Microbe-plant-nanoparticle interactions: role in bioremediation of petroleum hydrocarbons
Petroleum hydrocarbons (PHCs) are organic substances that occur naturally on earth. PHCs have emerged as one of the most prevalent and detrimental contaminants in regions comprising soil and water resources. The limitations of conventional physicochemical and biological remediation solutions could b...
Gespeichert in:
Veröffentlicht in: | Water science and technology 2024-11, Vol.90 (10), p.2870-2893 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2893 |
---|---|
container_issue | 10 |
container_start_page | 2870 |
container_title | Water science and technology |
container_volume | 90 |
creator | Unimke, Augustine A Okezie, Onyemaechi Mohammed, Sa'adatu E Mmuoegbulam, Augusta O Abdullahi, Saidu Ofon, Utibe A Olim, Denis M Badamasi, Hamza Galadima, Abdulsalam I Fatunla, Opeyemi K Abdullahi, Aminu Yahaya, Sharhabil M Ibrahim, Muhammad M Muhammad, Abba B Iya, Naseer I Durumin Ayanda, Olushola S |
description | Petroleum hydrocarbons (PHCs) are organic substances that occur naturally on earth. PHCs have emerged as one of the most prevalent and detrimental contaminants in regions comprising soil and water resources. The limitations of conventional physicochemical and biological remediation solutions could be solved by combining remediation techniques. An effective, affordable, and environmentally benign method of reducing petroleum toxins is provided by the advanced idea of bioremediation, which has evolved into nanobioremediation. Environments contaminated with PHCs have been restored through microbe-plant-nanoparticle (NP)-mediated remediation, this review emphasizes how various metallic NPs interact with microbes and plants changing both their activity and that of enzymes, therefore accelerating the remediation process. This work further examines the challenges and possible uses of nanobioremediation, as well as the application of novel technologies in the interactions between bacteria, plants, and NPs for the bioremediation of PHCs. Furthermore, it has been shown that the use of plant-based, microbe-based, microbe-plant-based, and microbe-plant-NP-based techniques to remediate contaminated soils or water bodies is economical and environmentally beneficial. Microbial consortia have been reported as the treasure houses for the cleaning and recovery of hydrocarbon-contaminated environments, and the development of technologies for bioremediation requires an understanding of hydrocarbon degradation mechanisms. |
doi_str_mv | 10.2166/wst.2024.362 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3134069520</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3134069520</sourcerecordid><originalsourceid>FETCH-LOGICAL-c206t-cb15569b29b69918b2a995b161faa375bd0d9bf8bfde98c7c33d2f62888150363</originalsourceid><addsrcrecordid>eNpdkD1PwzAQhi0EoqWwMaNILAyk2OfEidlQxZdUxAIDU2Q7jnCVxMF2hPrvcSgwMJ1099zp3gehU4KXQBi7-vRhCRiyJWWwh-aEc5bygsI-mmMoaEoA6Awdeb_BGBc0w4doRjkjQAo-R29PRjkrdTq0og9pL3o7CBeManVi-qCdUMHY3l8nzn63Emms052ujZgGiW2SQYdpOHbJ-7Z2Vgkn48YxOmhE6_XJT12g17vbl9VDun6-f1zdrFMFmIVUSZLnjEvgknFOSgmC81wSRhohaJHLGtdcNqVsas1LVShKa2gYlGVJckwZXaCL3d3B2Y9R-1B1xivdxjzajr6iJGZmPAcc0fN_6MaOro_fRSoDBjnhWaQud1QU473TTTU40wm3rQiuJuVVVF5NyquoPOJnP0dHGbX8wb-O6Rf5qX0p</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3142625194</pqid></control><display><type>article</type><title>Microbe-plant-nanoparticle interactions: role in bioremediation of petroleum hydrocarbons</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Unimke, Augustine A ; Okezie, Onyemaechi ; Mohammed, Sa'adatu E ; Mmuoegbulam, Augusta O ; Abdullahi, Saidu ; Ofon, Utibe A ; Olim, Denis M ; Badamasi, Hamza ; Galadima, Abdulsalam I ; Fatunla, Opeyemi K ; Abdullahi, Aminu ; Yahaya, Sharhabil M ; Ibrahim, Muhammad M ; Muhammad, Abba B ; Iya, Naseer I Durumin ; Ayanda, Olushola S</creator><creatorcontrib>Unimke, Augustine A ; Okezie, Onyemaechi ; Mohammed, Sa'adatu E ; Mmuoegbulam, Augusta O ; Abdullahi, Saidu ; Ofon, Utibe A ; Olim, Denis M ; Badamasi, Hamza ; Galadima, Abdulsalam I ; Fatunla, Opeyemi K ; Abdullahi, Aminu ; Yahaya, Sharhabil M ; Ibrahim, Muhammad M ; Muhammad, Abba B ; Iya, Naseer I Durumin ; Ayanda, Olushola S</creatorcontrib><description>Petroleum hydrocarbons (PHCs) are organic substances that occur naturally on earth. PHCs have emerged as one of the most prevalent and detrimental contaminants in regions comprising soil and water resources. The limitations of conventional physicochemical and biological remediation solutions could be solved by combining remediation techniques. An effective, affordable, and environmentally benign method of reducing petroleum toxins is provided by the advanced idea of bioremediation, which has evolved into nanobioremediation. Environments contaminated with PHCs have been restored through microbe-plant-nanoparticle (NP)-mediated remediation, this review emphasizes how various metallic NPs interact with microbes and plants changing both their activity and that of enzymes, therefore accelerating the remediation process. This work further examines the challenges and possible uses of nanobioremediation, as well as the application of novel technologies in the interactions between bacteria, plants, and NPs for the bioremediation of PHCs. Furthermore, it has been shown that the use of plant-based, microbe-based, microbe-plant-based, and microbe-plant-NP-based techniques to remediate contaminated soils or water bodies is economical and environmentally beneficial. Microbial consortia have been reported as the treasure houses for the cleaning and recovery of hydrocarbon-contaminated environments, and the development of technologies for bioremediation requires an understanding of hydrocarbon degradation mechanisms.</description><identifier>ISSN: 0273-1223</identifier><identifier>EISSN: 1996-9732</identifier><identifier>DOI: 10.2166/wst.2024.362</identifier><identifier>PMID: 39612179</identifier><language>eng</language><publisher>England: IWA Publishing</publisher><subject>Algae ; Bacteria ; Bacteria - metabolism ; Bioavailability ; Biodegradation ; Biodegradation, Environmental ; Biological effects ; Bioremediation ; Contaminants ; Environmental degradation ; Hydrocarbon-degrading bacteria ; Hydrocarbons ; Hydrocarbons - metabolism ; Microbial contamination ; Microorganisms ; Nanomaterials ; Nanoparticles ; Nanoparticles - chemistry ; Organic soils ; Oxidation ; Petroleum ; Petroleum - metabolism ; Petroleum hydrocarbons ; Plant layout ; Plants ; Plants - metabolism ; Pollutants ; Pollution ; Polycyclic aromatic hydrocarbons ; Soil contamination ; Soil degradation ; Soil Pollutants - metabolism ; Soil pollution ; Soil remediation ; Soil water ; Toxicity ; Toxins ; Water resources</subject><ispartof>Water science and technology, 2024-11, Vol.90 (10), p.2870-2893</ispartof><rights>2024 The Authors This is an Open Access article distributed under the terms of the Creative Commons Attribution Licence (CC BY 4.0), which permits copying, adaptation and redistribution, provided the original work is properly cited (http://creativecommons.org/licenses/by/4.0/).</rights><rights>Copyright IWA Publishing 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c206t-cb15569b29b69918b2a995b161faa375bd0d9bf8bfde98c7c33d2f62888150363</cites><orcidid>0000-0002-2682-1793</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39612179$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Unimke, Augustine A</creatorcontrib><creatorcontrib>Okezie, Onyemaechi</creatorcontrib><creatorcontrib>Mohammed, Sa'adatu E</creatorcontrib><creatorcontrib>Mmuoegbulam, Augusta O</creatorcontrib><creatorcontrib>Abdullahi, Saidu</creatorcontrib><creatorcontrib>Ofon, Utibe A</creatorcontrib><creatorcontrib>Olim, Denis M</creatorcontrib><creatorcontrib>Badamasi, Hamza</creatorcontrib><creatorcontrib>Galadima, Abdulsalam