel Abderezak</creator><creator>Abdelkader, Eslam Mohammed</creator><creator>Sharafi, Milad</creator><general>IWA Publishing</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>H97</scope><scope>K9.</scope><scope>L.G</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7531-4173</orcidid></search><sort><creationdate>202411</creationdate><title>A combined support vector regression with a firefly algorithm for prediction of energy consumption in wastewater treatment plants</title><author>Achite, Mohammed ; Samadianfard, Saeed ; Elshaboury, Nehal ; Toubal, Kamel Abderezak ; Abdelkader, Eslam Mohammed ; Sharafi, Milad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c206t-9f35f48b86d23ff370e8f673dc66f64365ca41e7138d7a7c88a0f52cbe2d27cb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Aeration</topic><topic>Aerators</topic><topic>Algorithms</topic><topic>Alternative energy sources</topic><topic>Ammonia</topic><topic>Aridity</topic><topic>Biochemical oxygen demand</topic><topic>Chemical oxygen demand</topic><topic>Climate change</topic><topic>Cost control</topic><topic>Deep learning</topic><topic>Effluents</topic><topic>Emission standards</topic><topic>Energy</topic><topic>Energy conservation</topic><topic>Energy consumption</topic><topic>Energy costs</topic><topic>Energy efficiency</topic><topic>Energy resources</topic><topic>Feature selection</topic><topic>Heuristic methods</topic><topic>Influents</topic><topic>Investigations</topic><topic>Mean square errors</topic><topic>Meteorological data</topic><topic>Neural networks</topic><topic>Oxygen</topic><topic>Oxygen requirement</topic><topic>Parameters</topic><topic>Physical characteristics</topic><topic>Physical properties</topic><topic>Predictions</topic><topic>Quality standards</topic><topic>Rainfall</topic><topic>Regression analysis</topic><topic>Relative humidity</topic><topic>Sludge</topic><topic>Support Vector Machine</topic><topic>Support vector machines</topic><topic>Suspended sediments</topic><topic>Sustainable development</topic><topic>Temperature requirements</topic><topic>Total oxygen demand</topic><topic>Waste Disposal, Fluid - methods</topic><topic>Wastewater</topic><topic>Wastewater treatment</topic><topic>Wastewater treatment plants</topic><topic>Water Purification - methods</topic><topic>Water quality</topic><topic>Water temperature</topic><topic>Water treatment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Achite, Mohammed</creatorcontrib><creatorcontrib>Samadianfard, Saeed</creatorcontrib><creatorcontrib>Elshaboury, Nehal</creatorcontrib><creatorcontrib>Toubal, Kamel Abderezak</creatorcontrib><creatorcontrib>Abdelkader, Eslam Mohammed</creatorcontrib><creatorcontrib>Sharafi, Milad</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Water science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Achite, Mohammed</au><au>Samadianfard, Saeed</au><au>Elshaboury, Nehal</au><au>Toubal, Kamel Abderezak</au><au>Abdelkader, Eslam Mohammed</au><au>Sharafi, Milad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A combined support vector regression with a firefly algorithm for prediction of energy consumption in wastewater treatment plants</atitle><jtitle>Water science and technology</jtitle><addtitle>Water Sci Technol</addtitle><date>2024-11</date><risdate>2024</risdate><volume>90</volume><issue>10</issue><spage>2747</spage><epage>2763</epage><pages>2747-2763</pages><issn>0273-1223</issn><eissn>1996-9732</eissn><abstract>Wastewater treatment plants (WWTPs) comprise energy-intensive processes, serving as primary contributors to overall WWTP costs. This research study proposes a novel approach that integrates support vector regression (SVR) with the firefly algorithm (FFA) for the prediction of energy consumption in a WWTP in Chlef City, Algeria. The database comprises a comprehensive set of 1,653 samples, capturing diverse information categories. It includes chemical and physical characteristics, encompassing chemical oxygen demand, 5-day biochemical oxygen demand, potential of hydrogen, water temperature, total suspended sediment in water and basin, influent N-NH concentration, number of aerators, and operating time. Additionally, the hydraulic and energy-related parameters are represented by the flow entered at the station and the energy consumed by aerators, respectively. Finally, meteorological data, comprising rainfall, temperature, relative humidity, and the aridity index, are part of the dataset required for analysis. In this regard, 15 different models that correspond to 15 different combinations of input parameters are assessed in this study. The results show that the SVR-FFA-15 can render an improvement in the prediction accuracy of energy consumption in WWTPs. This study provides a useful tool for managing the energy consumption of wastewater treatment and makes insightful recommendations for future energy savings.</abstract><cop>England</cop><pub>IWA Publishing</pub><pmid>39612172</pmid><doi>10.2166/wst.2024.375</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-7531-4173</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0273-1223
ispartof Water science and technology, 2024-11, Vol.90 (10), p.2747-2763
issn 0273-1223
1996-9732
language eng
recordid cdi_proquest_miscellaneous_3134069870
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Aeration
Aerators
Algorithms
Alternative energy sources
Ammonia
Aridity
Biochemical oxygen demand
Chemical oxygen demand
Climate change
Cost control
Deep learning
Effluents
Emission standards
Energy
Energy conservation
Energy consumption
Energy costs
Energy efficiency
Energy resources
Feature selection
Heuristic methods
Influents
Investigations
Mean square errors
Meteorological data
Neural networks
Oxygen
Oxygen requirement
Parameters
Physical characteristics
Physical properties
Predictions
Quality standards
Rainfall
Regression analysis
Relative humidity
Sludge
Support Vector Machine
Support vector machines
Suspended sediments
Sustainable development
Temperature requirements
Total oxygen demand
Waste Disposal, Fluid - methods
Wastewater
Wastewater treatment
Wastewater treatment plants
Water Purification - methods
Water quality
Water temperature
Water treatment
title A combined support vector regression with a firefly algorithm for prediction of energy consumption in wastewater treatment plants
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T11%3A50%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20combined%20support%20vector%20regression%20with%20a%20firefly%20algorithm%20for%20prediction%20of%20energy%20consumption%20in%20wastewater%20treatment%20plants&rft.jtitle=Water%20science%20and%20technology&rft.au=Achite,%20Mohammed&rft.date=2024-11&rft.volume=90&rft.issue=10&rft.spage=2747&rft.epage=2763&rft.pages=2747-2763&rft.issn=0273-1223&rft.eissn=1996-9732&rft_id=info:doi/10.2166/wst.2024.375&rft_dat=%3Cproquest_cross%3E3134069870%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3142625183&rft_id=info:pmid/39612172&rfr_iscdi=true