I</creatorcontrib><creatorcontrib>Fatunla, Opeyemi K</creatorcontrib><creatorcontrib>Abdullahi, Aminu</creatorcontrib><creatorcontrib>Yahaya, Sharhabil M</creatorcontrib><creatorcontrib>Ibrahim, Muhammad M</creatorcontrib><creatorcontrib>Muhammad, Abba B</creatorcontrib><creatorcontrib>Iya, Naseer I Durumin</creatorcontrib><creatorcontrib>Ayanda, Olushola S</creatorcontrib><title>Microbe-plant-nanoparticle interactions: role in bioremediation of petroleum hydrocarbons</title><title>Water science and technology</title><addtitle>Water Sci Technol</addtitle><description>Petroleum hydrocarbons (PHCs) are organic substances that occur naturally on earth. PHCs have emerged as one of the most prevalent and detrimental contaminants in regions comprising soil and water resources. The limitations of conventional physicochemical and biological remediation solutions could be solved by combining remediation techniques. An effective, affordable, and environmentally benign method of reducing petroleum toxins is provided by the advanced idea of bioremediation, which has evolved into nanobioremediation. Environments contaminated with PHCs have been restored through microbe-plant-nanoparticle (NP)-mediated remediation, this review emphasizes how various metallic NPs interact with microbes and plants changing both their activity and that of enzymes, therefore accelerating the remediation process. This work further examines the challenges and possible uses of nanobioremediation, as well as the application of novel technologies in the interactions between bacteria, plants, and NPs for the bioremediation of PHCs. Furthermore, it has been shown that the use of plant-based, microbe-based, microbe-plant-based, and microbe-plant-NP-based techniques to remediate contaminated soils or water bodies is economical and environmentally beneficial. Microbial consortia have been reported as the treasure houses for the cleaning and recovery of hydrocarbon-contaminated environments, and the development of technologies for bioremediation requires an understanding of hydrocarbon degradation mechanisms.</description><subject>Algae</subject><subject>Bacteria</subject><subject>Bacteria - metabolism</subject><subject>Bioavailability</subject><subject>Biodegradation</subject><subject>Biodegradation, Environmental</subject><subject>Biological effects</subject><subject>Bioremediation</subject><subject>Contaminants</subject><subject>Environmental degradation</subject><subject>Hydrocarbon-degrading bacteria</subject><subject>Hydrocarbons</subject><subject>Hydrocarbons - metabolism</subject><subject>Microbial contamination</subject><subject>Microorganisms</subject><subject>Nanomaterials</subject><subject>Nanoparticles</subject><subject>Nanoparticles - chemistry</subject><subject>Organic soils</subject><subject>Oxidation</subject><subject>Petroleum</subject><subject>Petroleum - metabolism</subject><subject>Petroleum hydrocarbons</subject><subject>Plant layout</subject><subject>Plants</subject><subject>Plants - metabolism</subject><subject>Pollutants</subject><subject>Pollution</subject><subject>Polycyclic aromatic hydrocarbons</subject><subject>Soil contamination</subject><subject>Soil degradation</subject><subject>Soil Pollutants - metabolism</subject><subject>Soil pollution</subject><subject>Soil remediation</subject><subject>Soil water</subject><subject>Toxicity</subject><subject>Toxins</subject><subject>Water resources</subject><issn>0273-1223</issn><issn>1996-9732</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkD1PwzAQhi0EoqWwMaNILAyk2OfEidlQxZdUxAIDU2Q7jnCVxMF2hPrvcSgwMJ1099zp3gehU4KXQBi7-vRhCRiyJWWwh-aEc5bygsI-mmMoaEoA6Awdeb_BGBc0w4doRjkjQAo-R29PRjkrdTq0og9pL3o7CBeManVi-qCdUMHY3l8nzn63Emms052ujZgGiW2SQYdpOHbJ-7Z2Vgkn48YxOmhE6_XJT12g17vbl9VDun6-f1zdrFMFmIVUSZLnjEvgknFOSgmC81wSRhohaJHLGtdcNqVsas1LVShKa2gYlGVJckwZXaCL3d3B2Y9R-1B1xivdxjzajr6iJGZmPAcc0fN_6MaOro_fRSoDBjnhWaQud1QU473TTTU40wm3rQiuJuVVVF5NyquoPOJnP0dHGbX8wb-O6Rf5qX0p</recordid><startdate>202411</startdate><enddate>202411</enddate><creator>Unimke, Augustine A</creator><creator>Okezie, Onyemaechi</creator><creator>Mohammed, Sa'adatu E</creator><creator>Mmuoegbulam, Augusta O</creator><creator>Abdullahi, Saidu</creator><creator>Ofon, Utibe A</creator><creator>Olim, Denis M</creator><creator>Badamasi, Hamza</creator><creator>Galadima, Abdulsalam I</creator><creator>Fatunla, Opeyemi K</creator><creator>Abdullahi, Aminu</creator><creator>Yahaya, Sharhabil M</creator><creator>Ibrahim, Muhammad M</creator><creator>Muhammad, Abba B</creator><creator>Iya, Naseer I Durumin</creator><creator>Ayanda, Olushola S</creator><general>IWA Publishing</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>H97</scope><scope>K9.</scope><scope>L.G</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2682-1793</orcidid></search><sort><creationdate>202411</creationdate><title>Microbe-plant-nanoparticle interactions: role in bioremediation of petroleum hydrocarbons</title><author>Unimke, Augustine A ; Okezie, Onyemaechi ; Mohammed, Sa'adatu E ; Mmuoegbulam, Augusta O ; Abdullahi, Saidu ; Ofon, Utibe A ; Olim, Denis M ; Badamasi, Hamza ; Galadima, Abdulsalam I ; Fatunla, Opeyemi K ; Abdullahi, Aminu ; Yahaya, Sharhabil M ; Ibrahim, Muhammad M ; Muhammad, Abba B ; Iya, Naseer I Durumin ; Ayanda, Olushola S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c206t-cb15569b29b69918b2a995b161faa375bd0d9bf8bfde98c7c33d2f62888150363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algae</topic><topic>Bacteria</topic><topic>Bacteria - metabolism</topic><topic>Bioavailability</topic><topic>Biodegradation</topic><topic>Biodegradation, Environmental</topic><topic>Biological effects</topic><topic>Bioremediation</topic><topic>Contaminants</topic><topic>Environmental degradation</topic><topic>Hydrocarbon-degrading bacteria</topic><topic>Hydrocarbons</topic><topic>Hydrocarbons - metabolism</topic><topic>Microbial contamination</topic><topic>Microorganisms</topic><topic>Nanomaterials</topic><topic>Nanoparticles</topic><topic>Nanoparticles - chemistry</topic><topic>Organic soils</topic><topic>Oxidation</topic><topic>Petroleum</topic><topic>Petroleum - metabolism</topic><topic>Petroleum hydrocarbons</topic><topic>Plant layout</topic><topic>Plants</topic><topic>Plants - metabolism</topic><topic>Pollutants</topic><topic>Pollution</topic><topic>Polycyclic aromatic hydrocarbons</topic><topic>Soil contamination</topic><topic>Soil degradation</topic><topic>Soil Pollutants - metabolism</topic><topic>Soil pollution</topic><topic>Soil remediation</topic><topic>Soil water</topic><topic>Toxicity</topic><topic>Toxins</topic><topic>Water resources</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Unimke, Augustine A</creatorcontrib><creatorcontrib>Okezie, Onyemaechi</creatorcontrib><creatorcontrib>Mohammed, Sa'adatu E</creatorcontrib><creatorcontrib>Mmuoegbulam, Augusta O</creatorcontrib><creatorcontrib>Abdullahi, Saidu</creatorcontrib><creatorcontrib>Ofon, Utibe A</creatorcontrib><creatorcontrib>Olim, Denis M</creatorcontrib><creatorcontrib>Badamasi, Hamza</creatorcontrib><creatorcontrib>Galadima, Abdulsalam I</creatorcontrib><creatorcontrib>Fatunla, Opeyemi K</creatorcontrib><creatorcontrib>Abdullahi, Aminu</creatorcontrib><creatorcontrib>Yahaya, Sharhabil M</creatorcontrib><creatorcontrib>Ibrahim, Muhammad M</creatorcontrib><creatorcontrib>Muhammad, Abba B</creatorcontrib><creatorcontrib>Iya, Naseer I Durumin</creatorcontrib><creatorcontrib>Ayanda, Olushola S</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Water science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Unimke, Augustine A</au><au>Okezie, Onyemaechi</au><au>Mohammed, Sa'adatu E</au><au>Mmuoegbulam, Augusta O</au><au>Abdullahi, Saidu</au><au>Ofon, Utibe A</au><au>Olim, Denis M</au><au>Badamasi, Hamza</au><au>Galadima, Abdulsalam I</au><au>Fatunla, Opeyemi K</au><au>Abdullahi, Aminu</au><au>Yahaya, Sharhabil M</au><au>Ibrahim, Muhammad M</au><au>Muhammad, Abba B</au><au>Iya, Naseer I Durumin</au><au>Ayanda, Olushola S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microbe-plant-nanoparticle interactions: role in bioremediation of petroleum hydrocarbons</atitle><jtitle>Water science and technology</jtitle><addtitle>Water Sci Technol</addtitle><date>2024-11</date><risdate>2024</risdate><volume>90</volume><issue>10</issue><spage>2870</spage><epage>2893</epage><pages>2870-2893</pages><issn>0273-1223</issn><eissn>1996-9732</eissn><abstract>Petroleum hydrocarbons (PHCs) are organic substances that occur naturally on earth. PHCs have emerged as one of the most prevalent and detrimental contaminants in regions comprising soil and water resources. The limitations of conventional physicochemical and biological remediation solutions could be solved by combining remediation techniques. An effective, affordable, and environmentally benign method of reducing petroleum toxins is provided by the advanced idea of bioremediation, which has evolved into nanobioremediation. Environments contaminated with PHCs have been restored through microbe-plant-nanoparticle (NP)-mediated remediation, this review emphasizes how various metallic NPs interact with microbes and plants changing both their activity and that of enzymes, therefore accelerating the remediation process. This work further examines the challenges and possible uses of nanobioremediation, as well as the application of novel technologies in the interactions between bacteria, plants, and NPs for the bioremediation of PHCs. Furthermore, it has been shown that the use of plant-based, microbe-based, microbe-plant-based, and microbe-plant-NP-based techniques to remediate contaminated soils or water bodies is economical and environmentally beneficial. Microbial consortia have been reported as the treasure houses for the cleaning and recovery of hydrocarbon-contaminated environments, and the development of technologies for bioremediation requires an understanding of hydrocarbon degradation mechanisms.</abstract><cop>England</cop><pub>IWA Publishing</pub><pmid>39612179</pmid><doi>10.2166/wst.2024.362</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0002-2682-1793</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0273-1223 |
ispartof | Water science and technology, 2024-11, Vol.90 (10), p.2870-2893 |
issn | 0273-1223 1996-9732 |
language | eng |
recordid | cdi_proquest_miscellaneous_3134069520 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Algae Bacteria Bacteria - metabolism Bioavailability Biodegradation Biodegradation, Environmental Biological effects Bioremediation Contaminants Environmental degradation Hydrocarbon-degrading bacteria Hydrocarbons Hydrocarbons - metabolism Microbial contamination Microorganisms Nanomaterials Nanoparticles Nanoparticles - chemistry Organic soils Oxidation Petroleum Petroleum - metabolism Petroleum hydrocarbons Plant layout Plants Plants - metabolism Pollutants Pollution Polycyclic aromatic hydrocarbons Soil contamination Soil degradation Soil Pollutants - metabolism Soil pollution Soil remediation Soil water Toxicity Toxins Water resources |
title | Microbe-plant-nanoparticle interactions: role in bioremediation of petroleum hydrocarbons |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T12%3A21%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microbe-plant-nanoparticle%20interactions:%20role%20in%20bioremediation%20of%20petroleum%20hydrocarbons&rft.jtitle=Water%20science%20and%20technology&rft.au=Unimke,%20Augustine%20A&rft.date=2024-11&rft.volume=90&rft.issue=10&rft.spage=2870&rft.epage=2893&rft.pages=2870-2893&rft.issn=0273-1223&rft.eissn=1996-9732&rft_id=info:doi/10.2166/wst.2024.362&rft_dat=%3Cproquest_cross%3E3134069520%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3142625194&rft_id=info:pmid/39612179&rfr_iscdi=true |